
April 2010

EPL, 90 (2010) 17001 www.epljournal.org

doi: 10.1209/0295-5075/90/17001

Magnetic double refraction in piezoelectrics
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Abstract – A new type of magneto-optical effect in piezoelectrics is predicted. A low-frequency
behavior of the Faraday effect is found.
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The polarization of electromagnetic waves in matter is
well known to become circular in magnetic field. However,
here I show that in piezoelectrics the Faraday effect is
dominated by magnetic double refraction which is related
to a new characteristics of matter in the form of a special
cross-term tensor.
Let us consider the propagation of low-frequency elec-

tromagnetic waves in dielectrics using the principle of least
action. The Lagrange variable in electrodynamics is the
four-potential (ϕ,A) (see [1]). The electric field E and
magnetic field B are gauge-invariant combinations of time
and space derivatives of the components of the potential

E=−∇ϕ− c−1Ȧ, B= rotA.

The first two Maxwell equations,

divB= 0, rotE=−c−1Ḃ, (1)

are kinematic relations arising from the definitions of E
and B. The second pair of Maxwell equations,

divD= 0, rotH= c−1Ḋ, (2)

are dynamic relations coming out from the variational
procedure. The fields D and H are variational derivatives

D= 4π
δS

δE
, H=−4π δS

δB
(3)

of the action S =
∫

LdV dt. The density of the Lagrange
function L is a gauge-invariant functional of the four-
potential. In order to avoid redundant modes, only first
time derivatives of the components of the four-potential
have to be taken into account in the Lagrange method.
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Besides, the kinematic relations (1) must be used to
preclude from doubling of Lagrangian terms.
With the amplitude of the electromagnetic field being

small the Lagrange function can be expanded in its power
series. A similar expansion can be made in the vicinity of
some constant field as well.
In the harmonic approximation, the Lagrange function

of an isotropic medium is as follows:

L= ε
E2

8π
− B

2

8πµ
. (4)

Accordingly, we obtain D= εE and H=H/µ, where ε is
the permittivity and µ is the magnetic permeability.
Note, that the speed of the electromagnetic waves in

a medium c̃= c/
√
εµ should be smaller than its value in

vacuum c. Otherwise, it leads to a contradiction with the
special relativity principle. Consequently, in addition to
the usual inequalities ε > 1 and µ> 0, we have εµ> 1.
Generally, magnetic double refraction exists in any

material (see [2], paragraph 101). In isotropic media, for
example, it is described by the following terms of the
Lagrange function:

L4 = β
(EB)2

8π
+ γ
(B2)2

16π
. (5)

They give anisotropic corrections to the permittivity
tensor δεik = βBiBk and to the inverse tensor of the mag-
netic permeability δµ−1ik = γ(B

2δik +2BiBk). However,
this quadratic effect is small in comparison with the linear
Faraday effect.
At low crystal symmetry the cubic terms can appear:

L3 =
ζijk
8π
BiBjEk. (6)

The tensor ζijk has the symmetry of a piezoelectric tensor.
It determines the linear magnetic double refraction, which
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is a magnetic analog of the linear Kerr effect. Presum-
ably, this magnetic effect should be observable in the
paramagnetic state of materials with strong spin-orbital
interactions.
Let us consider this effect in the simplest case of crystal

symmetry Td. There is the only invariant

L3 =
ζ

4π
(ExByBz +EyBzBx+EzBxBy), (7)

that gives rise to nonlinear terms in the fields

Dx = εEx+ ζByBz; Hx = νBx− ζ(EyBz +EzBy), (8)

where ν = 1/µ. The other components can be obtained by
cyclic permutations of the space indices.
Consider an electromagnetic wave of small amplitude

propagating in the presence of a constant magnetic field.
Using lower case letters for the oscillating fields and upper
case letters for the constant field components, we write

dx = εex+ ζ(Bybz +Bzby); hx = νbx− ζ(Bzey +Byez).
(9)

Performing Fourier transformation (∝ e−iωt+iqr) one
can see that the imaginary unit i does not appear in the
coefficients. It means that non-degenerate electromagnetic
waves have linear polarization. Using the second Maxwell
equation ωb= c[qe], one can write the fourth Maxwell
equation as

{εω2− νc2(q2y + q2z)+ 2cζω(Bzqz −Byqy)}ex (10)

+ {νc2qxqy + cζω(Byqx−Bxqy)}ey (11)

+ {νc2qxqz + cζω(Bxqz −Bzqx)}ez = 0. (12)

From this system of equations one can find the spectrum
of electromagnetic waves

ω=
(

1± 2ζµB
√

f
)

c̃q, (13)

where f is a function of unit vectors n and l:

f = (n2x+n
2
yn
2
z)l
2
x− 2nxny(1−n2z)lxly + . . . , (14)

where n= q/|q|, l=B/|B|, and . . . denotes the result
of cyclic permutations. The sign in the expression (13)
changes after reversing the direction of either field or wave
vector. If ζ > 0, the plus sign corresponds to ey-wave and
the minus sign corresponds to ex-wave for field and wave
vector oriented along the z -axis [001]. The function f is
non-negative and becomes zero if

(n2x+n
2
yn
2
z)lx = [(1− 2n2z)nyly +(1− 2n2y)nzlz]nx; . . . .

It is significant that for any direction of the wave vector
there exists a field orientation when f = 0. In its vicinity
the Faraday effect dominates over the magnetic double
refraction.

Indeed, at low frequency the Faraday effect originates
from the following term of the Lagrangian:

LF =
α

4π
Ei(B∇)Bi. (15)

For simplicity, only the isotropic term is taken into
account. Keeping previous notations, in harmonic approx-
imation we obtain

α

4π
ei(B∇)bi. (16)

Accordingly, we find

d= εe+α(B∇)b; h= νb+α(B∇)e. (17)

Using the second Maxwell equation one can write the
fourth equation as

ν rotb+2α(B∇) rot e= c−1εė. (18)

For the Fourier components we have

ν[qb] + c−1εωe+2iα(Bq)[qe] = 0, (19)

In terms of the vector potential a, it reads as follows:

(ω2− c̃2q2)a+2iαcε−1ω(Bq)[qa] = 0. (20)

Taking into account the smallness of the correction, we
obtain the spectrum of circularly polarized waves:

ω=

(

1±α
√

µ

ε
(Bq)

)

c̃q, (21)

where different signs correspond to the right and left
polarization. In the general case, when the function f is of
order unity, the correction to the spectrum (21) is smaller
(∝ q2) than the correction (∝ q) due to the magnetic-
double-refraction effect (13).
One should note that there is an intrinsic limitation in

the theory of low-frequency modes. Indeed, this approach
can only capture a qualitative picture of such phenom-
ena as natural optical activity and Faraday effect. More
closely, the multiplier in the correction ∝ q2 to the spec-
trum (21) can be re-normalized if one takes gap modes
into account. A similar situation arises in the considera-
tion of the anisotropy of spectra for both electromagnetic
waves in cubic crystals and sound waves in the basic plane
of hexagonal crystals.
Finally, we see that the cross-term corrections (9), (17)

appear in the electric and magnetic responses of matter.
Consequently, the usual assumption ([2], paragraph 101)
that the theory of electromagnetic waves can be formu-
lated solely in terms of permittivity does not find support.
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