On the NMR spectrum in antiferromagnetic $\mathbf{C s M n I}_{3}$

V. I. Marchenko and A. M. Tikhonov

P. L. Kapitsa Institute of Physics Problems, Russian Academy of Sciences, 117334 Moscow, Russia
(Submitted 1 December 1998)
Pis'ma Zh. Eksp. Teor. Fiz. 69, No. 1, 41-45 (10 January 1999)
An explanation is proposed for the spin-reduction anisotropy observed in an investigation of NMR in the noncollinear six-sublattice antiferromagnet CsMnI_{3}. © 1999 American Institute of Physics.
[S0021-3640(99)00901-9]
PACS numbers: 75.50.Ee, $33.25 .+\mathrm{k}$

In exchange-interaction magnets, relativistic effects lead to a definite orientation of the spin structure with respect to the crystal axes and to weak distortions of the relative orientation of the sublattices - weak ferromagnetism ${ }^{1-3}$ or weak (additional) antiferromagnetism ${ }^{2}$ (see the case of $\mathrm{Cr}_{2} \mathrm{O}_{3}$). In Ref. 4 relativistic distortions of a new type, which the authors termed spin-reduction anisotropy, were found in the noncollinear antiferromagnet CsMnI_{3}. In the present letter, a description of this phenomenon is given on the basis of the theory of exchange symmetry. ${ }^{5}$

The relative orientation of the sublattices in CsMnI_{3} is shown in Fig. 1. Following Dzyaloshinskiǔ, ${ }^{2}$ we introduce instead of the six sublattices their linear combinations

$$
\begin{align*}
& \mathbf{M}=\mathbf{M}_{1}+\mathbf{M}_{2}+\mathbf{M}_{3}+\mathbf{M}_{4}+\mathbf{M}_{5}+\mathbf{M}_{6} \\
& \mathbf{L}=\mathbf{M}_{1}+\mathbf{M}_{2}+\mathbf{M}_{3}-\mathbf{M}_{4}-\mathbf{M}_{5}-\mathbf{M}_{6} \\
& \mathbf{L}_{1}=\mathbf{M}_{1}-\frac{1}{2}\left(\mathbf{M}_{2}+\mathbf{M}_{3}\right)-\mathbf{M}_{4}+\frac{1}{2}\left(\mathbf{M}_{5}+\mathbf{M}_{6}\right), \\
& \mathbf{L}_{2}=\frac{\sqrt{3}}{2}\left(\mathbf{M}_{2}-\mathbf{M}_{3}\right)-\frac{\sqrt{3}}{2}\left(\mathbf{M}_{5}-\mathbf{M}_{6}\right) \tag{1}\\
& \mathbf{L}_{3}=\mathbf{M}_{1}-\frac{1}{2}\left(\mathbf{M}_{2}+\mathbf{M}_{3}\right)+\mathbf{M}_{4}-\frac{1}{2}\left(\mathbf{M}_{5}+\mathbf{M}_{6}\right), \\
& \mathbf{L}_{4}=\frac{\sqrt{3}}{2}\left(\mathbf{M}_{2}-\mathbf{M}_{3}\right)+\frac{\sqrt{3}}{2}\left(\mathbf{M}_{5}-\mathbf{M}_{6}\right)
\end{align*}
$$

which transform according to one-dimensional \mathbf{M}, \mathbf{L} and two-dimensional $\left(\mathbf{L}_{1}, \mathbf{L}_{2}\right),\left(\mathbf{L}_{3}, \mathbf{L}_{4}\right)$ representations of the group of permutations of the sublattices realized by the crystal transformations of the symmetry group $D_{6 h}^{4}$ of the crystal. In the exchange approximation, in CsMnI_{3} the antiferromagnetism vectors ($\mathbf{L}_{1}, \mathbf{L}_{2}$) are nonzero; in addition, they are equal in modulus and perpendicular to each other, in agreement with the

FIG. 1.
general requirements of exchange symmetry. ${ }^{5}$ Analysis of the quadratic relativistic invariants shows that the remaining spin vectors do not arise in the structure as an effect due to weak ferromagnetism \mathbf{M} or weak antiferromagnetism $\mathbf{L},\left(\mathbf{L}_{3}, \mathbf{L}_{4}\right)$. It is found that the distortions of the spin structure that were found in Ref. 4 reduce to breakdown of the exchange condition - the equality of the moduli of the vectors $\left(\mathbf{L}_{1}, \mathbf{L}_{2}\right)$. This effect arises for the following reasons.

The exchange energy of a structure with arbitrary magnitudes and relative orientation of the spin vectors $\mathbf{L}_{1}, \mathbf{L}_{2}$ is a function of the form

$$
\begin{equation*}
E\left\{\mathbf{L}_{1}^{2}+\mathbf{L}_{2}^{2}, \quad 4\left(\mathbf{L}_{1} \cdot \mathbf{L}_{2}\right)^{2}+\left(\mathbf{L}_{1}^{2}-\mathbf{L}_{2}^{2}\right)^{2}\right\} . \tag{2}
\end{equation*}
$$

We introduce as the variables characterizing the magnitudes and relative orientation of the vectors $\mathbf{L}_{1}, \mathbf{L}_{2}$ the parameters ξ, ζ, and ϕ, defined as

$$
\begin{equation*}
L_{1}=\xi \cos \zeta, \quad L_{2}=\xi \sin \zeta, \quad \mathbf{L}_{1} \cdot \mathbf{L}_{2}=L_{1} L_{2} \cos \phi . \tag{3}
\end{equation*}
$$

The minimum of the exchange energy in CsMnI_{3} corresponds to the value $\xi=\xi_{0}$ and

$$
\begin{equation*}
\zeta=\pi / 4, \quad \phi=\pi / 2 . \tag{4}
\end{equation*}
$$

Near this minimum the exchange energy is a positive-definite quadratic form with respect to small deviations:

$$
\begin{equation*}
\text { const }+C_{1}\left[4(\delta \zeta)^{2}+(\delta \phi)^{2}\right]+C_{2}(\delta \xi)^{2} . \tag{5}
\end{equation*}
$$

The anisotropy energy of first-order in $(v / c)^{2}$ reduces to the invariant

$$
\begin{equation*}
-B\left(L_{1 z}^{2}+L_{2 z}^{2}\right) / 2 . \tag{6}
\end{equation*}
$$

As a result of this term, the vectors $\mathbf{L}_{1}, \mathbf{L}_{2}$ will differ from the values $\mathbf{L}_{1}^{0}, \mathbf{L}_{2}^{0}$ of the exchange approximation (3) and (4) by some amount $\delta \mathbf{L}_{1}, \delta \mathbf{L}_{2}$. The term in the anisotropy energy (6) that is linear in these deviations has the form

$$
\begin{equation*}
-B\left(L_{1 z}^{0} \delta L_{1 z}+L_{2 z}^{0} \delta L_{2 z}\right) . \tag{7}
\end{equation*}
$$

In CsMnI_{3} in the ground state the spin plane is perpendicular to the basal plane of the crystal (the anisotropy constant B is positive). The orientation of the sublattices in the

FIG. 2. Distortions of the exchange structure by anisotropy in CsMnI_{3}.
spin plane and the azimuthal orientation of the spin plane itself are fixed by the sixthorder anisotropy energy. ${ }^{6}$ In the presence of a magnetic field directed along a symmetry axis of the crystal, the following three orientational states are observed: ${ }^{7,8}$ In fields below $H_{c 1}=39 \mathrm{kOe}-$ the phase I ($L_{1 z}^{0}=L_{1}^{0}, L_{2 z}^{0}=0$, Fig. 2a); in the interval $H_{c 1}<H<H_{c}$ $=52.5 \mathrm{kOe}$ - the phase II $\left(L_{1 z}^{0}=0, L_{2 z}^{0}=L_{2}^{0}\right.$, Fig, 2b) ; and, for $H>H_{c}$ - the phase III ($L_{1 z}^{0}=L_{2 z}^{0}=0$, Fig. 1).

Minimizing the sum of expressions (5) and (7), we find that in each phase the vectors $\left(\mathbf{L}_{1}, \mathbf{L}_{2}\right)$ remain orthogonal $(\delta \phi=0)$ and that

$$
\begin{array}{lll}
\text { phase I: } & \delta \zeta=-A_{1}, & \delta \xi=A_{2} \xi_{0} \\
\text { phase II: } & \delta \zeta=A_{1}, & \delta \xi=A_{2} \xi_{0} \\
\text { phase III: } & \delta \zeta=0, & \delta \xi=0 \tag{8}
\end{array}
$$

where the constants $A_{1}=B \xi_{0}^{2} / 16 C_{1}$ and $A_{1}=B / 4 C_{2}$ are positive.
Therefore the easy-axis anisotropy can lead to $L_{1}^{2} \neq L_{2}^{2}$ and to an increase in the squared order parameter $L_{1}^{2}+L_{2}^{2}$. In the general case, evidently, relativistic effects can also destroy the orthogonality of the antiferromagnetism vectors. In CsMnI_{3} the exchange interaction between the nearest neighbors along the z axis is much greater than exchange in the basal plane. ${ }^{9}$ It is easy to show that this leads to $C_{2} \gg C_{1} / \xi_{0}^{2}$, so that when comparing with experiment we neglect the contribution of A_{2}.

Inverting the system (1) with respect to the magnetizations of the sublattices with allowance for the uniform magnetization in the external magnetic field, we obtain

$$
\begin{equation*}
\mathbf{M}_{j}=\frac{1}{6} \mathbf{M}+\frac{1}{3}\left\{\mathbf{L}_{1} \cos \left(\mathbf{Q} \cdot \mathbf{r}_{j}\right)+\mathbf{L}_{2} \sin \left(\mathbf{Q} \cdot \mathbf{r}_{j}\right)\right\}, \quad \mathbf{Q}=\left(\frac{4 \pi}{3 a}, 0, \frac{\pi}{c}\right), \tag{9}
\end{equation*}
$$

where a and c are the periods of the crystal lattice. Up to terms linear in the magnetic field, we obtain in the phase I

$$
M_{1}=M_{0}\left(1+A_{1}+\frac{H}{H_{E}^{\prime}}\right), \quad \cos \alpha_{1}=1
$$

$$
\begin{align*}
& M_{2,3}=M_{0}\left(1-\frac{1}{2} A_{1}-\frac{1}{2} \frac{H}{H_{E}^{\prime}}\right), \quad \cos \alpha_{2,3}=-\frac{1}{2}-\frac{3}{4} A_{1}+\frac{3}{4} \frac{H}{H_{E}^{\prime}}, \\
& M_{4}=M_{0}\left(1+A_{1}-\frac{H}{H_{E}^{\prime}}\right), \quad \cos \alpha_{4}=-1, \tag{10}\\
& M_{5,6}=M_{0}\left(1-\frac{1}{2} A_{1}+\frac{1}{2} \frac{H}{H_{E}^{\prime}}\right), \quad \alpha_{5,6}=\frac{1}{2}+\frac{3}{4} A_{1}+\frac{3}{4} \frac{H}{H_{E}^{\prime}},
\end{align*}
$$

where $H_{E}^{\prime}=M_{0}\left(N_{A} / \chi_{\perp}\right) \approx 4 \times 10^{3} \mathrm{kOe}, N_{A}$ is Avogadro's number, χ_{\perp} is the magnetic susceptibility in the spin plane; we used the value $\chi_{\perp}=0.75 \times 10^{-2}$ cgs units/mole from Ref. $9 ; \alpha_{j}$ is the angle between the magnetization of the j th sublattice and the z axis. In the phase II

$$
\begin{array}{ll}
M_{1,4}=M_{0}\left(1-A_{1}\right), & \cos \alpha_{1,4}=\frac{H}{H_{E}^{\prime}} \\
M_{2,6}=M_{0}\left(1+\frac{1}{2} A_{1}+\frac{\sqrt{3}}{2} \frac{H}{H_{E}^{\prime}}\right), & \cos \alpha_{2,6}=\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{4} A_{1}+\frac{1}{4} \frac{H}{H_{E}^{\prime}}, \\
M_{3,5}=M_{0}\left(1+\frac{1}{2} A_{1}-\frac{\sqrt{3}}{2} \frac{H}{H_{E}^{\prime}}\right), & \cos \alpha_{3,5}=-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{4} A_{1}+\frac{1}{4} \frac{H}{H_{E}^{\prime}} .
\end{array}
$$

The structural distortions under discussion are shown schematically in Fig. 2. In phase III the magnetizations of all sublattices are M_{0}, and $\cos \alpha_{j}=H / H_{E}$, where H_{E} $=M_{0}\left(N_{A} / \chi_{\|}\right)^{2} \approx 2 \times 10^{3} \mathrm{kOe}$ and $\chi_{\|}$is the electronic magnetic susceptibility along the normal \mathbf{n} to the spin plane.

Neglecting relaxation, the dynamics of the nuclear sublattice reduces ${ }^{10,11}$ to the dynamics of a ferromagnet in an effective field. Therefore the Lagrangian of the lowfrequency spin dynamics of the antiferromagnet CsMnI_{3} will be the sum of the Lagrangian of a noncollinear antiferromagnet ${ }^{5}$ and six Lagrangians of the nuclear sublattices coupled by the hyperfine interaction:

$$
\begin{equation*}
\frac{\chi_{\perp}}{2 \gamma^{2}}(\boldsymbol{\Omega}+\gamma \mathbf{H})^{2}+\frac{\chi_{\|}-\chi_{\perp}}{2 \gamma^{2}}(\mathbf{n} \cdot(\boldsymbol{\Omega}+\gamma \mathbf{H}))^{2}-\mathcal{U}_{a}+\frac{1}{6} \sum_{j=1}^{6} \mathbf{m}_{j} \cdot\left(\frac{\boldsymbol{\Omega}_{n j}}{\gamma_{n}}-A \mathbf{M}_{j}+\mathbf{H}\right) \tag{12}
\end{equation*}
$$

where $\boldsymbol{\Omega}$ is the angular velocity of the electronic spin rotations; $\boldsymbol{\Omega}_{n j}$ is the angular velocity of the spin rotations of the nuclei in the j th sublattice; χ_{n} is the susceptibility of the nuclei; γ and γ_{n} are the electronic and nuclear gyromagnetic ratios; A is the hyperfine interaction constant; \mathbf{m}_{j} is the magnetization of the j th nuclear sublattice, and its equilibrium value is $\chi_{n}\left(-A \mathbf{M}_{j}+\mathbf{H}\right)$.

When the spin plane is normal to the basal plane of the crystal, the energy \mathcal{U}_{a} reduces to the expression $f(H) \cos 6 \varphi, f(H)=b_{1}+b_{3} H^{2}+b_{4} H^{4}+b_{5} H^{6}$, where φ is the angle between the vector \mathbf{L}_{1} and the z axis. Since the function $f(H)$ changes sign in the field $H_{c 1},{ }^{8}$ it is convenient to introduce a different representation

FIG. 3. NMR spectrum in CsMnI_{3}. The experimental data are taken from Ref. 7 at temperature 1.3 K .

$$
\begin{equation*}
f(H)=b_{1}\left[1-\left(\frac{H}{H_{c 1}}\right)^{2}\right]\left[1+k_{1}\left(\frac{H}{H_{c}}\right)^{2}+k_{2}\left(\frac{H}{H_{c}}\right)^{4}\right] \tag{13}
\end{equation*}
$$

This function determines the field dependence of the AFMR frequency associated with oscillations of the angle φ. The constants b_{1} (associated with the zero-field frequency) and $k_{1}=-1.7$ can be determined from the experimental data of Ref. 6; the contribution of the term $\propto k_{2}$ is small in the frequency range investigated in Ref. 6. The constant A_{1} determines the zero-field splitting of the NMR frequencies:

$$
\begin{equation*}
\frac{\omega_{1}-\omega_{2}}{\omega_{1}}=\frac{M_{1}-M_{2}}{M_{1}} \approx \frac{3}{2} A_{1} . \tag{14}
\end{equation*}
$$

According to the experimental data of Ref. $4, \omega_{1} / 2 \pi=417 \mathrm{MHz}$ and $\omega_{2} / 2 \pi=390 \mathrm{MHz}$, whence $A_{1}=0.045$.

The magnetic resonance spectrum described by the Lagrangian (12) consists of three AFMR branches (see Refs. 6 and 10) and six NMR branches. Five NMR branches for the values taken above for the parameters of the theory and for the two remaining adjustable parameters $\gamma_{n} A M_{0} / 2 \pi=\omega_{0} / 2 \pi=400 \mathrm{MHz}$ and $k_{2}=0.71$ are presented in Fig. 3. The frequency of the sixth branch neglecting in-plane anisotropy is zero.

We note that the function $f(H)$ for the indicated values of the parameters k_{1} and k_{2} vanishes in a field slightly above H_{c}, i.e., the system is accidentally close to a spin-flop transition from the phase II to the phase I as H_{c} is approached.

This work was partially supported by Grant No. 98-02-16572 from the Russian Fund for Fundamental Research.

[^0]${ }^{6}$ S. I. Abarzhi, M. E. Zhitomirskiŭ, O. A. Petrenko et al., Zh. Éksp. Teor. Fiz. 104, 3232 (1993) [JETP 77, 521 (1993)].
${ }^{7}$ B. S. Dumesh, S. V. Petrov, and A. M. Tikhonov, JETP Lett. 67, 1046 (1998).
${ }^{8}$ V. I. Marchenko and A. M. Tikhonov, Pis'ma Zh. Éksp. Teor. Fiz. 68, 844 (1998) [JETP Lett. 68, 887 (1998)].
${ }^{9}$ H. W. Zandbergen, J. Solid State Chem. 35, 367 (1980).
${ }^{10}$ L. A. Prozorova, S. S. Sosin, D. V. Efremov, and S. V. Petrov, Zh. Éksp. Teor. Fiz. 112, 1893 (1997) [JETP 85, 1035 (1997)].
${ }^{11}$ A. S. Borovik-Romanov, B. S. Dumesh, S. V. Petrov, and A. M. Tikhonov, Zh. Éksp. Teor. Fiz. 113, 352 (1998) [JETP 86, 197 (1998)].

Translated by M. E. Alferieff

[^0]: ${ }^{1}$ A. S. Borovik-Romanov and M. P. Orlova, Zh. Éksp. Teor. Fiz. 31, 579 (1956) [Sov. Phys. JETP 4, 531 (1957)].
 ${ }^{2}$ I. E. Dzyaloshinksiǐ, Zh. Éksp. Teor. Fiz. 32, 1547 (1957) [Sov. Phys. JETP 5, 1259 (1957)].
 ${ }^{3}$ A. S. Borovik-Romanov, Zh. Éksp. Teor. Fiz. 36, 766 (1959) [Sov. Phys. JETP 9, 539 (1959)].
 ${ }^{4}$ B. S. Dumesh, S. V. Petrov, and A. M. Tikhonov, JETP Lett. 67, 692 (1998).
 ${ }^{5}$ A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nauk 130, 39 (1980) [Sov. Phys. Usp. 23, 21 (1980)].

