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The asymptotic expressions for strains around iso�
lated defects in smectics at long distances are charac�
terized by the exponent α [1]. If α < 0, the linear the�
ory is applicable. If α = 0 (edge dislocation [2, 3],
Green’s function [4]), the linear solution is valid at
small action amplitudes, whereas nonlinear effects
become important at larger amplitudes. If α > 0, non�
linear effects should be taken into account even for
extremely weak actions. In this paper, we report the
solution of the nonlinear problem of the two�dimen�
sional Green’s function (α = 1/2, [1]).

Let us consider a smectic sample with the thickness
L that is sandwiched between solid undeformable walls
parallel to smectic layers (see figure). A force uni�
formly distributed along the y axis (normal to the fig�
ure plane) with the linear density F is applied at the
center (x = z = 0) of the smectic sample.

The energy of the small strains of the smectic sam�
ple is given by the expression (see Eq. (44.13) in [5])

(1)

where u is the displacement of the layers along the
smectic axis z, A is the elastic modulus, and λ is the
microscopic length parameter. In our problem, the
maximum displacement u0 is reached in the force
application line. In terms of the new function f = u/u0

and new coordinates  = z/L and  = x/ L, where
ε = u0/L, Eq. (1) is represented in the form

(2)

where β = (λ/εL)2, σ =  – ( f ')2/2, and the dot and
prime mean differentiations with respect to  and ,
respectively. Thus, it is necessary to determine the
function f that provides the minimum of energy (2), is
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equal to unity at  =  = 0, and is equal to zero at the
edges of the smectic layer  = ±1/2. The force is given
by the expression F = F+ – F–, where

(3)

In the macroscopic problem, curvature ∝β can be
neglected even for the case of a negligibly small force F

~ λA , where the amplitude u0 is larger than the
distance between smectic layers ~λ � L. It is interest�
ing that integrals (2) and (3) can be calculated in this
case even without the complete solution, because the
strain field is divided into two regions. In the first
region, where the material is compressed, the problem
can be solved analytically. In the second region, owing
to the Helfrish instability (see the problem in Section
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Strain of the smectic layer subjected to the linearly distrib�
uted force (ε = 0.1) applied at the thick point. The dashed
line is the boundary of the region, where a noticeable strain
appears. The thin line is the boundary of the compression
region (σ < 0).
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44 in [5]), rotary states almost without stresses appear
instead of tension. Here, noticeable stresses exist only
inside microscopically thin twin boundaries [6].

The figure shows the strain pattern in the smectic
layer obtained by numerically solving the problem. In
the compression region, the function f is a quadratic

function of the variable : f( , ) = f0( ) + f2( ) .
It is easy to verify that the equilibrium equation  –
( f 'σ)' = 0 corresponding to the extremum of energy
(2) has such an exact solution satisfying the necessary
conditions. It can be represented in the parametric
form

(4)

The compression region σ < 0 corresponds to the
range –  <  <  at  > 0, where  = 2π–1sin2ϕ.
The thin line in the figure is the boundary taking into
account the displacement of smectic layers, where σ is
zero. Under this line, down to the dashed line, strains
result in the appearance of two twins [6] in which
inhomogeneous strains increase in the direction to the
force application level. Here, stresses are small and are
likely caused by the finiteness of the grid used for the
calculation.

When the tension of the twin boundaries is disre�
garded (at β = 0) [6], F– = 0. Then, F = F+ =
(8/3π)ALε3/2. Correspondingly,

(5)

At  � 1, according to Eq. (4), u = u0 + δu, where

(6)

Let us assume that the displacement near the force
application point has the form δu = –z1/3a2/3ψ(v),
where v = xa–1/3z–2/3. Note that δu is independent of
L. In this case, the equilibrium equation is the ordi�
nary differential equation

(7)

where the prime means differentiation with respect to
v, and has a trivial first integral. The integration con�
stant is zero, because the expression in the second
parentheses in Eq. (7) is zero for solution (6). The
expression in the first parentheses is proportional to
stress σ. It is convenient to represent the solution of
the equation σ = 0 in the parametric form ψ = (4 +

t3)/2t and v = (1 + t3)/t2. The intervals –1 < t < 0 and
0 < t < 21/3  z > 0 correspond to the regions z < 0 and
z > 0, respectively. The integration constant is chosen
from the condition ψ(3/22/3) = 3/21/3 at t = 21/3

(matching with solution (6) on the line xm(z) �
3(az2/4)1/3). Near the z = 0 line (|v |  ∞),

Near the x = 0 line at z < 0 (|v |  0),

If a � λ, nonlinear asymptotic expressions are valid
at |z | � λ3/a2 and |x | � λ2/a and the Green’s function
of the linear approximation is applicable at smaller
distances [1]. If a � λ, small�strain approximation (1)
is violated at |z | ~ |x | ~ a.

Stresses in the problem under consideration exist
only in the smectic compression region and rotary
adjustment in a certain bounded region occurs instead
of tension. Such a character of nonlinear response
implies that the compression field and, correspond�
ingly, the u0 value (with the change L  2L+), as well
as the asymptotic expression for δu, remain
unchanged in the general case, where the force is
applied not to the center, but at any distance L+ in the
direction of the force action from the undeformable
wall. The boundary conditions on the opposite side
and, generally speaking, beyond the compression
region affect only the adjustment structure at distances
of about the sample sizes.
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