# On Twinning in Smectic Crystals 

V. I. Marchenko<br>Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334 Russia<br>Received October 6, 2007


#### Abstract

It is shown that mechanical twinning in smectic crystals is possible. The structure of the boundary of twins for a small disorientation of crystallites is determined. The periodic twin structure, which should appear at the tension of the smectic layer, is proposed.


PACS numbers: 61.30.-v
DOI: 10.1134/S0021364007230105

The energy of small deformations of a smectic crystal is given by the expression [1]

$$
\begin{equation*}
\mathscr{E}=\int \frac{A}{2}\left\{\left(\partial_{z} u-\frac{\left(\partial_{\alpha} u\right)^{2}}{2}\right)^{2}+\lambda^{2}\left(\Delta_{\perp} u\right)^{2}\right\} d V, \tag{1}
\end{equation*}
$$

where $u$ is the displacement of the layers along the $z$ axis (in the initial homogeneous undeformed state of the smectic crystal, layers lie in the $x y$ plane), $A$ is the elastic modulus, $\lambda$ is the length parameter, $\partial_{\alpha}$ is the gradient vector in the $x y$ plane, and $\Delta_{\perp}=\partial_{\alpha}^{2}$. According to Eq. (1), the undeformed state turned by small angle $\theta \ll$ 1 in the $x z$ plane (in this case, $\partial_{x} u=\theta$ ) corresponds to the derivative $\partial_{z} u=\theta^{2} / 2$.

Let us consider the boundary between the states $\partial_{x} u= \pm \theta(x \longrightarrow \pm \infty)$ that lies in the $y z$ plane. The quantity $\partial_{z} u$ is unchanged inside the boundary. The variation equilibrium equation in the problem under consideration reduces to the form

$$
\begin{equation*}
\lambda^{2} f^{\prime \prime \prime}+\frac{\theta^{2}}{2} f^{\prime}-\frac{3}{2} f^{2} f^{\prime}=0 \tag{2}
\end{equation*}
$$

where $f=\partial_{x} u$. The solution of this equation has the form $f=\theta \tanh (q x / 2 \lambda)$. The energy of the unit area of this boundary is given by the formula

$$
\begin{equation*}
\sigma=\frac{2}{3} A \lambda \theta^{3} \tag{3}
\end{equation*}
$$

The twin structure of smectic crystals must be observed under the conditions of Helfrich instability at strains noticeably larger than the critical value (see the problem in [1, Sect. 45]: the smectic layer of thickness $L$ bounded by solid walls parallel to the smectic layer is extended along the $z$ axis). At very small tensions $\delta L>$
$\delta L_{c}=2 \pi \lambda$, i.e., when $\delta L$ is about the smectic period, the homogeneous state becomes unstable with respect to the appearance of a periodic structure in the $x y$ plane with wavenumber $k_{\mathrm{c}}=\sqrt{\pi / \lambda L}$. At a much larger strain $\delta L \gg \delta L_{\mathrm{c}}$, a twin structure as that schematically shown in the figure should appear. The parameters of this structure are determined by minimizing the total energy of twin boundaries $(\theta=\varepsilon$ at the vertical boundaries and $\theta=\varepsilon / 2$ at the boundaries of the triangular regions). According to geometric consideration, the angle at the vertex of a triangle is equal to $\varepsilon$, the height $H$ of the triangles is related to the structure period $d$ as $\tan (\varepsilon / 2)=$ $d / 2 H$, and the quantity $\delta L$ is related to the parameter $\varepsilon$ as $\delta L=(L-H)\left(\cos ^{-1} \varepsilon-1\right)$. The energy density of the structure proposed above is given by the expression

$$
\begin{equation*}
\frac{1}{L d}\left\{2 \frac{L-H}{\cos \varepsilon} \sigma(\varepsilon)+4 \frac{H}{\cos (\varepsilon / 2)} \sigma(\varepsilon / 2)\right\} \tag{4}
\end{equation*}
$$



Figure.

In view of the indicated geometric relationships, energy (4) is a function of one parameter $\varepsilon$ at a given tension $\delta L / L$. When $\delta L \ll L$, angle $\varepsilon$ is small. In this case, with the use of result (3), the minimum of energy (4) is found to correspond to $\varepsilon=\sqrt{6 \delta L / L}$. In this case, $H=2 L / 3$ and $d=2 \sqrt{2 L \delta L / 3}$.

I am grateful to E.I. Kats for stimulating discussions.

## REFERENCES

1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity, 4th ed. (Nauka, Moscow, 1987; Pergamon, New York, 1986).

Translated by R. Tyapaev

