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Abstract. The theory of optimal filtering and smoothing of 
noisy data is presented. Implementation of this theory is made 
on the AS/7000 computer at Daresbury Laboratory. The 
Fortran code and examples of application on ‘typical‘ 
spectroscopic data are given. The routine size is 35 kbytes and 
the CPU time 0.1 1 s for 1024 points. 

1. Introduction 
Almost any type of analysis of experimental data requires that 
some kind of data smoothing is carried out. For instance, this 
may involve a least square fit of the data to some function, a 
specific one in the fortunate case where the result of an 
experiment is expected to have a form that can be expressed 
analytically, e.g. an exponential decay, or to an expression that 
can be expanded in terms of a basis set of functions. The choice 
of functions may be based on physical intuition or the 
experimental conditions. This type of problem is more 
appropriately described as function fitting or function 
minimisation prodecure. Several methods are described in the 
literature (see for instance Wolfe, 1978) that make use of a 
computer program for finding the best set of functions and 
parameters. Some of them are available from computer libraries. 

The obvious limitation is that in cases wnere the 
experimental results (typically a function j =j(x) where the 
experimental error 8 j  is considered to be only in the 
measurement of the ordinate values 9) can not be approximated 
by a reasonable analytical expression or where physical intuition 
is not enough in determining a correct and physically 
meaningful choice of basis functions such an approach would be 
quite unsatisfactory. 

There are numerous examples from spectroscopy, 
throughout the range of the electromagnetic spectrum where the 
true signal may consist of a nonconstant background with 
superimposed lines of various intensities and degree of overlap. 
The level of measurement errois (noise) may complicate the 
appearance of such data even further so that it becomes 
impossible to extract even simple, but often critical, information 
like peak positions and intensities and band widths with any 
measurable certainty. 

One approach in these cases is to use a spline interpolation 
or approximation (Spath 1978). where sections of the 
experimentally measured function 5, = f ( x , )  are fitted to a 
polynomial, usually a cubic. The data is swept from beginning to 
end fitting a section at a time. the main problem being how to 
smoothly join (spline) these sections in order to produce a 
smoothly changing final curve. Again, there are algorithms of 
varying complexity and efficiency based on the same idea. 

The main disadvantage of this approach is that any related 

statistical information that may exist, either a priori from the 
experimental design and data recording conditions, or a 
posteriori from the noise content of the data. is not utilised in the 
smoothing procedure. It is thus possible to ‘oversmooth’ or 
‘undersmooth’. Oversmoothing is almost certain to take place 
when the signal has a rather high frequency content while 
undersmoothing occurs in the presence of ‘outliers’, i.e. points 
that are far out from the general trend of neighbouring data 
points (blunders, in statistical terminology). 

Thus, it is necessary to use a procedure which utilises all the 
information available about our data including the noise 
statistics. For example, when a Fourier transform technique is 
used all the information contained in the original data is 
represented by the amplitudes of the sine and/or cosine 
functions. All that is needed is a criterion for separating the 
noise component from the total signal, leaving us with the ‘true’ 
or smoothed data. An algorithm that would do this could then 
be described as a low pass digital filter, since in most situations 
the noise is represented by the high frequency components. Such 
an algorithm is described by Inouye et a1 (1969). The 
implication is that statistical information that exists in some way 
or another can be used in deciding which frequencies to keep 
and which to reject. Kaiser and Reed (1977) have described a 
procedure for finding an appropriate filter function. However, 
they do not offer a specific algorithm that selects a filter which 
matches the properties of the signal and the noise. 

Since the filtering process is usually carried out at the initial 
stage of data analysis, possibly on-line if the experiment is under 
computer control. it is essential that a fast Fourier transform 
(FFT) algorithm is employed. The Fourier expansion may be 
done either in terms of cosine or sine functions or both. The aim 
is to obtain a Fourier spectrum where the coefficients 
corresponding to the signal decrease and reach the noise level as 
quickly as possible. The choice between the first two options 
should be based on the symmetry and analytical properties of 
the measured function. 

This implies that a Fourier filtering program offering these 
options might have to be interactive. whereupon the 
experimenter should choose the type of Fourier transform and 
maybe some kind of data adjustment procedure after displaying 
the original measured function. FFT algorithms that expand only 
in terms of sine or cosine functions do exist (Christiansen and 
Hockney 1971) but we have not used them in the present work. 
Instead we have made use of the NAG library FFT routine 
C06AAF (NAG Library Manual 1975) which expands in both 
sine and cosine based on Singleton‘s (1 968) FFT procedure. 

The most serious problem of using a Fourier filtering 
program is in the way the truncation in the frequency space. the 
Fourier spectrum, is to take place. Anyone familiar with Fourier 
analysis and reconstruction will be aware of the ‘Gibbs 
phenomenon’ whereby oscillations can be introduced in the 
reconstructed data if the high frequency rejection is abrupt, i.e. 
the Fourier coefficients are simply set to zero from a given 
frequency k onwards. 

This problem is usually treated by multiplying the Fourier 
coefficients with an appropriate, smoothly changing at the cut- 
off frequency, edge function. We have experimented with several 
such edge functions including the Gaussian tails of Inouye et a1 
(1969) but quickly came to the conclusion that none could bc 
either general or optimal. In the next two sections we described 
how optimal filtering may be achieved on a variety of 
experimental data using an optimal procedure. 

We also compare our results with those obtained by a spline 
approximation algorithm which uses the Harwell library 
subroutines VC03A and VB06A (Hopper 1978) written by 
Powell (1967). It will be shown that our approach gives 
significantly better results. Execution is up to three times faster 
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and the main storage required is nearly half of that required by 
the spline program. 

Two other important aspects of the use of Fourier filtering 
for data smoothing, mainly integration within an analysis 
package and compression of data information with 
corresponding economies in data storage will be discussed in the 
final section. 

2. Theory of optimal filtering 
Most of the results of this theory are applicable not only for 
Fourier transforms but also for cases of transforms with any 
other basis functions. Our discussion however will mainly be 
concerned with Fourier transforms. 

The theory is equally applicable if the data is given as a 
continuous segment x1 Q s < x x  or as a discrete set of points 
x = x I .  xz, . . . , x,.,, Since we are dealing with digitally recorded 
data the second case will concern us most. 

Let us consider the measured values 2 of a function f ( x )  at 
discrete points x l ,  x2, . . . , x,,, with corresponding measurement 
error (noise) E ,  

2 = f ( x J  + E i .  i=  1, 2 , .  . . , N (1) 

and let us consider the case where there is no systematic error, 
i.e. 

E , = O  (2) 

and that the noise at  the different points is uncorrelated, i.e. 

where 6, is Kronecker’s delta and the variance of noise U’ is the 
same at  all points. 

The majority of experiments satisfy the simple requirements 
( 1 H 3 ) .  They are important not only for simplicity in the theory 
but also for efficiency in application. since correlated errors will 
result in systematic errors in the functionf(x). 

The function f(x) can be expanded in terms of the basis 
functions ( p,(x)} 

f(x) = c Cdha(x), z= 1 , 2 , .  . . (4) 
a 

where the functions { @&)I are orthonormalised 

(@l. V d  = c @a(X, )J /8 (X i )  = 6,. ( 5 )  
I 

The analytical form of the basis functions is chosen 
according to the physical problem we encounter, e.g. a set of 
exponentials if f ( x )  represents a decay curve, etc. 

It is well known (see for example Berezein and Zhidkov 
(1965) that the minimum approximation error R L  

m i n ~ X , a = 1 , 2  , . . . ,  i~ . . . .  (6) 
{Ca 

where 
M 

R i = C  [ f ( x J -  .I CZ@,(XI ) l2  M =  1 , 2 , .  . . (7) 
l a= 1 

is found when the coefficients C, 

. c, = (f, @ a )  = c f(-xi)@,(xi). (8) 
I 

It is very important to appreciate that minR,b is not the 
same as min I?;, where 

M 

8.b = 1 [f(Xl) - x 6,@a(-YJI25 (9) 
i U =  I 

The minimum of 2; corresponds to the minimum difference 
between the unknown function f ( x )  and its approximation. 
Because we do not know the values of f(xl) but only the values 
of A we cannot use formula (8) but only formula (10). 

Because the noise E i  is random, the values of e,. f ( x )  and 
d& will also be random. We will study at  first the statistical 
properties of e,. According to the central limit theorem of 
probability theory (see Brandt 1973) the values of 6, have a 
normal distribution for the broad classes of noise probability 
distributions and. the mean value of 6,  is 

i 1 

i.e. equal to the values of the unknown coefficients C,. The 
covariance matrix (or matrix of errors) D e  of the values of 6,  
is, by definition, equal to 

( D O ,  = U(Ca)&)P0,8. (12) 

( D e ) ,  = 0260,8. (13) 

i.e. the product of the standard deviations of 6,  and dp and 
their correlation coefficients p,. From equation (10) we have 

This means that the C,‘s are uncorrelated. This follows not 
only from the fact that the noise is uncorrelated (3), but also that 
the basis functions { I,?,} are orthogonal (5). 

Because the I ? i 3 s  from (9) are random, strictly speaking, it is 
necessary to find not mink.;, but the minimum of the mean 
value of k,;. For this purpose we introduce in (10) the unknown 
filter coefficients k ,  in order to have a new filtered function 

Now we have a well-posted mathematical problem: to find 
coefficients ( k , }  in order to minimise R 2 .  where 

i a 

and 

and 

D ( Q =  (DC),,. 

We have 
- 

ad2 
2 k ,  
-- -0  

and finally 

C: 
c: + D(d , )  ’ 

k ,  = 

This important formula corresponds to the well known 
Wiener filter (WF) in the theory of optimal detection of random 
signals from random noise when the statistical properties of both 
signal and noise are known (Wainstein and Zubakov 1962). In 
our case we have nonrandom signal f ( x i )  and only random 
noise E i .  In other wordswe can now state that the Wiener filter 
(1 9) gives the minimum R” not only for both random signal and 
random noise, but for nonrandom signal and random noise, too. 
This is very important for the treatment of physical experiments. 
because sometimes we can have only nonrandom signal 
(absorption spectrum of a gas, for example) and random 
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measurement noise. The use of (19) is a generalisation of the 
approach previously described by Kosarev (1980). 

The minimal value of k2 is then 

Finally, from (14) and (13), we have the expression for the error 
in the approximation of the function fi(x) 

I 

It is seen from (14H19) that this expression is approximately 
equal to the error in the approximation of the unknown function 
f ( x ) ,  the one we are interested in. The multiplier of 2 in (21) 
approximately corresponds to the usually adopted 95% 
confidence interval (see for example Brandt's (1973) book). 

The Wiener filter formula (1 9) for optimal filtering is only 
implicit, because it depends on the unknown amplitudes C,. If 
we could know the amplitudes C, we could construct the 
optimal filter for extracting the signal from the noise. However, 
this would not be necessary since we would know the amplitudes 
C a .  hence the signal! 

This disadvantage of formula (19) proves to be at the same 
time its strong advantage. It is at this point in our procedure 
where .we can make use of any a priori or a posteriori 
information about the spectrum of the unknown signal. 

In this paper we use formula (22) for the WF 

A2 
L3 

e: + D( 6,) k, = 

if the signal is larger than the noise: 

e, >D(C,) for a < a0 

and the simple straight line extrapolation 

l n ( e : ) z A l a + B l  for ao<a<al (24) 

for that part of the spectrum where the signal is less than the 
noise 

This we have found sufficient for most spectroscopic data. There 
are cases, however, e.g. EXAFS (decaying sinusoid) where the 
rate of decrease of the Fourier spectrum is best approximated by 

In(C%)zA2 In a + B 2 .  

This approach gives a smooth decreasing filter function which 
does not give rise to Gibb's oscillations which would arise if the 
filter function has an abrupt cut-off. 

3. Application to Fourier transform 
We use Fourier transform for two reasons. Firstly there are 
everal standard fast Fourier transform (FFT) algorithms in 

various computer libraries, and secondly, Fourier transform is a 
very powerful tool for solving various deconvolution problems 
which are very often met in experimental situations. 

There are. however, two restrictions imposed by standard 
FFT subroutines: 

(a) The data has to be known at equidistant points 

x i  = Ax i, i = 1. 2, . . . , N (26) 

and 
(b) the number of data N should be equal to a power of two 

N =  2". (27) 
The first limitation could be avoided by using an 

interpolation routine before the FFT, but in that case we would 

spend additional computer time and, what is more important, we 
would have correlated measurement errors. The undesirability 
of this was explained in 5 2. The best way of avoiding 
interpolation is to make measurements of equidistant points. 
This is not unduly cumbersome if the data is collected under 
computer control. For instance, an EXAFS spectrum, usually 
recorded at equidistant wavelength units, could be recorded at 
equidistant inverse wavelength units (k-space) if full advantage is 
to be taken of the FFT as a noise filter as well as an analysis tool. 

The second restriction may be remedied by adding Zeros, as 
many as needed, to make up to a power of two+. 

If the support interval for the function f ( x )  is 

X I  = a < x <  f =x,v (28) 

and the support interval for the new function f ( I )  is 

a<x<c,wherec>bf  

and 

f ( x )  f o r a , < x < b  
0 f o r b < x < c  

f ( ' ) (x )  = 

it is obvious that nothing is lost of the original information. 

cosine and sine basis function with periods 
Standard analysis by Fourier series in the interval (a, b) uses 

Ak=(b-a)/k, k =  1. 2. 3 . .  . . (3 1) 

and these functions are orthogonal in this interval (a, b). When 
we use the larger interval (a. c) and the new cosine and sine 
functions we have periods 

Ai') = (C - a) / k .  (32) 

Hence. only those functions from the new basis functions 
will be simultaneously basis functions for both support intervals 
that have indices 

(33) 

and only these will be orthogonal in the old support interval. We 
proved in 5 2 that only the amplitudes of these Fourier 
harmonics will be uncorrelated. In fact additional harmonics 
which arise when we use the new support interval (a, c) are 
necessary only to represent the additional zeros outside the old 
interval (a, b). Because of this, in our program we take into 
account the correlation properties of the new Fourier 
coefficients. So, from now on we consider that N = 2 "  and we 
assign a new variable n equal to half the number of data points 

n = N/2. (34) 

The standard formula for the discrete Fourier transform of 
the function 

j, = J +  I (35) 

is 

j = o ,  1 , 2 , .  . . ~ N -  1: 

t NAG MK8 routine now available for any N where prime 
factor <19. 
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where the cosine and sine amplitudes are 

k=O,  1,2.  , .  . , n. 

For N = 2 n  data points we have ( n  + 1) amplitudes for the 
cosine harmonics and only (n -  1)  amplitudes for the sine 
harmonics (because always 8, =8, =O), and the total number 
of harmonics equals 2n = N  precisely. 

In order to increase the rate of decrease to zero of the 
Fourier amplitudes A k and Bk we subtract from the original data 
j t  the straight baseline 

which is added to the smoothed data for final restoration. 
The covariance matrix for the Fourier amplitudes is 

instead of (1 3). For convenience we define two new variables. 
the noise level 

NOISE = 2a2/n (40) 

since the noise fluctuation level of the sum of the square of the 
Fourier amplitudes 2: + i?; will be approximately equal to 
2a2/n, and the observed intensity of the Fourier spectrum 

3, =2: f 8;. (41) 

The main assumption in this work which results from (3) is that 
the Fourier spectrum of noise is constant over all frequencies. 
This assumption was valid for most of the real experimental data 
on which we applied our algorithm. 

(i) Subtract the baseline (38). 
(ii) Compute Fourier transform of data j j j  using the N A G  
Library subroutine C06AAF ( N A G  Library Manual. 1975) 
(iii) Calculate a2 and NOISE from the high frequency part (the 
second half) of the Fourier spectrum where the signal amplitude 
is very much less than that of the noise. It is very important to 
take into acount here only uncorrelated harmonics in 
accordance with (33). 
(iv) Calculate the Wiener filter in accordance with (22H24) 
from Fourier spectrum of signal and noise together. 
(v) Multiply the Fourier amplitudes by the WF coefficients k^, 
(22) and then compute the inverse Fourier transform using 
C06AAF. 
(vi) Restore ordinates by adding the baseline. 
The complete listing of the program. based on (i)-(vi) above is 
published in the Daresbury Laboratory preprint DL/CSE/PlO, 
February 1982 and it is available from the authors. This listing 
includes only the calling references to the N A G  Library 
subroutine C06AAF and some comments on its use. Instead of 
that N A G  subroutine one can possibly use any FFT subroutines 
e.g. published in the book ‘Programs for Digital Signal 
Processing‘. IEEE Press. NY. 1979. 

The result will be optimally filtered (smoothed) data. 
Calculation of the error of approximation can be done by (21), 

The strategy of our algorithm is as follows 

or, more roughly but faster by 

where M equals the number of uncorrelated harmonics used in 
the reconstruction. 

The crucial step in this procedure is (iv). Let us consider it in 
more detail. 

The problem is how to find the points a. and a I  in (23), (24), 
i.e. the start and the end of ‘tail’ of the Fourier spectrum Sk. 

A Fourier spectrum of typical spectroscopic data is shown 
in figure 1 on semilogarithmic scale. 

From this figure we can see that our main assumption about 
the Fourier spectrum of noise is correct - in this example the 
noise occupies about 90% of the total frequency space with 
constant intensity. We can also see that our estimate of the noise 
level from the high frequency part of the Fourier spectrum is 
correct, too - the mean value of the noise fluctuation is about 
zero (in logarithmic scale). This example is not exceptional. The 
Fourier spectra of most of the data we have studied were like 
that one of figure 1. 

0 30 60 9C 120 150 180 213 243 270 300 
Freqbency 

Figure 1. Fourier spectrum (a2 + 8?)/NOISE of typical 
spectroscopic data and optimal Wiener filter for these data. 

In order to find the cut-off between signal and noise it is 
necessary to study in more detail the statistical properties of &!?k. 

According to the general theory both a k  and 8, have normal 
distributions with mean values 

x x 
Ak + =Ak and Bk=Bk. (43) 

If at  some k the Fourier amplitudes are zero 

Ak =Bk = o  (44) 

then for that frequency there is no signal but only noise. In this 
case the observed spectral intensity divided by NOISE has a x 2  
distribution with two degrees of freedom 

S^k/NOISE -2: (45) 

(see Brandt (1973) 0 6.5). 
The probability density of a random value 

x = x :  (46) 

(47) 

equals 

p(x )  = 4 exp(-x/2), O < x < cc 
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and the distribution function P(x) 

P(x)=Prob(x2<x)= p(x )  dx= 1 -exp(-x/2). (48) 

Using this formula we compute the values of table 1, i.e. the 
values of probability that 

i, 

$,/NOISE < X. (49) 

where Y is inverse probability integral 

1 ”  
cp[Y(p)l= P, @(XI=- J-m exp(-t2/2) dt (54) 

and E is probability to reject random noise points but not outliers 
(see book of Bolshev and Smirnov (1968)). At ~ = l %  and 
64 Q N Q  4096 there is a very simple approximation 

R=3.8+0.15(lOg2 N-6)  ( 5 5 )  

which has precision not worse than 0.05, and this approximation 
we use in the program. 

5. Examples 
Figures 2 and 3 give a fine example of the usefulness of our 

Table 1. Probability that x i  <x  and for x i  > x.  

0.00 1 0.05 99.95 - 30 
0.0 1 0.5 99.5 - 20 
0.1 __ 4.9 95.1 4 
1 .o 39.3 60.7 0 

10.0 99.3 0.67 a 
10.6 99.5 0.5 10.25 
13.9 99.9 0.1 11.4 

We can understand from this table that approximately in 5% 
of the cases the value of $,/NOISE will be less than the -10 dB 
level and only in less than 0.7% of cases this value would be 
exceeding the + 10 dB level. 

All of these predictions are realised in figure 1. One is 
reminded that this table corresponds to case (44) when there is 
no signal but noise only. 

For the starting point of the tail we choose the point j o  
where for the first time 

Sj0 < NOISE (50) 

and for end point jl we choose the point where the straight 
line extrapolation (24) decreases below the -20 dB level 
S/N = 0.0 1). The parameters A I and B I in (24) are found by least 
squares method 

where 
Jo JO io 

xy= 1 isl, xx= 1 i2, X M  =(1 +j0)/2, y~ = 1 $ t / j o .  (52) 
i =  I i =  1 l =  I 

4. Outliers rejection 
The procedure outlined above has been found to work extremely 
well with spectroscopic data and random uncorrelated noise. In 
the cases where apart from the random noise we also have the 
presence of ‘outliers’ i.e. points far removed from the mean of 
the normal distribution, it is necessary to identify them and 
reject them during restoration. 

The implemented algorithm includes a test for such points; 
that is, after the first restoration the residuals are calculated and 
if any of the residual amplitudes exceeds a threshold value the 
smoothing procedure is repeated but this time the outlier points 
have been replaced by the smoothed ones from the previous run. 
This is repeated until no outliers remain. 

The value of the threshold residual amplitude R strictly 
speaking is an increasing function of the total number of data 
points N .  

In the tables of Pearson and Hartley (1956) this function 
was tabulated at 1 < N Q  30. For N >  30 we compute this 
function by the formula 

R = Y[( 1 - ~/2)’”] (53) 

J _ .  . . 
0 50 100 150 200 250 303 350 LOO 450 

Channel 

I 
0 50 100 ‘153 200 250 300 350 LOO 453 

Figure 2. Splined smoothed (line) and original (crosses) data. 
476 points, CPU time 1.93 s. 

LO3 J !i 

. . .  1 
0 50 100 150 200 250 300 350 400 650 

Channel 

-501_1 
0 50 100 150 200 250 300 350 400 L50 

Figure 3. Wiener filtered (line) and original (crosses) data. 26 
outliers removed in eight iterations. 476 points, CPU time 0.47 s. 
The Fourier spectrum is given in figure 1. Frequency j o  = 37. 
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approach compared to a conventional spline fitting procedure. 
The data represent the phosphorescence excitation spectrum of 
Naphthalene in a rare gas matrix (Hamilton and Najbar (1981)). 
Apart from the usual statistical noise there are several outlier 
points cause by a fault in the recording system. The only way a 
spline method could be employed satisfactorily would be by 
‘editing out’ the outliers or by using appropriate weighting 
factors for the corresponding points. This would be a laborious 
and time consuming exercise and always specific to one data set. 
The approach described above not only results in a smooth 
curve through the real experimental points but also rejects the 
outliers automatically. Notice that although eight iterations were 
needed the CPU time required was less than for the spline. 
Fourier spectrum of these data and optimal Wiener filter are 
presented in the figure 1. 

Figures 4 and 5 give an example of a dataset with many 
sharp peaks (hydrogen emission spectrum) and relatively low 
noise level. The spline method drastically oversmooths the peaks 
and valleys between peaks whilst the Wiener filter method 

L IJ 

150 

0 53 120 153 203 255 303 350 LOO 450 500 
Channel - - 

P 
25 80- - 
y1 

-804 
0 5; 102 ’50 203 250 300 350 L30 150 500 

Figure 4. Splined smoothed (line) and original (crosses) data. 
512 points, CPU time 5.57 s. 

4 , I I , , , , I 
0 50 100 150 200 250 300 350 100 L50 530 

Channel 

0 50 100 150 200 250 300 350 LOO 150 500 

Figure 5. Wiener filtered (line) and original (crosses) data. 
5 12 points, CPU time 0.05 s. Frequency j o  = 105. 

retains the experimental resolution. Notice also that in this case 
only one iteration was used with significant time advantages. 

Figure 6 tells us there are cases where the assumption that 
the second half of the Fourier spectrum represents noise only is 
no longer true. This figure presents the Fourier spectrum of the 
data from figures 4 and 5 if the noise level is estimated according 
to point 3 of the algorithm strategy from the second half of the 
Fourier spectrum. In this case however the noise occupied much 
less than the whole second half of the Fourier spectrum. The 
cut-off frequency may be better selected interactively to estimate 
correctly the noise level. 

- 32 
0 33 50 90 12C 153 180 210 240 27 

Frequency  

Figure 6.  Fourier spectrum (a2 + Bz)/NOISE of the data 
presented in the figures 4 and 5. 

6. Conclusions 
We have presented an optimum and CPU efficient procedure for 
automatic data smoothing. Optimum of course does not mean 
the one and only correct and appropriate way to smooth any 
spectroscopic data. The restrictions imposed by (3), (26) and 
(27), normally irrelevant in a spline procedure, should be borne 
in mind. 

If made interactive with intermediate graphic displays of the 
FT. U‘F and reconstructed data, a physically meaningful selection 
process for the cut-off frequency is made available in contrast to 
other more heavy-handed procedures (Cutkosky 198 1). 

A most important aspect of this method is that in cases of 
data collected at an experimental station by a minicomputer, 
hardware or assembler coded fast Fourier transforms may be 
available. This would increase execution speed even more. 

Another spin-off is that since only a small part of the Fourier 
spectrum is used in the reconstruction (-20%) the smoothed 
dataset can be stored in the form of its truncated Fourier 
spectrum. 

This data compression technique is used widely in the cases 
of two dimensional data sets (e.g. digital images) where only a 
small portion of the transform spectrum is used either in 
transmission over long distances (satellites) or for mass storage 
(Landsat photographs). 

Finally, in the context of 2D image processing now, the 
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Weiner filter algorithm we have implemented can be extended in 
2D noise filtering and image restoration problems. 

The program version used at the Daresbury Laboratory 
includes interactive graphics (program SMFFT) with a data 
reading routine that can handle any data produced at 
experimental stations at the Synchrotron Radiation Source and 
is part of the SRS Program Library (Pantos 1981). 
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