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The representations of the general linear gr@l4.R) are described.

This group corresponds to the space—time transformations discussed in
the general theory of relativity. Besides the well-known tensor repre-
sentations, the group is also characterized by infinite-dimensional rep-
resentations with integral and half-integral spins. This fact opens up a
natural possibility, in principle, of constructing a covariant theory of
particle  fields. ©1996 American Institute  of  Physics.
[S0021-364(©6)00217-4
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The general theory of relativityis based on the analysis of continuous transforma-
tions of four-dimensional space—time that engender a group of linear transformations for
the differentials of the coordinates

dx =aldx’¥, )

wherea}, is a real 4<4 matrix:

i
ak—m. (1&)

In mathematics a group of transformations of the f@imis called the general linear
groupGL(4.R). In physics it is natural to call it the Einstein group. The group of spatial
rotations and the Lorentz group are, evidently, subgroups of the Einstein group.

All finite-dimensional representations of the groBj.(N.R) have been constructed
by Gel'fand and Ts#lin.? In our caseGL(4.R) these representations are apparently
equivalent to tensor representations. The fact that the standard spinor representations
(spin 1/2 of the Lorentz group cannot be generalized within the Einstein group became
known almost immediately after the appearance of the Dirac equation. This problem was
overcome by different methods, but they can hardly be regarded as natural. In the present
letter, attention is drawn to the infinite-dimensional representations of the Einstein group.
They include representations with half-integer spins.

As is well known(see, for example, Ref.)3the irreducible representations of the
Lorentz group are determined by a pair of numbésg,€), wherek, is an integral or
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half-integral non-negative number ands a complex number. For an appropriate choice
of the basid , in the space of representations the irreducible representation correspond-
ing to a given pair Kq,c) is given by the formulas

L+ka: \/k+ v+ 1\/k_ 14 fk’V+l,
L_kaZ \/k+ V\/k_V+1 fk,V—l’ L3fkv=kavv

ikoC
Fsfi,=Cy fk—l,p_ mekv_ck+l,v fk+1,1u

()

VkZ =12 \k2—k§\c?—k?
kyak?—1 ’

whereL, , L_, andL4 are the spatial rotation operators, dfglis a Lorentzian rotation
operator in thef,z) plane. The Lorentzian rotations in other planes can be easily recon-
structed from the commutation relations between the Lorentzian and spatial rotations. If
c?=(ko+n)? for some positive integen, then the representation is finite-dimensional
and the indicesv and k take on the valuesv=-k, —k+1, ..., k and
k=ko, kot+1, ..., kon—1. If, however,c?# (ko+n)? for any positive integen,

then the representation is infinite-dimensional anandk take on the valueg= —Kk,

—k+1, ..., kandk=kg, ko+1, ko+2, ... .

It is convenient to choose the unit matrix as one of the ten matrices in the comple-
ment of the Lorentz group with respect to the Einstein group — this matrix describes the
general change in the scale of space—time. Since this matrix commutes with arbitrary
matrices, it is always possible to choose a basis such that all functions of a given repre-
sentation will be eigenfunctions of a corresponding operstavith the same eigenvalue
m. For example, for a vector representatjor 1, for a covariant vectop = — 1, and for
a tensor representation equals the rank of the tensor. In the general casés a
complex number.

I note here that if attention is confined to transformations of the Lorentz group and
to a scale transformatioll, then in complete analogy with the principles of the general
theory of relativity it is possible to construct a truncated version of the theory in which
the classification of the representations of the Lorentz group is preserved completely and,
to a first approximation, the gravitation will coincide with the Newtonian limit, the
helicity of gravitons will equal zero, and the theory will not contain any black-hole type
singularities of the metric. However, the corrections to the Newtonian approximation are
different from the Einstein corrections and as a result, specifically, the numerical coeffi-
cients in the refraction of a light beam in a gravitational field and the secular shift of the
perihelion of orbits are different. While there is no doubt now that the general theory of
relativity predicts the correct magnitudes of these effects, the truncated version of the
theory does not agree with nature.

CkV:

Choosing the nine remaining matrices somehow or other, it is easy to show that it is
sufficient to determine one of the corresponding operators, whereupon the action of the
remaining eight operators is easily determined with the aid of the commutation relations
with the operators of the Lorentz group.

335 JETP Lett., Vol. 64, No. 5, 10 Sept. 1996 V. |. Marchenko 335



Investigation shows that only the representations of the Lorentz group for which one
of the numbersk, or ¢ equals zero can be completed up to the representations of the
Einstein group. Since formuld®) are symmetric with respect to an interchang&pand
¢, we introduce a single lettes, which can now be any complex number, to denote such
representations of the Lorentz group.dfequals an integer or half-integer, then the
functions which realize either the (§) or (s,0) representations of the Lorentz group
participate in the formulas presented below and in all other cases only tis¢ (€pre-
sentations participate.

For an appropriate choice of basis of the irreducible representation, the action of the
operatorA; corresponding to an infinitesimal orthogonal rotation in thezf plane by an
angle Sy,

ot=0xz, oOz=—6xt,
is determined by the formulas

5fSkV: 5XA3fSkV ’

Asfgo,=Dgvk—svk+s+1Vk+s+2vVk+5+3By1, fsionriy

+Dgvk—s—1Vk—s—2\Vk—sVk+s+ 1By, fsiox 1,

+Dg pVk—s+2\Vk—s+1Vk—s+3vVk+SB 1, fs opi1

+Dg oVk—s+1Vk+s—2\Vk+s—1Vk+sB, fs 2 1,

k+1 k
+ aﬂ V (k+ 1)2_ SZBk+ l,VfS,k+l,V+ a SZ_ 1 \ k2_ SZBk,V fs,k—l,v, (4)

k?>—v? D Va?—(s+1)?
4k°=1" 7% 2(s+1)s(s+2)

For the 6, 0) representations of the Lorentz group with half-integrahe parameter

a can be an arbitrary complex number, and for integréthe parameterr can assume

only integer values greater than 1. For representations of the foris) (e parameter

a can be an arbitrary complex number, and for positive integral «=s+n, where

n>1 is an odd number, the representation is finite-dimensional and, as is easily verified
by a direct comparison, it is equivalent to a tensor representation.

The result(4) was obtained by the method presented in Ref. 3 for examples of the
rotation and Lorentz groups. The scheme of the solution is as follows. Let the operator
Az have the matrix form

BkV:

a'k(’)c'k'v'
akgckv

A3fakockV:A fa’k(/)c’k’v’ . (5)

Here, besides the numbekg, k, and v characterizing the functions in the basis of the
irreducible representations of the Lorentz group, an additional integral indeskich
enumerates the functions that realize the equivalent irreducible representations of the
Lorentz group has been introducéte multiplicity of the representations of the Lorentz
group in the representations of the Einstein group is not obvious in advawoi that
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the multiplicity of the representations of the rotation group in infinite-dimensigiméte-
dimensional representations of the Einstein group increa@kesreaseslinearly with
increasing spin. We now write out the equations for the matrix elemg@ntthat are
equivalent to the commutation relations of thex4 matrices of the Einstein group.
Equations which are linear and quadratic Anare obtained. From the condition that
orthogonal rotations in thet(z) and ,y) planes commute it follows that’'=v. The
linear equations give the dependencefobn the indexy. From the condition that the
linear equations be consistent we find that eitkyeor ¢ must equal zergwe denote by
s the remaining nonzero numbeand that the selection rules

k=k*1, s=s*2, (6)

hold, and we also determine the dependence on the ikdéwnalysis of the quadratic
equations shows that for an appropriate choice of the functioiie matrix A can be
diagonalized with respect to the index i.e., the multiplicity of the representations of the
Lorentz group in the representations of the Einstein group equals one. Then, the depen-
dence of the element& on the indexs can be easily determined from the quadratic
equations.

For the sake of mathematical rigor, it should be stated that the present investigation
leaves open the question of whether or not a representation of the Einstein group corre-
sponds to each pair of numbers,(«). However, this question requires a special analy-
sis by different methods.

We note that the numbets and ., which fix the representation, have the meaning
of quantum numbergcompletely analogous to spir— definite conservation laws must
be associated with them, since these numbers determine the structure of the invariants in
the Lagrangian and it is possible that some of the conserved charges characterizing
particles reduce to them.
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