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Abstract. The interaction between inclusions mediated by biological membranes undulations is analyzed.
The interaction law is interpreted in terms of symmetries associated with inclusions. We show, in particular,
that for a C3 and C3v symmetries the interaction law falls as 1/r3. We show that for completely isotropic
inclusions, the dominant interaction vanishes to all orders, and the first contribution stems from the induced
interaction which behaves as 1/r4. The same law holds for any other symmetry which is higher than C4.
We introduce a straightforward method to compute these interactions. We point out important differences
with results in the literature and explain the discrepancies.

PACS. 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

Inclusions which are bound to biological membranes play
an essential role in many cell functions. For example, they
provide specific receptors for host proteins, act as ionic
pumps, or contribute to the integrity of the cytoskeleton,
and so on. The so-called peripherical proteins may, un-
der some conditions, undergo an aggregation process in
biological membranes [1], pointing to the existence of an
effective protein/protein interaction. Besides direct elec-
trostatic and van der Waals interactions, inclusions may
interact via the membrane modulation [2–6]. An inclusion
bends locally the membrane, a bending which can be felt
by a second inclusion located elsewhere, and hence an in-
teraction follows. Another source of interaction which is
often referred to in the literature is that induced by ther-
mal fluctuations, the so-called entropic interaction. As will
be commented in this paper, this interaction is irrelevant
for most practical purposes. Finally, interactions between
inclusions may directly result from the deformation of the
membrane structure (for a review, see [7]), or they can be
induced by pressure [8].

As mentioned above, an inclusion bends the mem-
brane, a bending which is characterized by a profile of
the membrane modulation (this is the electrostatic ana-
logue of the potential φ1 created by a charge q1). If a
second inclusion is present on the membrane, the two
inclusions will interact. The interaction is obtained as a
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product of the first-inclusion effect (say, its effective po-
tential) and a characteristic of the second inclusion —say,
its force quadrupole— (in an electrostatic analogy this
means the product q2φ1). This interaction may be called
linear interaction. The origin of this denomination is that
(the analogy with electrostatics is quite appealing) it is
sufficient to know the potential created by one inclusion,
the effective presence of the second one is irrelevant. It
will be shown here, however, that when the two inclu-
sions are isotropic, the linear interaction vanishes exactly.
This problem is similar to that encountered when study-
ing the interaction of inclusions in 3D solids [9] and 2D
thin films [10], and it follows from purely dimensional con-
siderations. This situation is very much like the one en-
countered in electrostatics [11] for the interaction between
an ion and a neutral atom. Indeed the leading atom-ion
interaction vanishes after averaging over all directions of
the angular momentum of the atom. It is only when one
takes the effect of polarizability of the atom that the inter-
action is nonzero (the induced effect comes from the fact
that the atom polarizability is induced by the ion). We
shall refer to this interaction as the induced interaction
or nonlinear interaction. In other words, the presence of
the second inclusion is necessary and it will be shown here
that the interactions are indeed nonadditive. This feature
was found in [4,12], but the form of the interaction differs
from ours as presented in the discussion.

Several papers [2–6] have dealt with linear and nonlin-
ear interactions between inclusions on a membrane. There
are several inconsistencies with our results, and this con-
stitutes the first objective of the present paper. We shall
explain the source of inconsistencies. We shall present a
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systematic way for the calculation of the interaction en-
ergy. In particular, we shall relate in a general way the
interactions (the linear ones) to the inclusion symmetries.

A major discrepancy with previous [2–6] works con-
cerns the induced interaction. A surprising result in the
above studies is that, for the interaction to survive, the
authors need to introduce a cut-off related to the size of
the inclusion. That this cut-off is not necessary to handle
the induced interaction in the spirit of [2–6] remains to
be shown. Our way of treating the problem does not re-
quire any cut-off. An additional result following from [2–6],
and which is inconsistent with ours, is that the induced-
interaction energy is proportional to the membrane rigid-
ity, while here it will be shown that the rigidity enters
the denominator. The origin of this discrepancy will be
explained in this paper. It will be shown that this is due
to the model used by the authors. That this inconsistency
is due to the model spirit itself and not related to the
induced character, is corroborated by the calculation of
the linear interaction (which is the leading interaction for
anisotropic inclusions) in reference [5]. Indeed, theses au-
thors [5] use for linear interaction the same strategy for the
evaluation of the induced interaction. That is to say, their
results disagree with ours both for linear and nonlinear
interactions. However, our result for the linear interaction
agrees in principle with that of Park and Lubensky [3].
These authors use a spirit similar to ours regarding this
interaction, but not when dealing with the induced in-
teraction (as a consequence, their result differs from ours
regarding the induced interaction).

Our method is straightforward and is basically based
on the Helfrich energy and symmetries. Our results for the
induced interaction (as well as for the linear interaction)
agree with those obtained for inclusions in solids where the
role of the rigidity modulus is played by the Young mod-
ulus. It also agrees with that of Landau and Lifchitz [11]
if one draws a parallel between our calculation and that
performed in electrostatics.

As shown by Park and Lubensky [3], two anisotropic
inclusions (with a group symmetry smaller than C3) inter-
act with each other as 1/r2 with distance r. If the inclusion
possesses a symmetry with group C3 and C3v (say, if the
inclusions have a triangular shape), we shall show that the
interaction behaves as 1/r3. For a higher symmetry (C4,
C4v) the interaction falls as 1/r4. It is a simple matter
to extend the calculation to a Cn symmetry. The result
is that the interaction behaves as ∼ 1/rn. However, there
is another source of interaction which is of longer range.
This is precisely the induced interaction.

The scheme of this paper is as follows. In Section 2
we present the model and the basic ingredients. We then
study the linear interaction and compare our results with
those obtained by other authors. In Section 3 we study
the induced interaction. Section 4 is devoted to discussion
and comparison with previous works.

2 Formulation of the problem and linear
interaction

Let h(r) denote the membrane profile at position r. In the
limit of a small enough deformation, the mean curvature
H � ∆h, where ∆ is the 2D Laplacian (in the x-y plane).
In this limit the Helfrich free energy takes the form

E =
κ

2

∫
(∆h)2dxdy , (1)

where κ is the membrane rigidity. Note that we have disre-
garded the contribution involving the Gaussian curvature
owing to the topological invariance of the corresponding
energy. This is true as long as one disregards inhomo-
geneities of the rigidity, holes, and boundaries, as will be
adopted here (see [4] when a local Gaussian curvature is
present). In addition, we neglect tension effects as well as
splay-distortion associated with lipid molecules [13], which
might become relevant for small enough separation be-
tween the inclusions 1. Let us first consider a single inclu-
sion on the membrane. Due to mechanical equilibrium the
total force on the membrane created by the inclusion as
well as the total torque must vanish. For a force F located
at r(0) the energy is given by U = −Fh(r(0)). For a set
of forces the energy is the sum over different forces; these
are generally applied at different points. As in electrostat-
ics, after expansion of h (the potential in electrostatics) in
powers of a/r, where a is the distance between two forces
associated with the inclusion, one gets to leading order
Fα∂αh (where repeated indices are to be summed over),
where Fα is nothing but the dipole component along the
α-axis. This contribution vanishes identically due to equi-
librium since it represents the mechanical torque. Thus,
the first contribution to the energy originates from the
next expansion, which is quadrupolar, and is represented
by a rank-two tensor, denoted by Fαβ . The mechanical
energy associated with a single inclusion takes the form

U =
∫

δ(r − r(0))Fαβ∂α∂βh(r)dxdy , (2)

where r(0) refers to the inclusion position. In the pres-
ence of an inclusion the total energy consists obviously of
the sum [14] of the two contributions (1), and (2). The
vanishing of functional derivative of the total energy with
respect to the height h yields the equilibrium equation
which describes the membrane modulation h,

κ∆2h = −Fαβ∂α∂βδ(r − r(0)) . (3)

Note that as in the theory of elasticity [14] the field
(here h) obeys an inhomogeneous equation, the r.h.s. is
nothing but the source of the deformation. It is important
to note at this junction that other authors [2–6] suppose
that h obeys a homogeneous equation and that the ef-
fect of the inclusion enters via a boundary condition at
the inclusion (or, alternatively, they introduce a Lagrange

1 Note that if the separation becomes too small, the contin-
uum theory of Helfrich type may be called into question.
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multiplier [6] to enforce that condition). There is no reason
that the inclusion should prescribe the curvature nearby;
it is obvious that the presence of an inclusion induces a
curvature, but no Lagrange multiplier is introduced to en-
force the curvature in the vicinity of the inclusion. This
is a completely microscopic problem as to how lipid re-
arrangements are affected by the inclusion, and this is
beyond the scope of a continuum theory. The Helfrich de-
scription makes sense only if one is interested to scales
which are large enough in comparison to the size of the
inclusion. The geometry set by micro-scales can be com-
pletely different from that on larger scales where a contin-
uum theory makes sense. Note that here our problem will
be solved completely without resorting to any constraint,
but only by specifying the forces acting on the membrane
(quadrupoles in the present case). This way of reasoning
will lead to different results as those found in [2–6] (ex-
cept in the work of Park and Lubensky [3], where their
result for the linear interaction agrees with ours since in
that case their spirit is similar to ours, albeit the tech-
niques are different; these authors use, however, another
spirit for the induced interaction which will be a source of
discrepancy; see section devoted to discussions).

Expression (2) represents the energy of a defect on
a membrane. Since the defect position is a priori free,
one can find, if need be, the most favorable position of
the inclusion on the curved membrane. In particular, the
defect would move away from flat regions.

As is usually the case in electrodynamics, the determi-
nation of the field (here h) is more conveniently obtained
by first considering the effect of a charge. In the present
problem we consider the response to a localized force,

f(r) = Fδ(r − r(0)) . (4)

The energy due to a single force is simply U = −Fh(r(0)).
Variation with respect to h provides us with the following
equilibrium equation:

κ∆2h = Fδ(r − r(0)) . (5)

All quantities of interest can then be expressed in
terms of the Green’s function. Let G(r− r(0)) be the free
space (no boundary conditions are to be specified) Green’s
function. It obeys the following equation:

κ∆2G = δ(r − r(0)) . (6)

The profile h due to the application of a force is given
by

h(r) = G(r − r(0))F . (7)

The Green’s function is given by

G =
1

16πκ
(r − r(0))2 ln(r − r(0))2 . (8)

The free space Green’s function associated with a Lapla-
cian in 2D is classical and is given by ln r. The above
Green’s function follows directly after simple integrations
with respect to r. Note that although the Green’s func-
tion “diverges” at infinity, the slope of the profile due to

the inclusion goes to zero. Indeed, as stated above, the
first contribution of the inclusion stems from a quadrupole
(thus we must differentiate G twice, producing ln(r), and
thus a zero slope and zero curvature at infinity).

The response of the membrane to any other force dis-
tribution can straightforwardly be obtained by superpos-
ing the effects due to individual forces and expanding for
large distances. For the quadrupolar distribution (3), the
membrane profile reads simply

h(r) = −Fαβ∂α∂βG . (9)

This result is obtained from the very definition of the
Green’s function. This is seen upon differentiating equa-
tion (6) with respect to ∂α∂β and realizing that ∂α∂βG
is the response to a source term ∂α∂βδ (see the r.h.s. of
(3)). Note the formal analogy with multi-pole expansion
in electrodynamics [15].

Let us now consider two inclusions labeled as “1” and
“2”. Their corresponding quantities will be superscripted
accordingly. The total energy is given by

Etot =
κ

2

∫
(∆h)2dxdy

+
∫

δ(r − r(1))F (1)
αβ ∂α∂βh(r)dxdy

+
∫

δ(r − r(2))F (2)
αβ ∂α∂βh(r)dxdy . (10)

Integration by parts of the first term yields

κ

2

∫
h∆2hdxdy . (11)

Note that boundary terms vanish since the membrane ex-
tent is illimited on scales of interest.

From minimization of the total energy one obtains (in
a very similar manner as with a single inclusion)

κ∆2h = −F
(1)
αβ ∂α∂βδ(r−r(1))−F

(2)
αβ ∂α∂βδ(r−r(2)) . (12)

Substituting in (11) κ∆2h by the above expression, plug-
ging the result into (10), and integrating by parts one
obtains

Etot =
1
2

∫
δ(r − r(1))F (1)

αβ ∂α∂βh(r)dxdy

+
1
2

∫
δ(r − r(2))F (2)

αβ ∂α∂βh(r)dxdy . (13)

Let h = h(1) + h(2), where h(1) and h(2) are the displace-
ments caused by each inclusion. Plugging this into the
above expression, and subtracting from it the contribution
due to each single inclusion (that is subtracting terms like
F

(1)
αβ ∂α∂βh

(1) and F
(2)
αβ ∂α∂βh

(2)) we obtain the interaction
energy

Uint =
1
2
F

(1)
αβ ∂α∂βh

(2) +
1
2
F

(2)
αβ ∂α∂βh

(1) . (14)
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Fig. 1. A schematic view of the system under consideration.

Using (9), the interaction energy becomes

Uint(r) = −F
(1)
αβ F (2)

γµ ∂α∂β∂γ∂µG(r) . (15)

The rank-two tensor can be decomposed as follows:

Fαβ = Aδαβ +B(nαnβ − 1
2
δαβ) , (16)

where nα is the component of a unit vector directed along
the inclusion long axis (see Fig. 1), lying in the tangent
plane of the membrane. A, B are constants expressing the
details of the interaction between the inclusion and the
membrane and their precise values depend on the system
under consideration. For a symmetry which is higher than
C2, B = 0; this case will further be discussed below.

Plugging now the above expressions into (15) we ob-
tain the final result

Uint(r) = − 1
16πκr2

{
2A(1)B(2) cos 2θ2

+2A(2)B(1) cos 2θ1 +B(1)B(2) cos 2(θ1 + θ2)
}

, (17)

where θ1 is the angle between the long axis of the inclusion
and the separation vector r. Let us quote few special cases.
If both inclusions are identical we have A(1) = A(2) = A
and B(1) = B(2) = B. In that case we obtain

Uint(r) = − 1
16πκr2

{2AB(cos 2θ1 + cos 2θ2)

+B2 cos 2(θ1 + θ2)
}
. (18)

If the inclusions possess a higher symmetry (higher
than C2), then B = 0 and the interaction vanishes. The
interaction vanishes in particular for isotropic inclusions.
Thus we must expand the energy to higher orders in the
membrane profile, as will be shown in the next section. If
one of the two inclusions (say number “1”) is completely
isotropic, or has a high enough symmetry, then B(1) = 0,
while if inclusion “2” is anisotropic, then there exists still
an interaction

Uint(r) = − 1
8πκr2

A(1)B(2) cos 2θ2 . (19)

We note a difference with the result of Park and
Lubensky [3], where this term is absent. However, for the
part which is proportional to B2 in (19) our result agrees
with that of Park and Lubensky [3]. That an isotropic
inclusion interacts linearly with an anisotropic one was
found in [6,12].

Another case which is worthy of mention is the one
where the inclusion symmetry is of type D2, or D2d. This
corresponds to the situation where the inclusion is inserted
inside the membrane. It follows then that A = 0, whereas
B �= 0, and the interaction law takes the form

Uint(r) = − 1
16πκr2

B2 cos 2(θ1 + θ2) . (20)

For a defect having a C3 or C3v symmetry (say trian-
gular), the coefficient B in equation (16) must vanish, and
one has to consider higher-order multipolar contributions.
This amounts to writing the corresponding inclusions en-
ergy as

U =
∫

δ(r − r(0)) {A∆h(r) + Fαβγ∂α∂β∂γh(r)} dxdy .
(21)

We follow now exactly the same strategy as before.
After a functional differentiation of the total energy we
obtain the equilibrium equation

κ(∆)2h = −A∆δ(r − r(0))

+Fαβγ∂α∂β∂γδ(r − r(0)) + ... , (22)

where ... means similar terms related to the second inclu-
sion. The formal solution of the above equation can be
expressed in terms of the Green’s function

h(r) = −A∆G+ Fαβγ∂α∂β∂γG . (23)

In what follows it may be useful to quote the following
identity:

∆G =
1
2πκ

ln r . (24)

The interaction energy can be expressed in terms of
the Green’s function,

Uint(r) =
{
A(1)F

(2)
αβγ −A(2)F

(1)
αβγ

}
∂α∂β∂γ∆G(r) . (25)

One can identify from dimensional considerations the
power law 1/r3. In order to be more explicit, let us write
the tensor in its generic form

Fαβγ = C(nαnβnγ − nαlβlγ − lαnβlγ − lαlβnγ) , (26)

where n and l are two unit vectors which are perpendicular
to each other. Note that the tensor is expressed in the
coordinate where the mirror of symmetry is perpendicular
to l. The interaction energy takes the following form:

Uint(r) =
2

πκr3

{
A(2)C(1) cos 3θ(1) +A(1)C(2) cos 3θ(2)

}
.

(27)
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This interaction is nonvanishing even in the case where one
of the two inclusions is completely isotropic as can easily
be seen by setting C(1) = 0, in which case the expression
becomes

Uint(r) =
2

πκr3
A(1)C(2) cos 3θ(2) . (28)

Let us quote a special case which arises when the inclu-
sion has a S6 symmetry (remember that S6 stands for ro-
tary reflexion). More precisely, this symmetry corresponds
to the product of a rotation of a C6-axis in the plane oxy
per an up-down reflexion. In that case, we have bothB = 0
and A = 0, whereas C �= 0.

For a 4-fold symmetry the same analysis can be per-
formed yielding an interaction falling as r−4 cos 4θ(1) (one
of the two defects is assumed in this expression to be
isotropic).

For an n-fold symmetry the interaction behaves as
r−n cosnθ(1). In fact there is another source of interaction
∼ 1/r4. This is the so-called induced interaction, which
will be analyzed now.

3 Induced interaction

It is clear from equation (17) that if both inclusions are
isotropic (or have a high enough symmetry as discussed
above) then all-B coefficients vanish. This means that at
this order there is no coupling between inclusions. Hith-
erto, the considered interaction arises from leading order
(linear interaction). That is to say, the modulation due to
one inclusion suffices to determine the interaction energy.
In analogy with electrostatics, if one knows what the field
(or potential φ1) created by a charge q1 is, then there is
no need to study the effect of, or on, the second charge
in order to determine the interaction; this is simply given
by q2φ1, where q2 is the second charge. As is well known,
an ion does not interact to leading order with a neutral
atom with isotropic charge distribution. However, the ion
can induce a polarization of the atom so that the polar-
ization of the atom is proportional to the ion field, and
this interaction is known to be nonzero [11]. This is called
the induced or nonlinear interaction, in a sense that the
interaction exists only because the ion induces a charge
redistribution of the atom. That the interaction is nonlin-
ear is obvious, since the interaction is proportional to the
field created by the ion multiplied by the polarizability of
the atom, which itself is proportional to the ion field.

The energy associated with the inclusion must now (for
an isotropic inclusion) be written as

U =
∫

δ(r−r(0))
{
A∆h(r)− D

2
∂α∂βh(r)∂α∂βh(r)

}
dxdy .

(29)
The first term represents the leading order as before
(which would be the analogue of the moment of the non-
polarized atom), while the second one accounts for an in-
duced effect; this is an expansion of Fαβ in equation (2) in
powers of the curvature tensor. Note that we have chosen

a minus sign in front of D for the sake of comparison with
the induced interaction in electrostatics (between an ion
and a neutral atom). The equilibrium equation for h is
simply given by

κ(∆)2h = −A∆δ(r − r(0))

+D∂α∂βδ(r − r(0))∂α∂βh+ ... . (30)

Going back to the total energy (that is supplementing U
by the Helfrich energy) and making similar operations as
before (integration by parts and using the equilibrium
equation above), one finds that the interaction energy
takes the form

Uint =
1
2
A(1)∆h|r=r(1) +

1
2
A(2)∆h|r=r(2) . (31)

We must subtract the self-energy when evaluating the in-
teraction. This expression bears strong similarities with
(14). An exact solution [16] of equation (30) can be ob-
tained, and thus we can determine Uint exactly. However,
in the spirit of the calculation (i.e. multipolar expansion)
the same result can be obtained in a more direct, albeit
perturbative, way. Let h(1) be the displacement due to
inclusion “1”, and so on. In order to evaluate h(1), for ex-
ample, we make the following reasoning. h(1) is composed
of two contributions. The first one is due to the A(1) term
which creates a field h

(1)
0 exactly as before. The second

defect will in its vicinity (and elsewhere as well) change
the field. This is nothing but the response of the second
defect due to the fact that it feels an “induction” repre-
sented by the D(2) term. Thus the next-order contribution
to h(1) must involve the product A(1)D(2). This entails
that in the second term of the interaction energy (31) we
shall have A(1)A(1)D(2). The same reasoning applies to
h(2) leading to a contribution in the energy proportional
to A(2)A(2)D(1). Formally, we solve equation (30) by per-
turbation in the induced effect. To leading order, and in
the presence of the first inclusion, we must solve

κ(∆)2h(1)
0 = −A(1)∆δ(r − r(1)) . (32)

Here h(1)
0 is the zeroth-order solution (the subscript refers

to the order while the superscript labels the inclusion).
Let us call h0 = A(1)f(|r − r(1)|) the solution (which is a
logarithm as we have seen before; f = −(2πκ)−1 ln |r −
r(1)|). This field creates on defect “2” an induction D(2)

reacting back on the field h. More precisely the next-order
equation for h is

κ(∆)2h(1)
1 = D(2)∂α∂β{δ(r−r(2))∂α∂βh0(r−r(1))} . (33)

Formally, the solution reads h(1)
1 = D(2)A(1)g(|r − r(1)|),

where g is obtained by inverting the above differential
equation. In reality, only ∆h is needed and not h alone
(as seen in Eq. (31)). Inversion of the Laplacian in equa-
tion (33) leads to

∆g(|r − r(1)|) = (2πκ)−1

∫
dr′∂α∂β{δ(r′ − r(2))

×∂α∂βh0(r′ − r(1))} ln |r − r′| , (34)
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where we have used the fact that the Green’s function of
the Laplacian is given by the logarithm. Integration by
parts leads to

∆g(|r − r(1)|) = (2πκ)−1∂α∂β ln |r − r(2)|
×[∂α∂βh0(|r − r(1)|)]r=r(2) . (35)

Since h0|r−r(1)| = −A(1)(2πκ)−1 ln |r−r(1)| we can write
at the location of the second defect

∆g(|r−r(1)|)r=r(2) = (2πκ)−2(∂α∂β ln |r−r(1)|)2|r=r(2) .
(36)

The field due to the first defect is thus given by h(1) =
A(1)f(|r− r(1)|) +D(2)A(1)g(|r− r(1)|), where now ∆h(1)

is completely determined. The same reasoning applies to
the second defect. Using the above result for ∆g in (31),
and ignoring the self-energy, we obtain finally that the
interaction energy is given by

Uint = − 1
4π2κ2r4

[(A(1))2D(2) + (A(2))2D(1)] . (37)

Very much like the induced interaction in electrostat-
ics [11] the interaction behaves as 1/r4.

It is worth mentioning that the interaction is not addi-
tive and this is easily seen by considering three inclusions
(as found also in [4,12]; note that their interaction energy
differs from ours as discussed later). Each inclusion is char-
acterized by its constants A, and D. There is an additive
part similar to the one presented above, but a nonadditive
contribution arises also. For example, inclusion “2” can be
“polarized” by inclusion “3”, so that the polarization of
inclusion “3” is proportional to A(2)D(3). Since “3” is po-
larized, it can interact with “the charge” of “1”, A(1), so
that the corresponding interaction energy will be propor-
tional to A(1)A(2)D(3). Of course, all other combinations
are possible, but we have not felt it worthwhile to list the
full expression, which can be obtained without great deal
by following the straightforward method of this paper.

4 Discussion

We first compare our results with previous analyses. The
first difference with previous works [3] lies in the angular
dependence of the interaction energy when the inclusions
are anisotropic. If one compares equation (2.4) of refer-
ence [3] with ours (Eq. (17)), one sees that in reference [3]
the first two terms (proportional to AD and CB in our
expression) are missing. The reason is clear. In [3] their
second-rank tensor is taken to be traceless (see Eq. (3.37)
in Ref. [3]), and their term Q2 is the analogue of our B
term in the tensor defined here by equation (16). How-
ever, in their case the analogue of our A term is taken to
be zero. There is no reason at all for A to be zero, except
in some special cases quoted in the present paper. The
tensor Fαβ accounts for physical properties of interaction
between the inclusion and the membrane. Thus if the in-
clusion turns out to be symmetric, then there is still an
effect of the inclusion on the membrane, so that Fαα must

be nonzero (compare with liquid crystals where, though
the order parameter is traceless, this is not the case for
other physical properties, such as the dielectric constants
which are nonzero in the isotropic phase!). The fact that
the interaction still survives if one inclusion is isotropic
was realized in [4,12,5]. However, there is a major differ-
ence between their expression and ours (Eq. (17)): their in-
teraction energy is proportional to the rigidity, while here
our expression in inversely proportional to the rigidity. It
might be thought that since in our expression (Eq. (17))
the constants A and B have the dimension of an energy
× a length, then, A and B would be proportional to κ,
and that would cure the discrepancy. This is not true. The
coupling constant represents the details of interaction with
phospholipidic molecules, while the rigidity represents the
resistance of the phospholipidic molecules against their
bending. One can vary A and B (by changing the nature
of the inclusions) without altering κ (by keeping the same
phospholipids). The two energies are independent, beyond
any doubt.

The discrepancy between the result of references [4,
12,5] and ours (Eq. (17)) originates from their treatment
which imposes locally that the inclusion fixes the curva-
ture (they enforce a local condition), which is not consis-
tent with the whole spirit of the model. Indeed, there is
no doubt that the inclusion interacts with the membrane
molecules, but this is a completely microscopic problem as
to how lipid rearrangements are affected by the inclusion,
and this is beyond the scope of a continuum theory. The
Helfrich description makes sense only if one is interested
on scales big enough in comparison to the size of the inclu-
sion. In our treatment we only need to calculate the field
created by the first inclusion, and evaluate it at distance r
from that inclusion, then multiply this field by the torque
of the second inclusion. Note that our way of evaluating
the field created by a force (or quadrupole) is precisely
along the same line as in elasticity theory of thin plates (a
very similar problem). Indeed, as shown by Landau and
Lifchitz [14] (formula 12,4), the profile of the plate is en-
tirely determined by the knowledge of the applied forces.
As seen in the same paragraph of the same reference (for-
mula 12,5), the field h (noted ζ there) is inversely pro-
portional to κ (the plate rigidity), so that the membrane
energy which is proportional to κ

∫
(∆h)2dxdy (or, equiv-

alently, to
∫
Fαβhdxdy; the work of the quadrupole), pro-

duces an interaction energy which is inversely proportional
to κ, as in our treatment. It is worth pointing out that the
fact that the response of the material (here the rigidity)
appears in the denominator is a well-known problem (see
inclusions interaction in solids —Ref. [17]— and step-step
interaction on a vicinal surface [18]). Note that with re-
gard to the dependence with the rigidity our result agrees
with that of Park and Lubensky [3]. Their equation (2.4)
contains κ in the denominator as our expression (17) does
(but their angular dependence is not complete, as we dis-
cussed above). The dependence of their expression on κ
agrees with ours precisely because their strategy is sim-
ilar in spirit to ours (though the techniques are differ-
ent). However, these authors use another spirit when they
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evaluate the induced interaction. That spirit is in partic-
ular similar to that of [5], on which we have commented
above and has pointed out the improper behaviour with
κ for the linear interaction. That procedure produces the
same dependence with κ for the induced interaction, as
discussed again below.

The second serious point of discrepancy with previous
analyses lies in the way the induced interaction 1/r4 is
evaluated in papers [2–4,6], revisited in [19] to show that
the Gaussian curvature plays no role in the interaction en-
ergy (for a pre-existing local Gauss curvature, see [4]). As
shown here, for isotropic inclusions the interaction van-
ishes to leading order (that interaction is called linear
interaction) and there is a need for taking into account
the induced effects. The induced-interaction energy is per-
formed in this paper in the same manner as for anisotropic
inclusions. Previous works [2–4] have used different spirits
than ours, in that they impose that the inclusion fixes the
local curvature, but there is no such a constraint in our
study (for reasons described above). In addition, their to-
tal energy in the presence of the inclusion is written as just
the Helfrich energy, but not supplemented with terms like
the one in equation (2), which accounts for the work due
to the inclusion (this is more visible in papers [2,6]). Our
reasoning is similar to that of thin plates in the presence
of an external perturbation [14] (formula 12,4). The major
discrepancies with [2–4,6] regarding the induced interac-
tion are the following: i) our result (37) contains κ2 in de-
nominator, while in references [2–4,6] κ enters in denom-
inator; ii) our energy contains explicitly the cross-terms
originating from inclusion one and two, as clearly shown
by superscripts “1” and “2” in our expression (37). This is
precisely how the induced interaction appears in electro-
dynamics [11] between an ion and an atom: the interaction
energy is proportional to the product of the charge of the
ion (say the analogue of our constant A) and the polariz-
ability of the atom [15] (our constant D). On the contrary,
in references [2,3,6] the interaction is a sum of two effects
appearing as if each inclusion were alone. iii) Finally, if
one lets the inclusion size go to zero (a point-like defect),
then the interaction energy evaluated in references [2–4,6]
goes to zero as well! This is clearly nonphysical. It might
be that taking this limit is meaningless in the context of
their model, but this is a question which is unclear for the
present authors, inasmuch as our theory does not need
to introduce a cut-off. Of course, our constants A and B
have a dimension of an energy times a length scale, sim-
ply meaning that both results are dimensionally correct.
One could extract a length scale from A and B and both
results would have the same dependence with the “molec-
ular” size a. However, unlike the work of [2–4,6], our the-
ory need not specify a spatial extent of the inclusion in the
course of calculation. The result according to which a cut-
off is needed is linked with the fact that the authors impose
that the inclusion fixes the curvature nearby (at r = a). As
a consequence, the membrane profile created by “2” has
a “memory” of the inclusion “1” fixing its own curvature.
Another difference which is worth mentioning is that in
references [2,3,6] the 1/r4 interaction is always repulsive,

while in our approach this depends on the signs of the
constants D associated with the inclusion (see Eq. (37)).
Regarding the dependence of the interaction energy (37)
on κ as compared to references [2–6] and [7], the following
remark can be made. If one admits that the inclusion fixes
the local curvature, one may consider that the constants A
and D in equation (37) are proportional to the membrane
rigidity. In that case our result (37) agrees with that of
references [2–6] and [7] regarding the dependence with re-
spect to κ (but not necessarily the sign of the interaction).
In our opinion, care must be taken, however. On the one
hand, fixing the curvature at the level of the inclusion is
a microscopic question which is beyond the present study.
On the other hand, while the constants A and D have a
dimension of an energy times a length, they are indepen-
dent of κ: κ measures the rigidity of the membrane itself
(an intrinsic property which is independent of an external
action), while A and D account for the interaction of the
inclusion with the membrane. One can change the nature
of the inclusion (and thus the values of A and D) without
changing the membrane (κ remains the same); thus A and
D would vary independently of κ.

All the interactions discussed so far occur as long as
the inclusions do not preserve the up-down symmetry, oth-
erwise the interaction vanishes. In the latter situation one
may evoke the Casimir effect (due to thermal fluctuations)
as a possible source of interaction. However, if only one of
the two inclusions enjoys the up-down symmetry, then the
induced interaction is nonzero.

The (entropic) Casimir effect has been evaluated in [2]
and is given by

U ∼ −kBT
(a

r

)4

, (38)

where kBT is the thermal energy, and a is the typical lin-
ear size of the inclusion. Note that we do not admit that
the size of the molecule matters in the geometrical sense,
but simply that from dimensional considerations the com-
binations of energies and energies per unit surface on the
scale of the inclusion lead to a length scale which is noth-
ing but a molecular length 2. It is clear that this effect is
always small in comparison to kBT as soon as r is 2 to 3
molecular distances. That is to say, in most practical pur-
poses the inclusion/inclusion interaction is much smaller
than the local thermal excitation, a fact which confers to
the Casimir effect in this case only an academic interest.
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2 Very much like the quadrupole Fαβ which has a dimension
of a force multiplied by a distance square, or energy multiplied
by a length, the energy represents the details of local interac-
tions, and the length is typically a molecular length; however,
in our calculation we never assigned a geometrical extent to
the inclusion; it is a point defect.
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