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The shapes as well as the growth and melting properties of bee-3He single
crystals have been investigated with a low temperature Fabry-Pérot interfer-
ometer. FEleven types of facets were clearly identified during slow crystal
growth at the temperature of 0.55 mK, where the solid is in the antiferro-
magnetically ordered u2d2 phase. The growth rates of the individual facets
have been measured and the results indicate significant growth anisotropy.
The observed linear dependence of the growth welocity on the driving force
shows that facets grow due to the presence of screw dislocations, while the
step velocity is limited by the spin wave velocity due to the strong interac-
tion of the moving step with magnons in the solid. The measured growth
rates of the facets and the assumed growth mechanism gave us the unique
opportunity to obtain the step free energies for ten different types of facets
observed during a single growth sequence. The dependence of the free energy
of the step on the step height is compared with predictions of the weak- and
strong-coupling models. Our results suggest that 3He crystals have rather
strong coupling of the liquid/solid interface to the crystal lattice and that the
step-step interactions are of elastic origin.
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1. INTRODUCTION

Most of the crystals seen in nature have a polyhedral shape with smooth
flat facets and sharp edges in between. These facets correspond to high-
symmetry crystallographic orientations and are the result of the formation of
crystals in a distant past. The growth dynamics and the equilibrium shape
of ordinary crystals can usually be studied only at elevated temperatures
close to their melting point. Therefore due to large differences in entropy
of the solid and the adjacent melt or vapor phases and the finite thermal
conductivities of these bulk phases, the dynamics of ordinary crystals is
very slow. Nevertheless, equilibrium shapes with rounded (rough) areas
between flat facets have been observed with microscopic metal crystals,!™3
some organic materials? and ice crystals,® for instance.

In equilibrium situation, any smooth surface part of the crystal, a facet,
should become rough (rounded) at high enough temperature, at the so called
roughening transition, first considered by Burton, Cabrera and Frank® (see
also Ref. 7). It has to be pointed out that, due to the reasons mentioned
above, the roughening transitions can hardly be studied quantitatively even
in the systems, where thermodynamic equilibrium can be reached.

The helium crystals, which exist at low temperatures and high pressures,
are exceptional compared with ordinary crystals because their growth dy-
namics as well as the equilibrium shape can be studied in a wide temperature
range along the melting curve down to T' = 0. At low enough temperatures,
where the latent heat of crystallization is negligible and the surrounding su-
perfluid phase has good thermal conductivity, the growth and equilibrium of
helium crystals are practically independent of heat and mass flow considera-
tions. Thus helium crystals present a good model system where the internal
properties of the liquid/solid interface can be studied.

The equilibrium shape of “He crystals can be obtained relatively easily -
below 0.5 K the relaxation time of the rough surface is a few milliseconds.?
The studies on the equilibrium and dynamic properties of “He crystals have
yielded important information on the equilibrium crystal shape as well as
the growth mechanisms.®1° In the hexagonal close packed *He three types of
facets, (0001), (1100) and (1101), have been observed with their roughening
transitions at 1.3 K, 0.9 K and 0.36 K.!1"13 The roughening transition of
the (0001) facet has been studied most extensively'® while the third facet,
(1101), has been observed only during growth.!> No more than three types
of facets have been detected in *He down to 2 mK.16

Nozitres and Gallet!” have developed the renormalization approach to
the roughening transition, which has been shown to be in a good agreement
with several experiments near the roughening transition of the (0001) facet
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Fig. 1. Profile of an elementary step in the a) strong- and b) weak-coupling
limit.

in “He. In “He the so called weak-coupling limit has been found to be valid
which means that the liquid/solid interface is weakly coupled to the crystal
lattice.”8

Cousider a facet on the interface with the surface energy vy at T' = 0.
The profile of the elementary step on the facet could be sharp (Fig. 1a) or
broad (Fig. 1b). The first case corresponds to the strong-coupling limit,
where the interface is pinned by the lattice potential, thus the step energy
Bo (per unit length) is roughly equal to the surface energy of the additional
area: By ~ ~od, where d is the step height. This situation occurs more or
less on the vacuum/solid interface of metals;!® in spite of the anisotropy
(a particular facet can have steps in different directions with different step
energies) the ratio Bo/ved = 1.

In the weak-coupling situation sketched in Fig. 1b (the case of *He),
the distribution of the step over a number of lattice spacings will reduce
the step energy, and Bo/v0d < 1 and £/d > 1, where £ is the step width.
Experimentally it has been found that for the (0001) facet in “He ¢ ~ 8 d,%°
or even ¢ ~ 16 d ! with 8/yd ~ 0.057.2° Since the zero-point motion in
3He is larger than in *He, it has been suggested'® that the coupling of the
interface to the solid lattice in 3He would be even weaker than in “He.!

The equilibrium shape of 3He crystals has been observed only in the
vicinity of the melting curve minimum, 7}, = 320 mK, where the latent heat
vanishes.?? In this temperature range the crystals are nicely rounded and
no facets are present since T;, is above all roughening transitions. Away
from the melting curve minimum the latent heat increases and He crystals
behave like ordinary crystals, i.e., have very slow dynamics.?3:?* Only well
below the Néel temperature, Ty = 0.93 mK, where the spins of solid He are
antiferromagnetically ordered and the surrounding liquid phase is superfluid,
3He crystals are expected to show fast dynamics similar to *He crystals at
much higher temperatures.?®

When we started our optical experiments with 3He crystals, three types

!Note that near the roughening transition, due to critical fluctuations, £ tends to infinity
(see Ref. 7). In this sense, the coupling is always weak in the vicinity of the roughening
transition.
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of facets had been observed in this system. First, facets of the (110) type
were seen in the body-centered cubic (bcc) *He crystals at T ~ 80 mK
by Rolley et al.?® Later two other types of facets, (100) and (211), were
identified when growing the 3He crystals at 7 ~ 2 mK from the superfluid
phase.?* The growth of faceted 3He crystals had been measured below Ty
using Nuclear Magnetic Resonance (NMR) techniques®”?® and direct optical
observations.?® The growth velocities of the individual facets had not been
measured and only an average growth rate of 3He crystals was reported.?
Even though the growth rate of the crystals in the narrow channels in the
experiments of the Kyoto group®3° were most likely due to growth of a
single facet, it is not known which facet was at the liquid/solid interface. All
performed measurements had shown similar growth rates with rather weak
temperature dependence. Nomura et al.?® had observed a linear dependence
of the growth velocity on the driving force and they had associated it with
growth of facets in the regime of the saturated step mobility.

In this paper the results of our experiments with 3He crystals are pre-
sented which were obtained with the help of a Fabry-Pérot multiple-beam
interferometer, built inside the nuclear demagnetization cryostat. Short re-
ports of this work have been published earlier.32-3* We were able to identify
altogether eleven different types of facets during growth of the 3He crystals at
our lowest temperature of 0.55 mK.3%33 We measured also the growth rates
of individual facets and observed significant anisotropy.>* Melting processes
with much faster dynamics were studied as well, and the results suggest that
the measured growth velocities of facets were not limited by the processes in
the bulk phases, but are due to intrinsic mechanisms taking place at the in-
terface. One of our most remarkable conclusions is that 3He has surprisingly
stronger coupling of the liquid/solid interface to the crystal lattice than He,
in spite of larger zero-point fluctuations in 3He.

The paper is organized as follows: in Section 2 the equilibrium crystal
shape and the roughening transition are considered first. The theoretical
part describes also the weak- and strong-coupling limits as well as the growth
mechanisms of rough and smooth surfaces. Descriptions of our optical setup
and experimental techniques are given in Section 3 which is followed by the
explanation of our data analysis in Section 4. Our experimental results on
faceting and growth dynamics of 3He crystals are presented and discussed
in Section 5.
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2. THEORETICAL BACKGROUND
2.1. Equilibrium Crystal Shape and Roughening Transition

The equilibrium shape of a crystal surrounded with liquid is determined
by the free energy per unit area of the interface between the two bulk phases,
the surface tension . The minimization of the total free energy over the
whole crystal surface yields the equilibrium crystal shape. The condition
for the phase equilibrium at a given point of the interface is the Herring

equation:3®
s &\ 1 0%a 1

6”(;» 1)‘(“+a¢%) R1+(“+a¢§> R @
Here dp is the pressure of the bulk liquid calculated from the nominal equi-
librium pressure for a planar interface, p; and p; are the densities of the
solid and liquid phases, R; and Ry are the two principal radii of the surface
curvature and ¢; and ¢ are the corresponding angular coordinates. The
expression vy = by, + 0%0/(04,04,) is the surface stiffness tensor.

If the surface tension of a crystal would be isotropic, then the equi-
librium crystal shape would be a perfect sphere in the absence of gravity.
However, a crystal consists of a lattice of atoms and the binding energy
between the neighboring atoms varies for different crystallographic orienta-
tions, which results in the anisotropy of the surface tension. It was shown
by Landau3® that at T = 0 the surface tension a of a crystal is a very un-
usual function of the surface orientation: it is continuous, but has a cusp for
every rational (i.e., with integer Miller indices) orientation, and the larger
the Miller indices, the smaller the cusp. The appearance of facets, smooth
flat faces on the crystal surface, is a direct result of this unusual behavior of
. The equilibrium facet size is therefore proportional to the value of this
surface tension cusp for a given orientation. As for Eq. (1), one may treat
it as follows: a cusp in « means infinite surface stiffness and Eq. (1) yields
then zero curvature, e.g., a facet.

According to Landau, as there is an infinite number of different crys-
tallographic orientations, the surface of an ideal crystal is covered with an
infinite number of facets (so called “devil’s staircase” phenomenon). In his
paper Landau neglected the surface fluctuations, both thermal and quan-
tum. It was shown later by Fisher and Weeks®’ (see also Refs. 38,39) that
quantum fluctuations do not destroy the crystal faceting, thus at T' = 0 limit
any real crystal (classical or quantum) should be entirely faceted and have
many different types of facets on its surface.

As temperature increases and the thermal fluctuations blur the cusp in
the surface tension for a certain crystallographic orientation, the correspond-
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ing facet disappears. Each type of facets has its own roughening transition
temperature Tk given by>"’

2
kpTr = VL d?, (2)

where kp is the Boltzmann constant, d is the interplanar distance (the height
of an elementary step on the facet) and (), v.) are the principal components
of the surface stiffness for a given surface orientation. Both components
should be measured at the temperature above but close to the expected
transition temperature for that part of the surface. In the bee lattice dpgy =
a(h?+k*+12)~1/2, where a is the lattice constant and (hkl) is the reciprocal
lattice vector.40

A well-defined excitation on a facet is an elementary step, a linear defect
that separates the facet into two parts which differ in height by one atomic
spacing. The step has a finite width £, which is determined by its internal
structure and the amplitude of the surface fluctuations — both zero-point
and thermal. If £ is small, on the order of the lattice constant a, the step is
strongly localized by the lattice potential — it is the strong-coupling limit
(see Fig. 1a); respectively, in the weak-coupling limit ¢ is large (Fig. 1b).”

The characteristics of steps determine the properties of the vicinal sur-
faces which are tilted by a small angle with respect to the main (“primary”)
facets so that the distance between steps is large compared to their width &.
These properties are different in the strong- and weak-coupling limits which
are discussed in the next two Sections.

2.1.1. Strong-coupling limit

In the strong-coupling limit we can follow Landau3® and consider a
vicinal surface of a bec crystal as a distribution of steps on a primary facet
(to be definite, we take the (100) facet with the (N10) vicinals, where N is
large). These primary steps can be considered to behave as isotropic strings
with linear tension per unit length B1gg, the step free energy. The surface
stiffness of a vicinal surface is determined then by the value of S99 and the
interaction between steps at long distances. The most long-ranged are the
elastic!! and entropic*? interactions which both depend on the distance as
1/z%. At low temperatures which we are interested in (the mK-range), the
entropic interaction is relatively weak. The energy of the elastic interaction
U (per unit length) can be written in the form?*!

2 2
Ulz) = ff (@0—) 2 (1-0%), (3)

z Ve
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where dygg is the step height, E is the Young modulus, ¢ is the Poisson ratio,
f is a function of the elastic strain produced by the step (with the same order
of magnitude as the surface tension «) and z is the distance between steps;
for vicinal surfaces of the type (N10), z = Ndjqq.

The density of steps and thus the surface tension both depend on the tilt
angle of the vicinal surface. This angle can be changed by rotation around
two principal axes, along and perpendicular to the steps and these are the
corresponding principal values of the surface stiffness 7, and 7. in Eq. (2).7
Straightforward calculation yields

2n(1 — o*) f? B1oo
=20\ =N, 4
ol T N T 4 (4)

This result is valid only if the vicinal surface itself is rough, i.e., there is no
cusp in the surface tension at the corresponding surface orientation. Thus the
temperature should be higher than the roughening transition temperature
Tn1g for a given vicinal surface and lower than T for the primary facet. The
value of Tiy19 could be calculated using Eq. (2) and the obtained values of
and v, from Eq. (4). However, one should keep in mind that in the vicinity
of a roughening transition critical fluctuations start to develop. As a result,
at the very transition point vy will be somewhat renormalised compared with
Eq. (4).7'7 Therefore one can make only a rough estimate of Ty as

Bioo ,4%10
kT ~ 1 200 p o 5
8TN10 7 fd1oo (5)

where dp1g is the interplanar distance between parallel (N10) planes or, in
other words, the height of a secondary step (note that in the bce lattice
dy1o = a/N for odd N and dy1g = a/2N for even N).*3 Similar estimates
of roughening temperatures are valid for other families of vicinal facets.

At temperatures below Tv1g, the (IV10) facets appear and the secondary
steps become well defined. The energies of these steps can be found by the
method originally used by Landau,?® who made calculations for the case of
the van der Waals interaction between steps. Let us have a set of parallel
steps with height digp on a primary facet (100) with all distances between
steps equal to z, except one which is larger by Az « z (see Fig. 2).

Let the interaction energy between steps m and n be Uy, = 1/z2

mn?
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Fig. 2. Secondary step on the crystal surface.

then the change of the total energy due to the shift of steps by Az is

AUT = > (@mn+A2)2— 2,2
m>0,n<0

A Az)?
Z -2 3$ +3( 495) (6)
T T
m>0,n<0 mn mn

2 2
=T o s B

i

where ((3) = 1.202... For a similar configuration of steps, but with a shift
Az of opposite sign the change of the total energy becomes

7?2 Az (Aav)
zt

AU™ = =— +3(3) (7)

The sum of these two expressions is exactly the energy of a pair of secondary
steps with opposite signs. Taking the interaction energy in the form of
Eq. (3), one obtains for the energy of one secondary step

_ g2 2
Bn1o = 24(3) d 5 ) (2 )Qd‘ll\fl()' (8)

In the bec crystals this derivation is literally valid only for an odd N (N =
2k + 1). The vicinal facet with an even N (N = 2k) is a mixture of the
(2t + 11 0) and (2k — 1 1 0) facets. However, Eq. (8) is correct also for
such facets as well as for other families of facets like (N 1 1), (N 2 1), ete.
Moreover, this result is valid for the families of facets which are vicinal to
the other primary facets like (110), (211), ete. if dy is the height of a primary
step and Az is the minimal nonzero shift of this step. Here is, for further
references, a short list of these values:

for the (100) facet (dy = a/2), Az = a and a/+/2 for the (N 1 0) and
(N 11) families, respectively;

for the (110) facet (dp = a/v2), Az = a/2,a/+/2, and a+/3/2 for the
(NN1),(N+1NO0),and (N + 1N 1) families, respectively.

Note also, that we have calculated only energies of steps which are
parallel to the primary steps. For other orientations these energies should be
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somewhat different. However, in the following we will neglect this anisotropy
and discuss our experimental data in terms of a simple theory of the isotropic
spiral growth. We will neglect also possible anisotropy in the value of f.

In general we conclude from the strong-coupling model (the narrow step
width) that the step energy depends on the step height as a fourth power:
B oc d*. Tt is assumed that the steps are well separated, meaning that the
model may not be valid for facets with small Miller indices, i.e., for primary
facets.

2.1.2. Weak-coupling limat

For the weak-coupling situation with wide steps the step energy is ex-
pected to be significantly reduced (with respect to vd), and also the depen-
dence on the step height will change. Following Noziéres” we can estimate
the values of 8 and £ by writing 8 ~ dv/7¥V, where V is the energy barrier
which pins the liquid/solid interface to the crystal lattice and separates the
neighboring equilibrium positions of the interface. If the effective width of
the interface [ is large, V' is exponentially small. Assuming that [ is approxi-
mately constant for all surface orientations, one may write V' ~ yexp(—{/d)
and

B ~ dyexp(—1/2d). (9)

The value of £ can then be found by noticing that for each facet the product
£8 is roughly independent of temperature below Tx:”

£B8 ~ kpTr. (10)

Although Eq. (10) is only derived for temperatures close to Tg, it has
been shown that in *He the extrapolation of this relation to T' = 0 gives good
results.** The actual temperatures of the roughening transitions in 3He are
not known, but these can be estimated by substituting the surface stiffness
value into Eq. (2). The surface stiffness of *He crystals has been measured
only at high temperatures where no facets exist and «y is almost isotropic
and temperature independent, v = vy = 0.06 erg/cm?.22 When the temper-
ature approaches Tg (from above), 7 increases due to critical fluctuations
as mentioned in the previous Section. However, in the weak-coupling ap-
proximation this effect is small. Thus the value of v = g may be used to
estimate Txr for various facets with the exception of vicinal surfaces with
very high Miller indices (N > £/d) which have steps well separated. Indeed,
in contrast to a rough interface of a general orientation, the surface stiffness
of a vicinal surface is highly anisotropic [see above, Eq. (4)]; accordingly, its
roughening transition temperature is given by Eq. (5). This is valid as long
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as the distance between steps (z ~ Nd) remains large compared with the
step width £. In the opposite case, on the vicinal surfaces with rather small
Miller indices the steps cannot be well defined any more, and such a vicinal
surface behaves as a rough surface of a general orientation, with v = vy and
with almost no renormalization of 7 close to Tg. Following Rolley et al.20
we will distinguish vicinal surfaces of these two types as stepped and rough,
respectively.

The available experimental data on 3, ¢ and [ in 3He are very poor. In
fact, there is only one rather indirect estimation of 3, made by Rolley et
al.,?2 B110 ~ 1.2 - 107! erg/cm, which gives €110 = 100 d119 ~ 3 - 1076 cm.
With this value of £, only surfaces with very high Miller indices, like (N N
1}, (N + 1 N 0) etc. with N > 100 may be called stepped, all other surfaces
are rough, except the facet (110) itself (and, of course, the other facets if
they exist at a given temperature).

An independent, but also indirect estimate of 8 and ¢ in 3He can be
obtained as follows. First one can calculate { in “*He, using Eq. (9) and the
measured values of Sogo1 = 4.2 - 1071 erg/cm and 7ygoo1 = 0.245 erg/cm?
for the (0001) facets.?%!® The result is {/dooor = 5.7.%° Due to the larger
amplitude of zero-point fluctuations one expects in >He a somewhat larger
value; so it is reasonable to assume I/dy1p = 7...8.4¢ Using this value one
obtains B119 = 3...5 - 107! erg/cm, which is not very far from the result by
Rolley et al.?? Note that Eq. (9) predicts a very fast decrease of 8 for higher
order facets.

If these estimates are valid, one may use 7 = - in the calculation
of Tx for most of the orientations of interest. Among the facets observed
experimentally before the present study, (110), (100) and (211), Eq. (2)
gives the lowest T for the (211) facet, Th;; ~ 85 mK, and more than 1000
different types of facets should exist at 0.7 mK depending on the anisotropy
of the surface tension. However, with such small values of 3 the equilibrium
sizes of facets are expected to be very small. According to Landau,3 the
equilibrium size Ly of a facet is proportional to Spx:

I~ Pondt
hkl & )
drkiYo

(11)

where R is the characteristic size of a crystal. For the (110) facet Eq. (11)
gives L ~ 1072R, and much smaller values for higher order facets. This is
the reason why some authors?>?* have suggested that in *He the facets are
too small to be observed in equilibrium, even the (110) facets.

Thus, if 3He crystals would behave according to the weak-coupling
model, the direct optical observation of facets in equilibrium is hardly pos-
sible, and all previous observations of faceting in ®He must have been done
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in a non-equilibrium situation (i.e., during growth), which is in fact the
case. 262224 This means that, in order to observe higher order facets, one
should go even further from equilibrium. However, then one runs into an-
other problem which may prevent the observation of facets. During the non-
equilibrium situation of growth the weak-coupling theory predicts dynamic
roughening which results in disappearance of facets even at temperatures
well below Tg.”!” The corresponding chemical potential difference Ay that
causes the facets to disappear can be estimated as
2

fy_d_é.'
Equation (12) presents a rather severe condition. One can calculate the
overpressure dp above which a particular facet should dynamically roughen.
Taking I/dj10 = 7...8, one obtains Ay ~ 1 mbar for the (110) facet and
Ap ~ 1075 pbar for facets like (510).

To conclude, the weak-coupling model predicts an exponential depen-
dence of the step energy on the step height. That behavior would be very
interesting to observe since it has never been observed directly in any sys-
tem. The applicability of the weak-coupling model to He was obtained from
various properties of a single facet, and the step energies of the other two
observed facets in *He are not known. However, it is obvious that in the case
of weak coupling the observation of higher order facets in 3He is practically
impossible both in equilibrium and during growth of the crystal, and the
weaker the coupling, the smaller the number of different facets which could
be observed.

Ap~ (12)

2.2. Crystal Growth
2.2.1. Mobility of a rough surface

Growth of a crystal can be viewed as an addition of new particles to the
sticking sites. Thermal or quantum fluctuations ensure a certain density of
such sites on rough surfaces and thus the growth of a rough interface does
not have a threshold.*” The growth rate v of such an interface is proportional
to the chemical potential difference Ay (per unit mass) driving the growth:

v = kintAN7 (13)
where ki is the intrinsic growth coefficient of the liquid/solid interface. The

chemical potential difference between the liquid and solid phases in the case
of a flat interface can be expressed as

Ps — Pl
Apy = —"{p, 14
=P (14)



500 V. Tsepelin et al.

where dp is the pressure change in the liquid with respect to the equilibrium
melting pressure value.

Direct measurements of the intrinsic growth coefficient by means of
melting or growing a crystal are difficult because the release of latent heat
L and the thermal impedances of the bulk liquid and solid phases Z;(Z;)
and of the interface usually mask it completely. Experimentally accessible
is only the effective growth coeflicient keg:

1 1 ps  ZZRk (TS;—A)2+(TSS—A)2+L_2] (15)
ket ke T Z+ 25+ Ri Zg Z Rk|’

Here S; and S are the entropies of the liquid and solid, Rx is the Kapitza
resistance of the liquid/solid interface and X\ determines the distribution of
the latent heat, released or absorbed at the interface, over the two bulk
phases.Z> Unfortunately, the thermal impedances of the bulk phases make
the effective growth coeflicient dependent on the cell geometry and the results
of different experiments cannot be easily compared.

The intrinsic mobility of the liquid/solid interface of >He has been mea-
sured only at the minimum of the melting curve, where the latent heat
vanishes and the result was kiy; = 0.18 s/m.?34% In all other experiments
the thermal impedances have played a major role, and the intrinsic growth
coefficient of 3He crystals has been predicted to be measurable only below
0.2 mK.»

A rather strong temperature dependence of the growth coefficient has
been observed in the temperature region of 0.44...0.73 mK by the NMR
measurements.?® The solid was melting much faster at lower temperatures,
unfortunately, it was not possible to measure that quantitatively. Later
optical experiments, conducted at 0.7 mK, have reported a value of kog =
2.3-107* s/m. %

2.2.2.  Growth of facets

Facets grow layer by layer and this process is slow since some mechanism
is required for the creation of sites where atoms can stick to. As a result, the
dissipative processes in the adjacent bulk phases do not have a significant
influence on the growth properties, and in Eq. (15) the first term is dominant.

In dislocation-free crystals, the growth of the facets is determined by the
nucleation rate of new atomic layers and is highly non-linear with respect to
the applied chemical potential difference. At high temperatures the thermal
energy is the most significant and two-dimensional nucleation of terraces
becomes favorable on the facets. The growth velocity v of a facet growing
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due to the two-dimensional nucleation mechanism can be expressed as5%:5!
w32
~ (Au/kpT —_— . 16
v~ (SulksT)exp (-5 (16)

At low temperatures the thermal fluctuations become weaker and growth
due to the quantum nucleation mechanism with even stronger dependence
on the driving force [exp(Ay)~?] will dominate.52

In the presence of screw dislocations spiral growth is the main growth
mechanism at any temperature except very close to the roughening transition
temperature where 3 vanishes.?? In the bec lattice screw dislocations can have
only two types of Burger’s vectors b: (£3, %3, +1), and (+1,0,0), (0,+1,0),
(0,0, £1) since dislocations with other Burger’s vectors have too high elastic
energies and are unstable.

When a dislocation crosses the crystal surface, a step with an atomic
height is produced. Strictly speaking, this is true only for the (110) facet,
where b= (3,1, 1) or (1,0,0) and the step height a/v/2 corresponds exactly
to the interplanar distance. On all other facets dislocations can produce a
varying number of steps. For example, on the (100) facet the dislocation
with b = (3,3, 1) produces one step with the elementary height a/2, while
b= (1,0,0) produces a step with double height a. However, such step is
unstable and two steps with the elementary height are actually created.

The theory of spiral growth of *He crystals'® turned out to be somewhat
more complicated than the classical spiral growth theory, due to the effects
of step inertia and quantum localization of steps, which the theory had to
take into account. However, in 3He both effects may be neglected since the
step velocity v, is restricted to a relatively low critical velocity v, when the
step mobility suddenly decreases. The growth velocity v of a facet in the
subcritical regime is

pd® (ps — p1)? .

where 1 is the step mobility defined as y = v,;/{psdAp), and K is the number
of steps produced by one dislocation.

In 3He the step mobility has not been measured. At T < Ty, this
mobility can be estimated, taking into account the two main dissipative
processes which contribute to the step resistivity 1/u, namely the scatterings
of (1) magnons from the solid and (2) quasiparticles from the superfluid at
their collisions with a moving step.

In the limit of low temperatures, the magnon wavelength is large and
the magnon contribution 1/p4mag can be calculated using the scattering cross-
section of a long wave at a rigid step, similarly to the case of the 3He impurity
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Fig. 3. Profile of a moving step (¢ — step width, d — step height).

in *He.53 The result is

1 _ 8¢(5) d?k3T®
Hmag w2 hted

(18)

where ((5) = 1,037... , kis the Planck constant and c is the magnon velocity.

In the strong-coupling limit, this result should be valid practically up to
Tw~. In contrast, in the weak-coupling limit, where the step width € is large,
there is an intermediate temperature interval, iic/kpé < T < T, where this
contribution can be estimated as

1 d? kT4
Kmag 5 5*364 .

(19)

In these estimations a specular (100%) reflection at the interface was as-
sumed and the anisotropy in the magnon velocity was neglected.

In contrast to magnons, the characteristic wavelength of quasiparticles
is short, A ~ a, and their scattering cross-section is unknown. One can
roughly estimate the contribution of quasiparticles 1/uqp by assuming that
the step is a macroscopic object with a profile shown in Fig. 3 which moves
in superfluid 3He with velocity v;. Then the drag force acting on this object
can be obtained by the method used by Fisher et al.3 in their calculation of
the force acting on the vibrating wire. At d ~ a this approach should give a
correct order of magnitude. Assuming £ >> a (weak coupling) and specular
reflection of quasiparticles, one obtains in the limit of low step velocities
(compared with the thermal velocities of the quasiparticles)

4

L - BBL cxpi-a/ks), (20
where A is the superfluid energy gap and pr is the momentum of quasi-
particles. At higher velocities this mobility increases (see Ref. 54). As an
order of magnitude estimate, this calculation should be valid also in the
strong-coupling limit by taking £ =~ a. Numerically this contribution is small
compared with the magnon contribution at all temperatures below Ty, see
Eq. (18).
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In Section 2.1.2 it was concluded that significant driving forces (over-
pressures) may be needed to observe large enough facets in *He, which means
that we have to consider the situation with rather large step velocities. The
growth rate of facets is adequately described by Eq. (17) until the step veloc-
ity exceeds some critical velocity v, and the step mobility suddenly decreases
due to a Cherenkov-type creation of excitations. In this regime the growth
velocity does not depend on the step mobility anymore, resulting in a linear
dependence of the facet growth velocity on the overpressure dp:

ved® ps — py
V= opK.
218 o ¢

(21)

In 3He the lowest critical velocities are, first, the magnon velocity ¢ and
second, the pair-breaking velocity vp,. In low magnetic fields, both are
approximately 7 cm/s.35% The effect of magnons and quasiparticles on the
step mobility depends on the strength of their coupling to the step motion.
For magnons rather strong coupling is expected because the moving step
directly touches and disturbs spins in the solid next to the interface and
thus radiates effectively spin waves when v; > c¢. It means that such a
Cherenkov radiation significantly suppresses the step mobility at v; > c.

For quasiparticles the situation is expected to be different due to their
large momentum and, at the same time, the large value of the effective width
¢ of the step. Similarly to the case of rotons in *He,'® at v, ~ v, = A/pF
the Cherenkov radiation of quasiparticles is exponentially weak in 3He and
proportional to exp(—m€A/hv,) ~ exp(—n€pr/Hk), becoming significant only
at much higher step velocities.

3. EXPERIMENTAL TECHNIQUES
3.1. Experimental Setup

Most of the optical studies with helium crystals have been carried out
using conventional optical cryostats with several sets of windows.®1112 In
such configuration the temperatures below 20 mK cannot be reached be-
cause of thermal radiation to the sample through the windows. The optical
studies at submillikelvin temperatures became possible after a novel techni-
cal approach was put forward by the two research groups in Leiden5” and in
Helsinki.%® Both groups had their optical instruments, including an imaging
system, confined inside the 4-K vacuum jacket of the cryostat. Owing to this
improvement, the external heat loads caused by the “hot” optical windows
were avoided or at least greatly reduced.
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To study the morphology and growth kinetics of 3He crystals below
1 mK we have modified the experimental setup which was used for optical
investigations on He crystals by the Helsinki group.'® The heart of our opti-
cal setup is a Fabry-Pérot multiple-beam interferometer which is described in
detail in Section 3.3. A sketch of our latest experimental arrangement inside
the nuclear demagnetization cryostat is depicted in Fig. 4. The first cooling
stage of our cryostat is a commercial dilution refrigerator Oxford 600.%° The
original mixing chamber of the refrigerator was replaced with a custom-made
one which has the effective heat-exchange area of 600 m?. During perfor-
mance tests the refrigerator showed the base temperature of 5 mK. It was
possible to maintain the cooling power of 5.3 W with the circulation rate
of 500 pmole/s at 15 mK. A melting-curve thermometer and a primary °Co
nuclear-orientation thermometer were used to monitor the temperature of
the mixing chamber during these performance tests.

Submillikelvin temperatures were produced by the means of an adia-
batic nuclear demagnetization technique. Our nuclear stage contains 104
moles of high-purity copper with the effective amount of 36.6 moles in the
magnetic field of 8 T. It has a typical “Helsinki” design: a copper rod with
a few dozen parallel 1 mm slits along the main axis cut by a spark cutter.
Before installation the copper stage was carefully annealed in the vacuum
oven at 960 °C for 100 hours. The nuclear stage is fixed to the mixing cham-
ber by four 15 ¢cm long tubes made of Al,O3. The adjustable thermal link
between the mixing chamber and the nuclear stage is achieved with a super-
conducting heat switch made of four aluminium foils. The aluminium foils
were connected to the copper pieces by diffusion bonding. The measured
total electrical resistance of the heat switch was 44 nQ2 at 4.2 K.

A platinum NMR thermometer was built to monitor the temperature of
the nuclear stage. The platinum sensor is a brush of 1100 high-purity 25 pm
Pt-wires, arc-welded to a silver holder. The Pt-thermometer was calibrated
at 6...25 mK against the nuclear orientation thermometer.

In the present setup the incoming and outgoing optical arms are sep-
arated, which simplified the design and the optical adjustments of the in-
terferometer. Several optical components like the beam expander, the beam
splitter and the light dumper, are housed below the mixing chamber to min-
imize the optical path between the end of the fiber and the interferometer.
All these components are thermally anchored to the cold plate (T = 70 mK)
in order to reduce the heat load to the mixing chamber.

The design of our experimental cell is illustrated in Fig. 5. Conceptually
the cell consists of two parts: from the compression cell and the optical
chamber. In experiments with solid 3He the pressure in the cell cannot be
regulated through the fill line below T;;, = 320 mK because of the melting
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Fig. 4. Layout of the setup for optical studies on 3He crystals: (CCD) Charge
Coupled Device, (LD) light dumper, (BE) beam expander, {(M50) and (M70)
are the interferometer mirrors with 50% and 70% reflectivities, respectively.

curve minimum at that temperature: the fill line has a plug of solid *He.
A usual way to solve this problem is to use a hydraulic amplifier (so called
Pomeranchuk-type cell) made of two BeCu bellows. We use ‘He as the
actuator media, and the amplification gain of our compressional chamber is
about 3.4. A controlled flow of *He was used to pressurize 3He in the cell.
The crystals were nucleated in the optical part of the cell which is a
cylindrical copper body (¢ = 16 mm, h = 12 mm) sealed off by two fused-
silica windows with antireflection coatings on all optical surfaces. In the
center of the cell is a ring made of Stycast 1266%° (3 = 12 mm) which
prevents the direct flow of liquid to the crystal in the observable part of the
cell. The ring serves also as a holder for a nucleator which is placed just
outside the field of view. It is a tungsten-tip to which a high voltage can be
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Fig. 5. Sketch of the experimental cell and the interferometer: (PG) pressure
gauge, (SR) Stycast ring.

applied.

The experimental cell is thermally connected to the nuclear demagne-
tization stage by a copper rod (g = 10 mm) with the length of 10 cm. The
total volume of the cell is about 13 cm? and this volume can be changed
up to 8% by the means of BeCu bellows system. Liquid *He is cooled via a
silver sinter with the effective area of about 50 m?.

The pressure of 3He was monitored by the capacitance measurements
of a Straty-Adams type strain gauge®’ implemented in the cell. The BeCu
membrane of the gauge is 0.4 mm thick and has a diameter of 9 mm. On each
cooldown from room temperature the pressure gauge was calibrated at about
1 K against the Bourdon gauge. The resolution of our pressure gauge is a
few pbar at 35 bars when measured with an AH 2500A capacitance bridge.5?
The pressure and the flow rate of “He were measured at room temperature.

3.2. Temperature Calibration

The melting curve of 3He is known quite accurately and the measure-
ments of the equilibrium melting pressure of 3He are often used as a sec-
ondary thermometer. We calculated the temperature in our cell from the
equilibrium melting curve pressure using Adams’ temperature scale.?

The temperature calibration, or to be more explicit, the dependence
of the gauge capacitance C' versus pressure p was checked after every de-
magnetization. A small crystal was kept in the cell during warm up. The
capacitances at three fixed points on the melting curve of *He were used to
determine the fit parameters a and b for the pressure gauge (p = a/C + b).
The typical pressure trace obtained during warm up is presented in Fig. 6.
First, the slope of the melting curve changes at T = 0.93 mK due to the
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Fig. 6. Fixed points in the *He pressure trace for the temperature calibration
during warm up. Inserts show in detail the A’, B’ and N’ transitions (see
text). Zero of the pressure axis corresponds to the melting curve value at
T=0.

Néel transition (N') in solid 3He:%3 from the antiferromagnetically ordered
state it becomes paramagnetic, i.e., disordered. Next transition (B') can be
recognized as a flat step on the pressure trace (first order transition), when
superfluid B-phase becomes A-phase at T' = 1.93 mK. The last fixed point
(A') is again the slope change of the melting curve at T' = 2.5 mK, where
superfluid A-phase becomes normal liquid. The calibration was not checked
on the cooldown due to the supercooling of the A-phase.

3.3. Fabry-Pérot Multiple-Beam Interferometer

Instead of the two-beam Fizeau interferometer'® which was used in the
previous setup in order to study the *He crystals we designed and built a
Fabry-Pérot multiple-beam interferometer® with a phase shift facility into
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our nuclear demagnetization cryostat. Unlike the two-beam interferometer
which has a very small angular resolution, the multiple-beam interferometer
allows to observe the whole crystal shape as well as the fine details on the
liquid/solid interface. It reduces also significantly the imaging light intensity,
which is very essential at ultra low temperatures. Compared with the two-
beam path interferometry, the multiple-beam interferometry has a simpler
experimental implementation and sharper fringes.

The He-Ne laser beam, which is guided into the cryostat through a
single-mode optical fiber and enlarged by the beam expander to a diameter
of 8 mm, enters the interferometer after the reflection from a 50% beam
splitter as seen from Fig. 4. The interferometer is formed by two parallel
mirrors placed above and below the cell. To improve the rigidity of the
adjustments, these mirrors were located as close to the optical part of the
cell as possible, the distance between the mirrors is about 45 mm. The
top mirror of the interferometer can be shifted in a vertical direction by the
means of a cylindrical piezo-electric crystal to which the mirror is attached.5*
The piezo transducer and the mirrors are thermally connected to the mixing
chamber.

The light passes the upper mirror and undergoes multiple reflections
between the mirrors as illustrated in Fig. 5. The interference pattern, formed
by the interfering beams, is reflected back through the top mirror and is
focused by the objective and the periscope to a remote CCD-sensor® inside
the vacuum can. A thermal filter from CaFs with an 8 mm thickness cuts
off the thermal radiation of the CCD-sensor (operated at about 65 K) from
entering the cell. The “unused” beams are absorbed by light dumpers made
of black velvet.

Our slow-scan CCD-sensor has 575 x 383 light-sensitive elements (pix-
els) and that yields the horizontal resolution of about 15 ym while the ver-
tical resolution in the interface position achieved with our multiple-beam
interferometer is a few micrometers. Crystal surfaces with a slope of up to
70° with respect to the bottom mirror of the interferometer can be identified.

4. ANALYSIS OF INTERFEROGRAMS

In the case of an ideal multiple-beam interferometer, there is a simple
relation between the height (thickness) of a crystal h and the intensity of
the interference image at the corresponding point (z;y):

A
I(h(z;y)) = I (1 " 1— Becos p(h(z; y))) ’ )



Morphology and Growth Kinetics of 3He Crystals below 1mK 509

/

"undercut facet"

Fig. 7. a) Interferogram of a 3He crystal (in the upper part) at 0.55 mK.
The white solid line marks the edge of the crystal. Between the solid and
dashed white lines the interference fringes cannot be resolved due to the
steep slopes of the crystal surface. Corresponding crystal profile (b) without
and (c) with "undercut”. For explanation, see text.

where Iy is the initial intensity, the constants A and B depend on the re-
flectivities of the two mirrors and the wavefront phase ¢ = 4wrAnh/). The
difference An in the refractive indices of solid and liquid 3He is 1.66-1073
at about 1 mK. In our experimental setup (A = 632.8 nm) the correspond-
ing change in the crystal thickness between the two neighboring interference
fringes (a phase change of 27) is 190 pm.

Figure 7a shows an interferogram of a faceted *He crystal taken during
growth. The solid white line is a border line separating the regions in the cell
having both liquid and solid (the upper part of the interferogram) and liquid
only (the lower part). The main contribution to the background pattern is
caused by a liquid helium wedge due to the 2° tilt of the top window of the
cell which arises because during adjustments of optics at room temperature
there is vacuum in the cell. Additionally to that during cooldown the mirrors
of the interferometer became slightly tilted with respect to each other, which
also gives a small contribution to the background.

In the interferogram like in Fig. 7a the regions with equidistant and
parallel fringes (except the background, of course) correspond to flat surfaces
on the crystal, i.e., facets, when the lower part of the crystal is against the
bottom window of the cell as illustrated in Fig. 7b. Sometimes ”undercut”
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crystals (see Fig. 7c) were observed and one such example is presented in the
next Section. We want to point out that as the fringes on our interferograms
are the "equal thickness” fringes, the corresponding interferograms for the
crystal profiles presented in Figs. 7b and 7¢ should be very similar. However,
typically in these questionable regions near the crystal edge the fringes could
not be solved as in Fig. 7a between the solid and dashed white lines.

Two different approaches were utilized to image the crystals. Under
stable conditions, the phase-shift technique®”:** was applied (see Section 4.1).
In dynamic situations, like during crystal growth, single interferograms were
taken which were analyzed using the intensity-based analysis methods®® (see
Section 4.2). The facets were identified by comparing the measured angles
between the facets with the theoretically possible ones for the perfect bcc-
structure. This technique has been widely applied in the crystallography
before the development of the X-ray spectroscopy.?® Of course, there is a
big number of facets which are infinitely close to each other and satisfy the
selection criteria within experimental precision. In analysis always the most
"stable” facet was selected, i.e., the facet with maximum reticular density.
The typical difference between the expected and measured angles was 2°; in
the worst cases it was around 6° for the shortest fringes.5¢

4.1. Phase-Shift Technique

A single interferogram contains information only on the intensities while
the phase of a wavefront is lost. However, the wavefront phase can be directly
calculated from the difference in the recorded intensity data when a known
phase change is induced by varying the distance between the mirrors in the
Fabry-Pérot interferometer.5”

In the case of multiple-beam interferometry the intensity is determined
by four variables: Iy, A, B and ¢ in Eq. (22). As a result, at least four
interferograms of the same crystal with different phase shifts are required to
calculate the initial phase ¢. In our experiments with the phase-shift tech-
nique the crystal surface profile was reconstructed using four subsequent in-
terferograms with a /2 phase shift in between; the optical path was changed
by applying a high voltage to the piezo crystal. The detailed description of
the phase-shift technique and the corresponding data analysis is provided in
Ref. 66.

In Figure 8a the measured wavefront phase of the 3He crystal seen in
Fig. 7a is presented. We would like to pay attention to a vastly improved
contrast of the image as compared with the single interferogram. The non-
uniform initial intensity distribution of a single interferogram is canceled
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Fig. 8. a) Measured phase of a 3He crystal obtained using the phase-shift
technique. Solid white line surrounds the identified facets marked with Miller
indices. b) Computer-generated shape of a bee-crystal with four correspond-
ing facet types.

out and the resulting phase has the values ranging between —7 and =. A
continuous change from black to white color corresponds to the increase of
the phase (crystal thickness), while a sudden change from white to black
color is an artificial phase jump due to the calculation of a reverse cosine
function. The phase jumps can be unwrapped by adding or subtracting 2w
and the parameters of the facets can be obtained by fitting with a plane.
Once the parameters are known the angles between facets (or between their
normal vectors) can be calculated and the facets identified after that. The
crystal shown in Fig. 8a has four types of facets, (110), (100), (211), and
(210). A computer-generated bce-crystal with corresponding facets is shown
in Fig. 8b.

Figure 9a shows another example of a He crystal observed at 0.55 mK.
From the measured phase map one could count that there are seven differ-
ent facets on the crystal surface. However, careful analysis shows that the
crystal has actually five facets on the top surface and some of these facets
are undercut with the underlying facet on the lower part of the crystal (see
Fig. 7c). The unwrapped phase, corresponding to the thickness profile of the
crystal, is shown in Fig. 9b. Black solid lines mark the edges of the identified
facets, and black dashed line illustrates the position where the (110) facet
on the lower surface of the crystal detaches from the bottom window of the
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Fig. 9. a) Measured phase of a 3He crystal at 0.55 mK, for explanation
of numbered regions, see text. b) Corresponding unwrapped phase, the
identified facets are labeled by Miller indices.

cell. Thus the regions 2 and 5 on the phase map in Fig. 9a correspond to
the (100) facet and the regions 3 and 7 to the (110) facet, respectively, on
the upper surface of the crystal.

The phase-based method is a sensitive and convenient technique to use
under small growth/melting rates. The main advantage of that method is
a possibility to calculate quickly the thickness plot of the crystal. The re-
stored surface profile of a rounded *He crystal (during melting) is presented
in Ref. 69. However, when crystals are grown/melted at high velocities, this
method is of no use because the shape of the crystal varies remarkably dur-
ing the 20 seconds required to complete one full four-frame measurement
with our slow-scan camera. Under such circumstances we have applied the
intensity-based analysis methods in order to analyze the single interfero-
grams and these methods are described in the next Section.

4.2. Intensity-Based Analysis Methods

In principle, very sophisticated intensity-based methods could be ap-
plied in the analysis to reconstruct the whole shape of a crystal from a
single interferogram.%® However, our goal was to determine only the angles
between the facets and in such case the intensity-based methods are simple
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Fig. 10. a) Set of fringes (maxima or minima) belonging to the same facet.
b) The plane corresponding to the fringes.

to apply.

Figure 10 shows the principle which was used to calculate the parameters
of the facets from the interferograms. The distance between the neighboring
fringes equals D and the fringes are tilted by an angle v with respect to the z
axis (see Fig. 10a). In the case of multiple-beam interferometry the crystal
height (thickness) change between two neighboring fringes corresponds to
A/2An. The orientation of the facet (plane) in question (see Fig. 10b) is
then uniquely determined by the following plane equation:

81;¢z + co;)wy + i2}\Anz = const, (23)
where ”+” is the sign of the thickness change which could be deduced from
the fact that the central part of the crystal is higher than its edges or found
from the measurements with the phase-shift technique.

We have employed three different methods to find the distance between
the fringes and the angle with respect to the horizontal axis. These methods
were the Hough technique, fitting with a ”corrugated-iron” function and the
auto-correlation method.

To obtain the parameters of fringes with the Hough method™ the po-
sitions of the fringe minima (maxima) were located and combined into a
skeleton pattern. The example of an interferogram together with the cor-
responding skeleton is presented in Ref. 32. The Hough technique converts
a point on the (x — y) image plane to a unique curve in the (p — #) plane
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Fig. 11. Hough technique: the set of equidistant parallel lines in left is
transformed into curves in right which reveal the slope of the lines and their
distance from the origin (see text).

determined by the equation p = zcosd + ysinf. Thus each line on the
{(z —y) plane generates a family of sinusoidal curves which all cross the point
(Bo; po), where 0y is the slope of that line and pg is the distance from the line
to origin (see Fig. 11). The set of parallel equidistant lines will produce a
set of cross-points with the same 6y, while the distance between neighboring
points equals to the line spacing D.

The most practical way to find the facet parameters is, however, to fit
the intensity distribution of the facet region with a sinusoidal waveform that
is stretched out into two dimensions. The real intensity distribution in the
majority of cases was not described well with Eq. (22). The main reason
for this discrepancy is probably the non-uniform illumination as well as the
absorption and dispersion of light which are neglected in the ideal case. The
trial function had the same set of fitting parameters as the exact function:
the wave number (the inverse distance between the minima), the orientation
with respect to the horizontal axis, the phase shift and the amplitude of the
intensity oscillations. The changes in mean intensity were determined by
appropriate normalization of data. The normals of the facets were found
from the obtained values of the wave number and the orientation.

The distance between fringes and the orientation of the corresponding
plane were determined by the auto-correlation function as well. The auto-
correlation method is often used in the classification of textures, it takes
series of adjacent pixels and correlates them with themselves. Marked peaks
in the curve indicate a periodicity, and the sizes of the peaks show how
predictable the texture is from its periodic repetition.

The results (the measured angles between the facets) obtained by all
three methods were very close. The Hough technique is the most sophisti-
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cated method and was used only to analyze the crystals with small facets.
The fitting with “corrugated-iron” function proved to be the fastest method.
However, it easily falls to local minima and was checked with significantly
slower auto-correlation function.

4.3. Analysis of the Growth Velocities of Facets

The analysis of the growth sequences was conducted as follows: the
interferogram with a crystal with the smallest number of facets (usually the
last interferogram of the sequence) was treated first. When the facets on
that interferogram were identified and thus the orientation of the crystal
determined, the preceding interferogram with more facets was processed
and so on. The anisotropy of growth simplified the identification of different
regions on the crystal shape, the edges of various facets were traced by
looking at animated sequences of interferograms.

The interface velocities were calculated from the movements of the inter-
ference fringes between two subsequent interferograms. The cross-correlation
function was one of the methods used to trace the displacements of the
fringes. The cross-correlation is an analogous to the auto-correlation with
the exception that two subsequent images are compared. Another method
employed to calculate the interface velocity was to fit a sinusoidal waveform
function with only one free parameter, the phase shift.

5. RESULTS
5.1. Nucleation of Crystals

It is commonly known that it is difficult to nucleate and grow only
one (single) *He crystal from the normal liquid. Below Ty, = 320 mK the
negative latent heat of crystallization which is absorbed during the growth
of the crystal cools the surrounding liquid. Since the thermal conductivity
of the normal liquid is rather poor, the rising temperature gradients in the
experimental cell are large. As a result, it becomes favorable to nucleate
a new crystal somewhere else in the cell in a warmer spot, rather than
continuing the growth of the existing seed. On the other hand, single 3He
crystals can be produced relatively easily below T = 0.93 mK where the
surrounding superfluid has good thermal conductivity and the latent heat of
crystallization is small.

Our attempts to nucleate crystals in the field of view with laser light
pulses (up to 2 minutes long) were not successful. The application of a high
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Fig. 12. Pressure traces of *He (squares) and *He (circles) before and after
the crystal nucleation at 0.78 mK. For details, see text.

voltage to the nucleator in order to enhance the pressure locally by a high
electric field did produce a crystal seed in the field of view at a few times
lower excess pressure than with the spontaneous nucleation.

Figure 12 presents the pressure trace of one of the spontaneous nucle-
ation events at 0.78 mK. During regions I and II the experimental cell was
compressed with a constant mass flow of *He from the room-temperature
ballast volume. The change of slope of the *He pressure (the beginning of
region II) is due to the nucleation of solid 3He. Soon after the appearance
the crystal grew rather fast and reduced the excess pressure dp to an almost
constant level. After the flow of *He was stopped (the end of region II) the
pressure relaxed towards the equilibrium melting curve value dp = 0 (region
II1). For nucleation and for growth of that particular 3He crystal, ép was 2.6
and 0.90 mbar, respectively.

5.2. Observations of Higher Order Facets

We nucleated the *He crystals typically at the lowest possible temper-
ature. The growth and melting of crystals were taking place at almost con-
stant temperature by compressing or decompressing the cell. The typical
pressure trace of a growing *He crystal is shown in Fig. 13 together with
the *He pressure trace measured at room temperature. In this sequence the
crystal was grown with several different *He flows: in region II the compres-
sion rate was twice that in region I and in region III the compression rate
was increased further by a factor of 1.7. The full-frame images of the cell
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Fig. 13. Excess pressure &p of 3He (squares) for a growing 3He crystal at

0.55 mK. The *He pressure (circles) is shown on the right axis. The regions
I, IT and IIT correspond to the three different compression rates of the cell.

were acquired every 4 seconds.

Some selected interferograms of the growth sequence with the pressure
traces in Fig. 13 are presented in Fig. 14. Initially (after melting) the crystal
was nicely rounded and had no facets. After starting the slow and steady
cell compression, the pressure of *He increased (region I in Fig. 13) and at
the same time the interference fringes started to show corners as seen in
Fig. 14b due to the appearance of facets on the crystal surface.

In the initial stage of growth, when the facets were small, we were
not able to identify them as we need at least three equally spaced parallel
fringes per facet for our analysis.? In Figure 14b, 50 seconds after starting the
growth, several facets can be clearly identified. The analysis revealed that in
the beginning mostly facets with high Miller indices dominated on the surface
of the growing crystal and these facets were wedged out later by more slowly
growing facets. For example, the facet (411), seen in Fig. 14b, was present
on the crystal surface only for about 30 seconds. Other higher order facets,
(431), and (321) together with (311), disappeared approximately within 200 s
and 400 s after their identification, respectively. In Figure 14f, taken 25
minutes after starting the growth, only three different types of facets, (110),
{(100) and (211), the most “stable” facets are seen, and these facet types
were observed also in the earlier experiments by Wagner et al.24

>Two fringes can as well belong to a cylindrical surface, so three is the smallest number
of fringes required to determine and identify a plane.
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25 min

Fig. 14. Sequence of a growing 3He crystal at 0.55 mK. The edges of the
facets marked by dashed white lines are not exact, they are shown for clarity.




Morphology and Growth Kinetics of 3He Crystals below 1mK 519

on
@)

6110 ‘
210

@
311 ’ 321 ’QS\?’O

431
‘ @00
541

-

-

() 02;1
‘ = 332

Fig. 15. Elementary patch of a bcc crystal with Miller indices of the facets.
Filled points represent experimentally observed facets on 3He crystals, empty
ones correspond to facets expected to be seen. The diameters of the circles
are proportional to the corresponding interplanar distances. The coordinates
are exact, looking along the [111] direction.

Most of our growth sequences were started from the rounded shape. In
these experiments the same types of facets appeared on the crystal surface
and altogether eleven different types of facets were identified. Each facet
was detected on more than just one interferogram and all facet types were
uniquely identified with the exception of the (510) facet the orientation of
which is rather close to the (410) facet. However, as mentioned earlier, in
such cases the more “stable” facet type was chosen.

Figure 15 shows the positions of all detected facets on one elementary
patch of the crystal habit as filled circles. Also the positions of those facets
which were not observed, but have higher (or equal) reticular density and
thus higher (or equal) roughening transition temperature than the (311)
facet, the highest order facet we did observe, are shown in Fig. 15 as open
circles. The sequence of facets: (100), (510), (310), (210) and (110) forms
a precursor to the “devils’ staircase” (see Section 2.1), which is expected to
appear on the crystal surface in the case of a long-range repulsive step-step
interaction.33
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Fig. 16. Growth anisotropy of a 3He crystal at 0.55 mK. The dashed lines
are linear fits to the data for different facets marked with Miller indices.

5.3. Growth Anisotropy of Crystals

From the growth sequence, presented in the previous Section, we were
able to extract the velocities of most of the observed facets. The measured
growth rates of facets with the corresponding overpressures are presented
in Fig. 16. The observed anisotropy is rather strong, the velocities of the
(110) and the (510) facets, for instance, differ by approximately one order
of magnitude. The measured growth velocities show a linear dependence on
the applied overpressure, which suggests that the growth mechanism is spiral
growth in the regime of the so called suppressed step mobility [see Eq. (21)].

Using Eq. (21), the step free energies of the facets can be calculated from
the measured facet velocities because the only value which is not strictly
defined in that equation is the number of elementary steps produced by dis-
locations on the higher order facets. The actual distribution of dislocations
in the crystal and their types are not known. However, the most ”stable”
facets grow slowly, have larger sizes, and are present for a longer time on
the crystal surface. As a result, these facets should be observed in experi-
ments. Thus in our analysis we assumed that one dislocation produces one
step since the corresponding growth velocity is the slowest. For the critical
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Table 1. Miller indices of the experimentally observed facets, their reciprocal
lattice vectors {hkl), the interplanar distance ratios with respect to the (110)
facet, the measured free energies of the elementary step 8 and the highest
temperatures Trn2* at which the corresponding facet has been observed.

obs
Facet type | (hkl) | (diwo/dnwi)? | B (erg/cm) | TR (mK)
110 [ (330 1 66101 100
100 (100) 2 1.4-10710 10
211 (13 3 3.3-1071 <10
310 (13 3 0) 5 1.4-1071 0.55
111 (111) 6 — 0.55
321 (1313) 7 8.6-10~'2 0.55
411 (23 3) 9 8-10713 0.55
210 (210) 10 7.0-10712 0.55
210 (210) 10 4.9-10712 0.55
510 (21 % 0) 13 3.4-10712 0.55
431 213 3) 13 2.2-10712 0.55
311 (311) 22 1410712 0.55

velocity we used v, = 7 cm/s (see Section 2.2.2). Table 1 lists all observed
facets with their step free energies.

5.4. The Step Energies of Facets

Figure 17 shows the calculated step free energies plotted versus the step
height in log-log coordinates. A linear fit is consistent with the data and
gives a fourth order power dependence, as predicted by the strong-coupling
model, Eq. (8). The best fit is 8 = 6.5-102°d* erg/cm®. The obtained result
suggests that the step-step interactions are of elastic origin (r=2).4! Using
the estimated value for the Young modulus of bec 3He, E = 10® dyne/cm?,
we get for the elastic strain force f = 0.1...0.2 erg/cm?, which is higher
but of the same order of magnitude as the value of the surface stiffness, as
expected. However, as was pointed out in Section 2.1.1, the strong-coupling
model is not expected to be valid for primary facets like (110), (100) and
(211). Thus we have plotted our data also in a semilog plot, suggested by
Eq. (9), as shown in Fig. 18.

Using a fit for the three most stable facets one obtains 8 = 0.63 d-
exp(—1/2d) erg/cm? with = 2.0-10~7 cm =~ 6.6 dy1¢ from Fig. 18. This value
of [ is consistent with our estimate obtained with *He from the Sygo1 value
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Fig. 17. The step free energies of different facets on a *He crystal at 0.55 mK.
The solid line is a linear fit with a slope of 3.95 £ 0.5.

as discussed in Section 2.1.2. But the prefactor gives a value for the surface
stiffness of 0.50 erg/cm? which is a factor of 8 higher than the experimental
value.” Since the strong- and the weak-coupling models are supposed to be
valid for the higher order and the primary facets, respectively, we describe
our data with a sum of Eq. (8) and Eq. (9)

Bsum = Cld4 + czdexp(~—c;;/d). (24)

A nonlinear fitting procedure gives too much weight to the highest points
and we have fixed ¢; = 4.5 - 10% erg/cm® by using only the highest order
facets. Then the best fit gives for the value of c3 = 9-1078 cm or I = 6 d10,
while ¢y = 0.15 erg/cm?. The result is shown in Fig. 18 as the solid line.
Thus the values obtained by fitting are in agreement with the expectations,
but it is clear that more experiments are still required.

The free energy S of the elementary step on the (110) facet equals to
6.6 - 1071% erg/cm and this value is, unexpectedly, almost the same as has
been measured in “He for the (0001) facet. The width of the elementary
step £110 calculated using Eq. (10) and Eq. (2) equals to &119 = 2 di19 which
is about 4 times smaller than the step width on the (0001) facet in *He.
In “He, the coupling of the interface to the lattice has been reported to be
weak,” however, in spite of the predictions of even weaker coupling in *He,'8
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Fig. 18. The step free energies of different facets on a 3He crystal at 0.55 mK
presented on a semilog plot of 8/d versus the inverse step height 1/d. The
dotted line is a fit according to Eq. (9) to the three highest points. The solid
line is a fit according to Eq. (24), as discussed in the text.

according to our results this coupling is actually stronger in 3He than in *He.

Using Eq. (11) with the measured surface stiffness?? vy = 0.06 erg/cm?
and the obtained step energies it is easy to estimate the equilibrium sizes of
the facets: the equilibrium size of the (110) facet should be approximately
1/3 R and higher order facets are expected to be smaller. It means that
within our optical resolution the (110) facets could have been detected in
equilibrium. And indeed, in our experiments we have seen, after the growth
of a crystal was stopped, that the edges between facets rounded off, indicat-
ing the relaxation toward equilibrium. Unfortunately, this cannot only be
attributed to the equilibrium crystal shape since the reverse happens when
we stopped melting of the crystal. Thermal effects in the filling line are
responsible for such pressure instabilities. In order to measure the real equi-
librium shape of the 3He crystal a cold valve should be installed into the *He
fill line in our present setup.
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Fig. 19. The (110) facet (surrounded with white dashed line) present on the
surface of 3He crystal during melting at 0.55 mK.

5.5. Growth Rate of Rough Surfaces

The measurement of the growth rate of a *He crystal during melting is
rather difficult at T' < T. Our experience in that respect is similar to what
is described by Nomura et al.?® and by Akimoto et al.?° The melting rate is
fast and the measurement technique to record the changes (NMR or optical
imaging) is rather slow. So either we can only apply a very small negative
driving force (“underpressure”), which then is not precise, or the crystal
changes its shape, size and interface area significantly between two recorded
interferograms. The analysis shows that the crystal initially melts very fast
near the edges between facets and after the sharp edges have disappeared,
surfaces with smaller and smaller curvature become involved in melting. As
an example, Fig. 19 shows an interferogram of a melting crystal, the dashed
line highlights the (110) facet still present during melting.

The average velocity of melting, measured at 0.55 mK, was 1.67 um/s
with the corresponding underpressure of Ap = —11.3 pbar. This yields
an effective growth coefficient kg = 2- 1073 s/m. Note that the measured
growth rate of the fastest facet (411) we observed, was two times smaller than
that of melting. This corroborates our assumption that the growth of (most
of) the facets was not determined by dissipative processes in the bulk phases,
but reflects the intrinsic mechanisms taking place at the crystal surface. It
is interesting to compare our result on the effective growth coefficient keg at
T = 0.55 mK in zero magnetic field with earlier measurements, which were
obtained in a small magnetic field. The results are given in Table 2.

According to the data in Table 2, within the u2d2 phase the magnetic
field dependence of the effective growth coefficient seems to be weak, which
is as expected for growth that is mostly determined by bulk properties.”
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Fig. 20. Step-like growth of the
grown about 60 pm.

Probably most of the magnetic field dependence is in the latent heat, which
changes significantly only when the magnetic field is high enough for the solid
to go through the phase transition into the high field phase at B = 0.45 T.

We also would like to report on a very special feature: the creation of
a macroscopic step propagating on the (100) facet. Figure 20 shows the
subtractions of the successive interferograms during the observed step-like
growth. The images in Fig. 20, a and e, correspond to typical difference-
interferograms obtained during (slow) growth of the (100) facet. A sudden
change of the growth rate is easily observed in Fig. 20b, in which the step
covers half of the facet. During the next frame, Fig. 20c¢, it expands over the
whole facet, and starts to disappear on Fig. 20d.

The profile of the moving step is expected to be similar to the one
illustrated in Fig. 3. The difference-interferogram in Fig. 20c indicates that
the width of the step was about 3 mm. The analysis showed that only the
(100) facet was growing and it gained about 60 pm of height in approximately
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Table 2. The effective growth rate of solid 3He in the antiferromagnetically
ordered u2d2 phase, as determined during melting at various temperatures
and magnetic fields. We have used the data points only at the lowest tem-
perature of Kawaguchi et al.3

Temperature | Magnetic field ket Reference
(mK) (T) (s/m)
0.55 0 2107 | this work
0.7 0.2 2.3-1074 [29]
0.73 0.07 5.107% [28]
0.7 0.33 4-107* (30]
0.62 0.33 6-10* [30]
8 seconds.

The pressure trace during this burst-like growth phenomenon corre-
sponds to the sharp dip depicted in Fig. 13. The sudden pressure drop
indicates the creation of the defect and the fact that a significantly lower
overpressure is required to drive the growth of the rough surface. During
the burst-like growth the overpressure was constant at dp = 65 ubar. The
cell compression rate of 5.3 - 1075 cc/s is in a good agreement with the vol-
ume change of the crystal. The obtained effective growth coeflicient equals
to 31073 s/m, which is close to the value obtained during melting. This
may reflect the fact that the growth coeflicient of a rough surface is mostly
determined by bulk properties [the second term in Eq. (15)].

6. CONCLUSIONS

To summarize, single >He crystals were grown and studied at our lowest
temperature of 0.55 mK using a multiple-beam interferometer. Altogether
eleven different types of facets were identified during crystal growth by ap-
plying advanced methods of the interferogram analysis while earlier only
three different types had been observed.

The growth rates of faceted and rough surfaces of 3He crystals were
measured. The growth and melting velocities of rough surfaces were not
intrinsic, but determined by the latent heat and the bulk properties of the
liquid and solid. The results are consistent with earlier measurements at
somewhat higher temperatures and the average effective growth coeflicient
ke equals to 2+ 1072 s/m at T = 0.55 mK. Unfortunately, it is difficult to
compare this value with previous measurements?28:30 due to the dependence
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on the experimental cell geometry.

The smooth (faceted) surfaces were growing by approximately an order
of magnitude slower than the rough surfaces. We were able to measure the
anisotropy of the growth kinetics for ten types of facets. The obtained linear
dependence of the growth rates on the driving force points to spiral growth
with limited step mobility. Most probably the critical step velocity is due to
the Cherenkov emission of magnons.

We obtained the free energies of steps 8 for ten observed facets. The
fourth power dependence on the elementary step height, 8 o« d3-9t03  indi-
cates that the step-step interactions have an elastic origin. The values for
the step free energy and the width of the elementary step of the most stable
(110) facet, Bi1p = 6.6 - 10710 erg/cm and &1;9 = 2...3 d, when compared
with the corresponding values for the (0001) facet in *He, show that the
coupling of the interface to the crystal lattice in 3He is stronger than in
‘He. If we express the strength of the coupling with the parameter 3/vd
(see Introduction), we find 8/vd = 0.36 for He, while the value 0.057 has
been obtained for “He.?® The measured values for 8 suggest that the critical
overpressure for dynamic roughening in 3He (see Section 2.1.2) is rather high
for the facets we observed, at least several mbar.

The above analysis shows that in order to produce and observe more
new facets in 3He one should have a good optical and time resolution and be
very careful in choosing the suitable growth regime. It is also clear that direct
measurements on the equilibrium crystal shape and the actual roughening
transition temperatures are necessary in 3He.
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