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Coarsening Kinetics with Elastic Effects
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We discuss the coarsening process of melt inclusions inside a solid phase. Elastic effects lead to
an oblate shape of the particles, resulting in a system with strong diffusional and elastic interactions
between inclusions. The usual mean-field approximation breaks down and several independent length
scales have to be taken into account. In a system of parallel oriented particles we find scaling laws for
the coarsening of the different length scales involved. In particular, the lateral size of the particles obeys
a nontrivial growth law, R � t5�12.

PACS numbers: 81.10.Aj, 62.20.Mk, 81.40.Np
The growth of crystals from the melt or from a so-
lution is a typical example of first-order phase transi-
tion. Ostwald ripening is the late-stage process by which
a new phase coarsens in order to lower the interfacial
free energy. During this process the characteristic length
scale of the precipitates increases in time, the supersatu-
ration decreases, and the system moves towards phase
equilibrium.

The classical coarsening theory was given by Lifshitz,
Slyozov, and Wagner (LSW) [1] in the framework of a
mean-field approach which is valid in the limit of small
volume fractions of the new phase. In this approach all
precipitated particles are assumed to be spherical and re-
mote from each other. If the diffusional transport of mass
or heat is the limiting kinetics of the process, the average
size of the particles grows with a power law in time with an
exponent of 1�3. The particle distribution function shows
a characteristic scaling behavior.

Novel aspects of kinetics of phase transitions appear if
the initial metastable phase is a crystal. Generally, it is
known that long-range elastic fields, which are inevitable
in this situation, destroy the universal features of LSW
growth, allowing other kinetics (see, for example, [2] and
references therein). An oblate shape of the inclusions is of-
ten observed in experiments [3–5] and in computer simu-
lations [2,6].

Because of a difference in the densities of the two co-
operating phases, part of the crystal surrounding a particle
of the new phase becomes deformed if the slow diffusion
of the point defects is neglected. This modifies the sys-
tem’s behavior in comparison to an unstressed situation. If
one assumes incoherence at the interface, as is definitely
the case for the melting process or for gas inclusions, the
precipitates have an oblate shape which is more favorable
compared to a spherical shape because of its lower elastic
energy. This effect leads to a substantial modification of
the laws of nucleation and growth [7,8].

The main purpose of this Letter is to describe the last
coarsening stage of this process which should also be very
different from the one of classical LSW theory. The sys-
tem inevitably arrives at a stage where the characteristic
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size of the particles is comparable to the distance between
them. Indeed, if one assumes that these particles are very
oblate lentils of radius R, height h ø R, and distance L
between them, the volume fraction D0 � hR2�L3 should
remain almost constant during the coarsening stage. On
the other hand, if particles are well separated (L ¿ R),
according to Ref. [7], h � RD, where D is the dimension-
less supersaturation parameter which decreases with time.
Then the ratio R�L � �D0�D�1�3 becomes large in contra-
diction to the initial assumption L ¿ R. This situation is
very different from the case of spherical particles where,
if the volume fraction D0 is small, the ratio R�L � D

1�3
0

remains small during the entire coarsening stage. Thus, for
an oblate shape of inclusions the usual mean-field approxi-
mation has to be modified in order to account for sev-
eral independent length scales and strong diffusional and
elastic interactions between particles have to be taken into
account. In the general case this problem is very diffi-
cult and we restrict our consideration to uniaxial crystals
where the anisotropy orients the particles in parallel (see
Fig. 1a).

We assume that the new phase is a homogeneous melt
with a chemical potential m and pressure P (the exter-
nal pressure is zero). The melting process of crystals
is usually initiated at heterogeneous sites such as grain
boundaries or free surfaces [9]. However, crystals can be
superheated above the equilibrium melting point, provided
heterogeneous nucleation is avoided by means of experi-
mental techniques [10,11]. Motion of a growing interface
in this case is governed by the interplay between the ir-
reversible diffusion of the latent heat (diffusional growth)
and the reversible work done during elastic deformation
and the formation of a new surface area.

The inclusions of the new phase are assumed to be very
oblate lentils of characteristic lateral extent R and mean
height h ø R. Because of the density difference elastic
deformations are necessarily present in the solid phase.
The mass conservation law reads

�yL 2 ys�R2h�ys � Wd �
Z

unds , (1)
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FIG. 1. Cross section of the arrangement of liquid inclusions
in the solid phase. (b) is a magnified detail of (a); the dashed
lines indicate the center lines of the bent plates.

where yL and ys are the atomic volumes of the liquid and
solid phases, and Wd is the deformation volume (un is
the normal component of the displacement vector at the
interface).

Solving the elastic problem, we can, in first approxi-
mation, ignore the height of the lentil. In this case the
pressure P, exerted on the crystal by the liquid, is given
on a plane cut within the mean radius R. If the particles of
the new phase are well separated, this problem is equiva-
lent to the crack problem and the normal component of the
displacement vector at the interface is given by solution of
that problem (see, for example, [12]). The analogy to the
crack problem has been used in our previous publications
[7,8] concerning the analysis of the thermodynamics and
growth of an isolated particle. However, in the present case
the distance between particles is smaller than their size R
and the elastic problem should be significantly modified
compared to the usual crack problem.

We restrict our considerations to some simple order-of-
magnitude estimates for the case of lentil shaped inclu-
sions which are piled up to a layer structure as sketched in
Fig. 1a.

Apart from radius and height of each lentil a new length
scale, the distance between inclusions l in the vertical z
direction, is introduced. Our goal is to calculate the coars-
ening with time of all three mentioned length scales during
the last stage of phase separation. The strategy is as fol-
lows: By solving the elastic problem and using the mass
conservation law and the local equilibrium condition at the
interface, we estimate the pressure P and the characteristic
temperature at the interface as functions of the introduced
length scales. Then estimating the existing gradients of
temperature, we eventually find the growth law of a char-
acteristic particle.

We confine our considerations to the case R ¿ l ¿ h
and will check the self-consistency of this assumption later.
The pressure Pi inside the ith particle depends on its size
and on the geometry of the neighborhood. Let us denote
the average pressure over the system of particles as �P�. To
estimate the stresses in the crystal in the considered layered
structure, using the linearity of the theory of elasticity,
we write the displacement field as a sum of three fields:
u � u�1� 1 u�2� 1 u�3�. The first field u�1� corresponds
to the uniaxial stress of the crystal, szz � 2�P�. The
other components of the stress field are zero. The second
field u�2� satisfies the condition of zero normal and shear
stresses at the solid-liquid interfaces and compensates the
stresses due to the u�1� field in order to fulfill the condition
of vanishing external pressure. The field u�2� corresponds
to the field of a network of springs schematically depicted
by the dashed lines in Fig. 1b. Finally, the field u�3� satis-
fies the boundary conditions s�i�

zz � 2�Pi 2 �P�� at the
interfaces of the particles.

To estimate the displacement fields u�2� and u�3� we can
use the theory of elasticity of thin plates, since the ratio
l�R is small (see, for example, [13]). For the field u�2�

the problem reduces to one for the uz component of the
centerline displacement (dashed lines in Fig. 1b) for each
plate:

El3

12�1 2 n2�
D2uz�x, y� � 0 . (2)

Here D � ≠2
x 1 ≠2

y is the two-dimensional Laplacian; n

and E are the Poisson and Young coefficients. The problem
for the field u�3� reduces to the local problem of a plate bent
due to the pressure difference dP � Pi 2 Pj at opposite
sides of the plate:

El3

12�1 2 n2�
D2uz�x, y� � dP . (3)

Equations (2) and (3) are subject to the natural boundary
conditions at the lines connecting three plates of differ-
ent thickness (at the edges of the inclusions): continuous
displacements and orientations of all three plates and van-
ishing total force and torque acting on the triple junction
from all three plates [13]. If we assume that the charac-
teristic pressure difference dP is of the same order as the
average pressure, then both fields are of the same order

uz � P
1 2 n2

El3 R4 (4)

and the corresponding deformation volume is

Wd � P
1 2 n2

El3 R6. (5)

Basically Eqs. (4) and (5) can be understood as a scal-
ing analysis of the elastic situation. Indeed, in the frame-
work of linear theory of elasticity the displacement must be
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linear in P and, since Young’s modulus appears only in the
combination El3 in bending problems, uz must have the
structure (4) in order to have the right units.

We assume local equilibrium conditions at the interface
which relate the interface temperature and the pressure P
inside the particle:

Dint �
�Tint 2 TM�cp

Lp
�

P�yL 2 ys�TMcp

L2
pys

, (6)

where we have neglected elastic and capillary corrections
[7,8]; Dint is the dimensionless interface superheating; TM

is the melting temperature at zero pressure P; cp and Lp

are the specific and the latent heat, respectively.
The edge of the cracklike inclusion is singular. The

condition of local equilibrium also requires an additional
variation of the free energy

DF � 2
1
2

PWd 1 aS (7)

with respect to R [7,8], where a is the surface energy and
S � R2 is the area of the inclusion. This results in

P
dWd

dR
� Ra . (8)

The last expression is just a generalization of the Griffith
condition for cracks to our case. It is a very important in-
gredient of our theory which allows us to relate the pressure
P to the characteristic length scales of the problem. Now,
using this condition (8) together with the solution of the
elastic problem, Eq. (5), and with the mass conservation
law, Eq. (1), we can find a relation between the different
length scales of the problem:

h �
r1�2R2

l3�2 , (9)

where the microscopic length scale

r � a�1 2 n2�y2
s ��E�yL 2 ys�2�

depends only on material parameters. On the other hand,
using the local equilibrium condition, Eq. (6), together
with Eq. (1) and Griffith condition, Eq. (8), we can present
the interfacial superheating in the following form:

Dint �
d0

h
Wd

W 0
dR

, (10)

where d0 � aTMcp�L2
p is the capillary length. This is

quite a remarkable result: Since the ratio Wd��W 0
dR� is

just a number, the interface superheating is basically of
capillary origin and depends only on the height h of the
inclusion. In other words, the result formally looks like the
Gibbs-Thomson correction for the curved interface with
curvature of the order 1�h. However, the real curvature
at the smooth part of the interface is of order h�R2 and
has been neglected. Therefore, the result is basically due
to the Griffith condition and not a consequence of the
Gibbs-Thomson correction in its usual meaning.
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Furthermore, the number of inclusions per unit volume
behaves like n � R22l21 and thus, by global heat conser-
vation, nR2h � D0, which results in the simple expression

h�l � D0 , (11)
where D0 is the initial superheating of the crystal.

The growth kinetics is controlled by thermodiffusion.
The temperature field in the solid phase obeys the diffusion
equation and the following boundary conditions:

D=2w � ≠w�≠t , (12)

yn � D �n ? =wjint , (13)

wjint � Dint � d0�h . (14)

Here w � �T 2 TM�cp�Lp is the rescaled temperature
field, measured from the melting temperature TM ; D is
the thermal diffusion constant. A melting front absorbs
latent heat that diffuses as expressed by (12); the require-
ment of heat conservation at the interface gives (13) ( �n
is the normal to the interface and yn is the normal veloc-
ity). Equation (14) is the local equilibrium condition (10).
The bigger particles are less overheated and grow to the
expense of the smaller ones. We note that the kinetics of
the growth of cracklike inclusions during the melting pro-
cess is very different from fast crack propagation. In the
latter case, the absorption of latent heat and thermodiffu-
sion are not present and the velocity of crack propagation
is restricted by the Rayleigh speed.

The characteristic gradients of temperature are of the
order Dint�l (see Fig. 1), and the continuity equation (13)
together with the relation (11) gives the evolution law for
the characteristic height h of the particle:

�h � Dd0D0�h2. (15)

This evolution equation is qualitatively close to the corre-
sponding one in the classical LSW theory and leads to the
coarsening law

h�t� � �D0d0Dt�1�3 (16)

with the same scaling exponent 1�3. However, there is
an important difference between these two cases. First
of all, our evolution equation is nothing but an order-of-
magnitude estimate. In fact we deal with a many particle
problem where the local gradients depend on the struc-
ture of the close neighborhood and not on the mean-field
temperature. On the other hand, the mean-field approach
for spherical particles is exact for small volume fractions
D0. Second, this small volume fraction enters into the fi-
nal scaling, Eq. (16), which makes the coarsening process
in our case slower than for the spherical particles.

Using Eq. (10), we find that the superheating of the
system decreases as

D�t� � d
2�3
0 ��D0Dt�1�3. (17)

Of course, the coarsening stage corresponds to the time
range when D�t� ø D0. Finally, the coarsening laws for
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the other length scales of the problem, l and R, can be
found from Eq. (11) and Eq. (9), respectively:

l�t� � �d0Dt�1�3D
22�3
0 , (18)

R�t� � l�t� �d0�r�1�4�D0�D�t��1�4 � t5�12. (19)

We note that the elastic properties and the density differ-
ence enter only into the scaling for the radius R through
the microscopic length scale r. Equations (16)–(19) are
the main results of this Letter.

Let us discuss the consistency of the used approxima-
tions. First of all, the basic assumption about the hierarchy
of the length scales involved, R ¿ l ¿ h, is clearly valid
for small initial superheating D0 ø 1. Second, we have
used the hydrostatic approximation and have neglected the
viscous flow necessarily present inside the inclusions due
to mass redistribution. The characteristic difference in
pressure, arising from the viscous flow with the velocity of
the order of �R, is dP � h �RR�h2, where h is the viscos-
ity. In the coarsening stage this pressure is small compared
to the hydrostatic pressure,

dP
P

�
hD�yL 2 ys�

ays

1
h�t�

µ
d0

r

∂1�2µ
D�t�
D0

∂1�2

ø 1 ,

since h�t� grows and D�t� decays in time. Thus, the used
hydrostatic approximation is legitimate.

The smooth shape of a growing nucleus should undergo
a Mullins-Sekerka instability. In the usual case of the
spherical nucleus this happens when the radius of the nu-
cleus becomes a few times larger than the critical radius
[14]. However, this instability is irrelevant in the coars-
ening regime since all important radii in the distribution
function are still stable. In our case of oblate inclusions the
Mullins-Sekerka length is lMS � �d0D� �h�1�2 � �lh�1�2

and one may naively expect the development of an instabil-
ity. However, the perturbation grows in time as exp�gt�,
where g itself decays in time as g � �h�lMS � D

1�2
0 �t.

Thus, gt � D
1�2
0 never becomes large and the instability

is not important.
Our results should be relevant to other types of phase

transitions inside a solid phase. The coarsening of gaseous
cracklike pores (see, for example, [15] and references
therein) requires diffusion of the impurities towards the
crack, while elastic deformations arise due to the nonva-
nishing gas volume and pressure. We also mention the
transition of a metastable metallic crystal phase into an
insulating amorphous state. Based on resistance measure-
ments [5] the authors draw the conclusion that the growing
amorphous phase has a very oblate shape.

In summary, we have investigated the coarsening pro-
cess dominated by elastic effects which lead to a system
with strong diffusional and elastic interaction between in-
clusions. The scaling laws for the coarsening of the dif-
ferent length scales involved are very different from the
classical LSW theory.
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