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Both theoretical and experimental evidence for a new quantum state of the *He liquid—solid interface are presented. The
existence of this state implies the possibility of exactly non-dissipative crystallization and melting. Weakly damped
ascillations of the interface due to periodic melting and crystallization — crystallization waves — may propagate along the
interface under these conditions. The spectrum of these waves is measured and the frequency and temperature
dependences of their attenuation are determined. At T <1K the interfaces of any crystallographic orientations are
believed to be in a quantum state, except the two faces identifiable with respect to symmetry.

1. Introduction

As is well known (see refs. [1-3]) a macroscop-
ically homogeneous surface of any classical crystal
in equilibrium with liquid or vapour can be
atomically smooth or atomically rough. In the
rough state there are many thermodynamically
equal surface defects, such as steps, kinks, ada-
toms, etc. The smooth surface might be con-
sidered to be a two-dimensional crystal with few
defects, and the rough surface a two-dimensional
liquid. Naturally such a liquid might exist as a
thermodynamically equal substance at
sufficiently high temperatures only. As the tem-
perature drops such a liquid should, in the long
run, “freeze” (the so-called roughening tran-
sition), just as normal three-dimensional liquids
do. In other words, the surface of any classical
crystal at absolute zero should be an atomically
smooth one without any defects. This statement
is inspired by the fact that any classically rough
surface does not exist at absolute zero in equili-
brium because its entropy is not zero.

The situation can be changed by quantum
effects [4]. Namely, because of the large zero-
point motion of helium atoms an atomically
rough surface can remain in the liquid state
down to absolute zero-—just as liquid helium
does at low pressures. Naturally, this state is not
a rough one in the classical sense, but its quan-

-

tum analog. At absolute zero all kinds of rough-
ness would be delocalized and collectivized, their
motion would be exactly coherent just like the
motion of particles in a normal superfluid liquid.
This coherence implies in particular that growth
and melting of the crystal with such a surface at
absolute zero would be exactly nondissipative,
without any disturbance of phase equilibrium (of
course the absence of energy dissipation in
volumes of the two phases in equilibrium is also
required). Because of the ease in obtaining phase
equilibrium such a situation opens up great pos-
sibilities for the investigation of capillary
phenomena in crystals. Firstly, the direct
measurement of the surface energy of crystals by
investigation of their equilibrium shape becomes
possible. A new phenomenon then appears to be
possible under these conditions: weakly damped
oscillations of a surface due to periodic melting
and crystallization while the crystal itself stays
undeformed and immoveable. These oscillations,
termed crystallization waves, might be of any
amplitude, restricted only by their crystal size.
Recently, this phenomendq was observed
experimentally [5]. Below, the conditions
required for the new quantum rough state, its
microscopic structure and macroscopic proper-
ties are considered and then the results of
experimental investigation of crystallization
waves [6] are presented.
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2. Theory

Delocalization of particles in a quantum crys-
tal means that the microscopic structure of such
a phase boundary cannot be represented in the
literal way, as is done for classical crystals.
However, such concepts as a surface step and a
kink in the step can also be introduced in the
quantum case. It is sufficient to use the general
properties of a boundary which follow from the
symmetry of phases in contact. For example, the
surface step corresponds to such a state of the
boundary in which its positions at infinity (to the
right and left in fig. 1) are shifted by an elemen-
tary translation vector of the crystal and the
energy of the system has the lowest possible
value. In view of the periodicity of the crystal
and homogeneity of the liquid, a shift by the
translation vector transforms the boundary to an
equivalent position and, therefore, a step is a
linear defect on the surface. It is this property of
the step that is important in our analysis. It
should be noted that the concepts of a surface
step (and, similarly, a kink in the step) can be
introduced in this way for the surface of any
integer Miller indices.

The state of a step is governed by the
configuration of the kinks, and the kinks have
two opposite “signs’ {fig. 1). Each kink can be
regarded as a point defect on a step. Let us
consider a step on the surface in equilibrium at
T = 0. The displacement of the kink by a trans-
lation vector along the step involves the transfer
of a particle (helium atom) from one phase to
another. Such transitions occur with a finite
probability, even at T = 0, provided by processes
similar to quantum tunnelling. The kink energy

Fig. 1. An elementary step with two kinks.

does not change as a result of this displacement
because the chemical potentials of the phases in
equilibrium are equal. Therefore, like other
point defects in quantum crystals {7] such a kink
behaves like a delocalized quasiparticle. Its state
is defined by the quasimomentum p. The energy
of a localized kink, &, is expected to lie ap-
proximately in the middle of the energy band
g(p). Let p, be the value of the quasimomentum
corresponding to the bottom of the energy band.
At T = 0 this state is stationary (and ground) for
an isolated kink and the velocity of the kink is
zero. Stationary states of close energies (p— py)
correspond . to finite kink velocities. In other
words, the transfer of matter from one phase to
the other in this case is ‘a coherent process
occurring without any energy dissipation. It is
important to note also that the states under
consideration are not separated from the ground
state by an energy gap. Thus, an isolated kink is
an example of a system having the stationary
states whose energies can be arbitrarily close to
the ground state, characterized by a continuous
flux of matter from one phase to the other.
There are two possibilities for further con-
sideration. If the energy corresponding to the
bottom of the energy band &(po) is positive, no
kinks occur in the step’s ground state, i.e. the
step is atomically smooth at T =0. But if the
width of the energy band 4 is sufficiently great
(roughly speaking, if 4 > 2¢g), then e(py) <0, i.e.
the total energy of the step decreases with the
appearance of kinks with p = p,. If it is the case
for kinks of either sign, the atomically smooth
state becomes unstable with respect to the crea-
tion of pairs of kinks of opposite signs (the
creation of kinks of only one sign is impossible at
fixed step orientation). Since the interaction be-
tween kinks is important, generally speaking,
only over atomic distances, an increase in kink
concentration in a step thus reduces the energy
of the latter until the minimum is reached at the
concentration of the atomic order. The essential
property of such a step is the existence of sta-
tionary states which are close in energy to the



A.Ya. Parshin | Crystallization waves in helium 1821

ground state and involve continuous step motion
accompanied by the transfer of particles between
the phases. The nature of these stationary states
becomes clear from consideration of possible
types of kink collision. In the case of two kinks
of the same sign.the only possible elastic process
is the exchange of their quasimomenta (fig. 2a);
however, if the signs of the kinks are opposite,
besides the latter there is also the possibility of a
“jump”’ to the next row wherein each kink con-
serves its quasimomentum (fig. 2b). It is the
second type of processes that give rise to the
stationary states under consideration. Such a
“quantum rough” step thus appears to be com-
pletely delocalized at the crystal surface.

The total energy of isolated quantum rough
step B (per unit length equal to the elementary
translation vector along the step) can be either
positive or negative depending on whether the
positive energy of the “bare” atomically smooth
step Bo is sufficient to compensate for the nega-
tive energy of delocalized kinks including the
energy of its interaction. If 8 >0 for arbitrary
step orientation on the given surface, its ground
state does not involve any steps and at T = 0 the
surface remains in the classical atomically
smooth state. If B <0 for any pair of steps
having the opposite orientations (of course more
complex configurations are also possible), an
atomically smooth surface appears to be unstable
with respect to such step creation. As a result, an
equilibrium surface should become a type of
two-dimensional liquid consisting of delocalized
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Fig. 2. Possible types of kink collisions: (a) the ‘“normal”
collision; (b) the collision with a “jump” in the next row.

steps of various configurations, including closed
steps of finite length. It is important to note that
the number of steps of each kind in such a liquid
is not fixed and is defined by the condition of
minimal energy. Therefore the energy of a step
(including the energy of its interaction with the
others), which is the derivative of the total
energy with respect to the number of steps,
vanishes in equilibrium. Such a state of the sur-
face might be called “quantum rough”.

This vanishing of the step energy B is con-
nected closely with equilibrium crystal faceting.
Indeed, according to Landau [8] if B is finite
then the derivative da/d¢ of the surface energy a
with respect to the crystallographical angle ¢
exhibits a finite jump proportional to 8 when ¢
corresponds to the initial surface orientation.
This discontinuity of the function da/d¢ neces-
sarily gives rise to flat parts in the equilibrium
shape of a crystal and these parts increase in size
with the jump of the derivative da/dp. At T =0
in the classical case such a property is intrinsic
for a surface of any integer Miller indices. Thus,
any classical crystal is always completely faceted
in equilibrium at 7 =0. This statement is in
natural agreement with the above conclusion
that the surface of a classical crystal has to be
atomically smooth under these conditions.

As far as crystals with quantum rough surfaces
are concerned, according to what was said above
their surface energy is a smooth function of
crystallographic angles. Therefore, crystals with
quantum rough surfaces of any orientations are
not faceted, even at T =0. It is clear also that
the situation is possible when the surfaces of
some singular orientations (corresponding to the
mostly close-packed faces, because these are
expected to have maximum values of By) stay in
the atomically smooth state while the rest are
quantum rough. In this case the equilibrium
shape of a crystal involves a finite number of flat
parts ringed by a rounded surface. Such a situa-
tion, as we shall see below, takes place for the
hep-“‘He.

Thus, an atomically rough state can occur



1822 A.Ya. Parshin | Crystallization waves in helium

either (in classical crystals) because of thermal
reasons, i.e. at sufficiently high temperatures, or
(in quantum crystals) because of the effect of
quantum delocalization. One might say that the
stronger the quantum effects the lower the
number of crystal faces that stay in the classical
atomically smooth state at T =0, i.e. a lower
number of flat parts arise in equilibrium faceting.

Naturally, the microscopic dynamics of crys-
tallization (and melting) are believed to be com-
pletely different processes for the two different
surface types. The growth of a crystal with a
quantum rough surface occurs both by an in-
crease in the surface bounded by each step and
by the formation of new atomic layers on col-
lision of two steps. The latter process is similar to
a jump into the next row with the collision of
two kinks). It is important to note that these and
reverse processes give rise to stationary states of
the system which are arbitrarily close in energy
to the ground state and the continuous growth or
melting of a crystal occurs via these states. The
motion of a phase boundary at absolute zero
thus occurs without disturbing the phase equili-
brium. In other words, the kinetic growth
coefficient K (defined by the formula V= KAy,
where V is the velocity of the boundary and Au
is the difference between the chemical potentials
of the phases in contact) becomes infinite at
T =0 for a crystal with this type of surface. On
the other hand, an atomically smooth surface’s
growth coefficient at T =0 appears to be equal
to zero, even taking into account the possibility
of quantum under-barrier tunnelling [9].

At finite temperatures the motion of the
quantum rough boundary is accompanied by
dissipation due to its interaction with a volume’s

thermal excitations. Let us consider the dis-

sipation due to phonons. The phonons incident
to the boundary from the liquid give rise to the
pressure Py, ~ Ep,~ nT*07> (n is the number of
atoms per unit volume and 6 is the Debye tem-
perature). In equilibrium, i.e. when the boundary
is motionless, this pressure is compensated by
the pressure of the crystal. If the boundary

moves with some velocity V, then the difference
of pressures opposite to the motion arises due to
the Doppler effect, APy~ EnVc™' (c is the
velocity of sound). As a result, the energy dis-
sipated per unit time and per unit surface area is
of the order of V*c'E,,. On the other hand, the
same dissipated energy is equal to NAu, where
N ~ nV is the number of atoms transferred per
unit time from one phase to the other. Hence,
we find that

K~ c0°T*. 1)

We can thus see that the growth coefficient
becomes infinite in the limit T — 0 which it ap-
proaches proportionally to T7*,

Phonons are known to be the main type of
thermal excitations in superfluid helium at tem-
peratures below approximately 0.5 K. At higher
temperatures rotons are believed to provide the
major part of the total energy dissipation. In this
roton region we now have the exponential
dependence Kxexp (4,/T), where A, is the
roton gap.

As for the *He case, that at the temperatures
when liquid *He behaves as a Fermi liquid, the
main dissipation mechanism is the interaction of
a moving boundary with Fermi excitations. The
energy dissipation is of the order of pr-nV -V,
where pr is the momentum on the Fermi surface,
which corresponds to a temperature-independent
growth coefficient K ~ pg!. A similar estimation
could be made for the case of dilute solutions of
*He in “He (the concentration of *He in liquid
phase n;/n<<€1). In this case the energy dis-
sipation, being due to the interaction of the
moving boundary with impurities, is of the order
of nsp;V? and the growth coefficient K~
nn3'p3* (ps is the characteristic momentum of an
impurity). Comparing with (1) we see that at low
temperatures the growth coefficient of “He ap-
pears to be highly influenced by small *He frac-
tions.

As we have seen above, the quantum rough
state of a surface gives rise to the possibility of
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exactly non-dissipative growth and melting at
T =0. If this is the case, then weakly damped
oscillations, similar to normal capillary waves,
may propagate along the surface at sufficiently
low temperatures. Indeed, any deflection from
the equilibrium crystal shape results in an in-
crease in surface energy. Therefore any dis-
equilibrium crystal shape should change by crys-
tallization or melting reducing its surface energy.
On the other hand, because the densities of the
two phases are different, growth and melting of a
crystal give rise to a motion of a liquid, i.e. an
increase in the kinetic energy of the system. As a
result oscillations of an interphase boundary
should occur if the total energy dissipation is
small. The spectrum of these oscillations termed,
“crystallization waves” can be found easily in the
long-wave limit where the compressibilities of
the two phases are negligible. It is important to
note that no models of the surface’s microscopic
structure are required for this. Taking into ac-
count gravity g and damping due to the finite
growth coefficient K the spectrum of plane
waves (k) is given by

2 &Pz 3 P28
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where @ = a + 8%a/d¢?, ¢ is the angular variable
in the plane of k, p, and p, the densities of the
solid and liquid phases, respectively, and m the
mass of an atom. As we can see, the propagation
velocity of the oscillations under discussion is
much less than the velocity of sound and the
compressibilities of the two phases may indeed
be neglected. The gravitational term in eq. (2), as
for normal capillary waves, need be taken into
account only for the lowest frequencies, when
the wavelength becomes of the order of the
capillary constant (~1 mm for ‘He).

Like the normal capillary waves, the oscil-
lations described by eq. (2) are unstable with
respect to decay of one quantum into two of

lower energy. Therefore, these oscillations are
characterized by finite damping, even at T =0.
This damping, however, is very small for macro-
scopic wavelengths. At finite temperatures and
for low-frequency oscillations the most important
damping mechanism is due to the finite growth
coefficient K. For the case of weak damping
(x <€k, where k is the inverse damping length)
we find from eq. (2):

k =3P (1~ po) a P (mK) 0! ©)

(here we have ignored gravity).

In the case of He, within the normal Fermi
liquid range, the use of the above estimate of K
leads to the conclusion that the oscillations in
question are strongly damped at all frequencies.
naturally, similar estimates for the case of a
classical atomically rough surface lead to the
same conclusion. As for the case of an atomically
smooth surface, any linear oscillations similar to
capillary-crystallization waves are believed to be
completely impossible.

Let us note, finally, that the crystallization
waves quanta are elementary excitations of the
“He quantum rough surface at low temperatures.
They are responsible for the temperature
dependence of the surface energy. Since the
frequency is proportional to k*?, the tem-
perature-dependent component of  surface
energy is proportional to T7?, as in the case of
capillary waves at the liquid—vapour interface.
However, numerical estimates show that the
current experimental accuracy is not sufficient to
detect this temperature dependence.

3. Experiment

In our experiments the optical *He cryostat
was used, which is a modification of Shal’nikov
apparatus [10]. Four pairs of plane-parallel win-
dows enabled the observation of crystal growth,
to photograph and to accomplish simple optical
measurements. The “He crystals were grown in a
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metallic cell 12x 15x28 mm (1, fig. 3), having
two plate glass walls, which allowed the crystal-
lization process to be observed throughout the
cell. A capacitor designed to excite surface oscil-
lations was mounted on one of the metallic walls
inside the cell (2), consisting of two copper wires
in a capron insulator ¢ =30 um wound on a
textolite plate. The maximum electrical field in-
tensity was 2-3x 10° V/cm. The filling capillary
(3), electrical leads (4) and copper heat conduc-
tor (5) to the *He bath are also shown in fig. 3.
The capillary also had good thermal contact with
the 3He bath. The cell temperature was
measured with a carbon resistor (6), which was
mounted outside the cell in thermal contact with
Cd superconducting reference point (7). With the
cell full the total heat leak to the *He bath was
less than 10~* W including the heat leak by radi-
ation through the windows.

The helium crystals were grown at constant
temperatures (0.4-1.3 K), pressures (25 atm) and
controlled helium flow into the cell. Visual
observations for the “He growth processes dis-
covered a great variety of crystal shapes and the
growth dynamics depending on the temperature
and nuclei positions and orientations. It is im-
portant to note that the growth dynamics and the
crystal shape are highly influenced by gravity. As
a rule, at temperatures lower than 1.2 K, crystal-
lization began at a single random point and
during growth the crystal was always faceted
more or less: the faster the growth rate and the

Fig. 3. The experimental cell.

lower the temperature, the sharper the facets.
Observed faceting always corresponds to hex-
agonal prisms represented by a greater or lesser
number of its facets depending on the nucleus
position and orientation and the crystal size at
the moment of observation (fig. 4). Bearing in
mind the symmetry of “He crystals (hcp-struc-
ture) we may identify the basal facets of the
prism as (0001) crystal planes and the lateral
facets as the {1120} type (or, alternatively, as the
{1010} type). Fig. 4 very clearly shows all the
characteristic features of the ‘He crystal’s low-
temperatures growth: (a) the complete faceting
during rapid growth (0.1 mm/sec), (b) the ap-
pearance of rounded regions in the upper part of
the crystal surface during slow growth, and (c)
the forming of the characteristic meniscus. On
the contrary, during a sufficiently rapid melting
the crystal’s shape becomes drop-like.

The above features of the growth of ‘He crys-
tals have also been observed by Landau and his
co-workers [11] using optical-holographic tech-
niques. All these features may be understood by
the anisotropic growth coefficient. Precisely, this
coefficient reaches its minimum values at the
directions normal to the faces of the growth
prism and has cusps in these directions [12].
Moreover, direct visual observation of the ‘He
growth processes enable us to draw some con-
clusions about the temperature dependence of
the growth coefficient. At the growth prism
faces, especially at the (0001) face, this coefficient
drops rapidly with decreasing temperature. On
the contrary, the other faces exhibit a rapid
growth coefficient increase with falling tem-
perature. The latter fact is believed to prove that
the quantum rough state is being realized at
every face, except the singular faces (0001) and
{1120} (or {1010}). These singular faces are bel-
ieved to be atomically smooth at low tem-
peratures.

The observations of the equilibrium crystal’s
shape have fully confirmed this conclusion. In
general, the equilibrium surface of a large crystal
exhibits a convex meniscus. The measurement of
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Fig. 4. Different stages in the growth of one of the crystals at 0.5 K.

the meniscus parameters enables us to estimate
the surface energy of the interphase boundary e,
which appeared to be 0.1-0.2 erg/cm?, depending
on the interface orientation. No temperature
dependence was found up to the hcp-bec tran-
sition (see also ref. 11).

When one of the singular faces is sufficiently
close to horizontal the equilibrium meniscus in-
cludes a large flat part (fig. 5) the shape and size
of which are very sensitive to its small inclines
(~1°). This plane is identical to corresponding
singular face that becomes obvious after the
regrowth of such a crystal. Of course, flat parts
can be observed also in the surfaces of small
crystals having arbitrary orientation (see also
refs. 11 and 13). However, in such cases it is
much more difficult to prove its flatness and
equilibrium nature. According to our obser-

Fig. 5. The meniscus with the (0001) facet nearly horizontal.

vations (see also ref. 13) the sizes of the flat parts
decrease with increasing temperature. The
temperature of its vanishing (roughening tran-
sition) seems to be 0.9K for the lateral facets
and 1.17K for the basal facets. These data,
however, cannot be considered sufficiently reli-
able because of the difficulty of obtaining a true
equilibrium.

The relaxation of the large crystal shape to
the equilibrium meniscus (nonsingular!) becomes
more rapid if the temperature drops and appears
to be oscillating at temperatures lower by ap-
proximately 0.7 K. The simplest means of exci-
ting these surface oscillations is the mechanical
vibration of the cell - just as in case of normal
capillary waves at a liquid surface. Crystallization
waves were found experimentally in this very
way. As it turned out, even a small vibration of
the cryostat was enough to excite visible oscil-
lations of the surface. By tapping on the outer
wall of the cryostat, the amplitude of the oscil-
lations reached 1-2 mm. Fig. 6 shows a motion
picture sequence of the excitation and damping
of oscillations. The first frame shows the calm
boundary between the solid (located below) and
liquid phases. The subsequent frames demon-
strate the behaviour of the boundary after a
sharp blow on the outer wall of the cryostat. This
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Fig. 6. Motion picture frames of the excitation and decay of crystallization waves at 0.5 K.

manner of exciting surface oscillations becomes
ineffective at temperatures higher than ap-
proximately 0.7 K.

If the equilibrium meniscus includes one of the
singular faces, surface oscillations can be obser-
ved at rounded parts only, while the flat part
remains completely motionless (of course the
outlines of this flat part oscillate due to oscil-
lations of the rounded parts). Crystallization
waves can be observed not only in such
quasiequilibrium situations when a crystal fills
the lower part of the cell, but also in situations
when, for example, a crystal is hanging on a
lateral wall of the cell (fig. 7). In the latter case
oscillations can be clearly observed in the roun-
ded regions (and only in them). All these data
once more demonstrate the difference between a
quantum rough and a classical atomically smooth
surface’s behaviour at low temperatures.

To measure the spectrum of the crystallization
waves a capacitor mounted on one of the metal-
lic walls inside the cell has been used (2 in fig. 3).
A d.c. voltage at the capacitor gives rise to a
visible contact angle change and corresponding
ascent of the meniscus region close to the
capacitor. An a.c. voltage of an appropriate
frequency w in addition to the d.c. voltage causes
the crystallization wave excitation with the
frequency @ and the wave vector k normal to the
line of the crystal-capacitor contact. The detec-

tion technique includes a narrow laser beam,
slowly scanning along the surface in the direction
of k. The lower part of the beam is refracted by
the slightly convex surface and deflects down
significantly while the rest of the light falls on a
photodetector. Thus, the detector’s signal ap-
pears to be modulated periodically by the pro-
pagating surface wave. The amplitude of this
modulated signal is proportional to the wave
amplitude, whereas the signal phase is equal to
the phase of the wave at a given point. This

Fig. 7. A small crystal under quasiequilibrium conditions.
The lower part of the crystal surface is completely faceted
and immobile, whereas the upper part clearly oscillates due
to the cryostat vibrations.
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signal can be recorded (see fig. 8). The distance
along the abscissa between zero points of the
signal determines the wavelength, and the ratio
of maximum neighbouring signals measures the
damping.

Fig. 9 shows the measured spectrum of one of
our samples at two different temperatures. The
dotted line corresponds to w « k*2, the solid line
is the theoretical dependence w(k) according to
eq. (2) with a gravitational term and & =
0.21 erg/cm? (the correction for damping is negl-
igible). The data for other samples are the same
excepting some shift of the curve corresponding
to the change of & value. Thus, the & values
from 0.097 erg/cm? (the dashed line in fig. 9) to
0.23 erg/cm? were fixed. These data show that the
surface energy « is significantly anisotropic.

The measured frequency dependence of dam-
ping k(w) is presented in fig. 10. Clearly, the
theoretical dependence k « w'? is well satisfied,
i.e. the observed damping is really due to the
finite growth coefficient K. According to the
above discussion, at low temperatures K o T4
whereas at higher temperatures K « exp (4,/7T).
Fig. 11 shows the temperature dependence of
(mK)™ calculated from the measured values of «
for three different samples.

We may conclude from Fig. 11 that at low
temperatures damping drops with temperature
too slowly compared with the phonon damping.
However, it is necessary to take into account that
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Fig. 8. An example of the experimental record.
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Fig. 9. Measured spectrum of crystallization waves: O T =
0.360K; @ T=0.505K.

in real experiments there are many reasons for a
residual damping, i.e. finite damping even at
arbitrarily low temperatures. These are different
processes of the scattering of crystallization
waves due to the crystal defects, e.g. nonlinear
effects due to random vibrations of the ap-
paratus, the influence of the real wave generator
geometry and the real meniscus shape, etc. This
residual damping could change significantly from
one sample to another and could change with
frequency in a way that depends on the major
mechanism of scattering. From this point of view
the discrepancy of the data for the sample N3 in
fig. 11 at the two different frequencies can be
understood.

These considerations allow us to interpret the

Bom't

/2=

2k §
[/ 3w 5w 25 30 e

Fig. 10. The frequency dependence of the damping of crys-
tallization waves: O T =0.360K; @ T = 0.505 K. The sample
is the same as that in fig. 9. The straight lines are x < w'?,
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Fig. 11. The temperature dependence of the crystallization
waves damping: sample No. 3, O 1118 Hz, @ 232 Hz, sample
No. 4, l 827 Hz, sample No. 5, © 837 Hz.

data of fig. 11 as follows. Let us consider the
measured damping as the sum of three in-
dependent items: residual, phonon and roton:

1 4 —aJT 4
K A(@)+BT*+ Ce . 4

According to the above, the coefficient A
could change from one sample to another and
also could change with frequency. Because of

strong anisotropy of the sound velocity in ‘He
crystals phonon damping B can change

‘
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Fig. 12. The roton damping defined using eq. (4). The signs

are the same that in fig. 11.

significantly depending on the crystal orientation.
As far as the roton item C is concerned, it seems
to be approximately the same for all the samples.

In accordance with this interpretation the
straight lines are plotted in fig. 11 to show the
sum of the first and the second items in eq. (4).
Defined in such a way, the roton term is presen-
ted in fig. 12. It is clear that all the data lie on the
same exponential, within experimental error.
This fact seems to be the most serious argument
supporting the above interpretation. The
deduced value 4, (7.8 K) is slightly higher com-
pared with the neutronographic data (7.0-7.2 K)
[14]. However, this discrepancy could be im-
aginary since the coefficient C could depend on
the temperature by some power law, similar to
the variety of thermodynamical functions
depending on roton spectrum (heat capacity,
normal density, etc.).

Recently Castaing, Balibar and Laroche [15],
investigating transmission of sound across the
liquid-solid interface of “He, have measured a
quantity equivalent to the growth coefficient and
obtained an exponential dependence with A4
from 5 to 7.8K for different samples. For the
complete solution of the problem a theory is now
needed, including the exact calculation of the
roton damping and the damping due to the
volume dissipative processes.

4. Conclusion

The existence of weakly damped oscillations
of the “He crystal surface due to periodic melting
and crystallization means that quantum delo-
calization is the determining factor for the hel-
ium crystallization processes at low tem-
peratures. In essence we are here dealing with a
new macroscopic quantum phenomenon -
coherent phase transition. Indeed, the exact
nondissipative crystallization is possible only in
the presence of a special type of coherent motion
in a two-phase system, opposite to the classical
situation when the crystallization process is a
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result of random transitions of individual parti-
cles from one phase to another. Of course, the
current theory is not sufficient for the complete
description of this phenomenon; in essence this
theory covers its main point only.

Generally, with increasing temperature the
significance of the quantum effects diminishes. It
is interesting to estimate the temperature region
where quantum efects are essential for the hel-
ium crystallization processes. For this purpose
we use the following simple consideration.
Quantum effects cannot be negligible if at a
given temperature a wavelength region exists
where the crystallization waves are weakly
damped. The temperature T,, when the damping
becomes of the order of unity, even for
wavelengths as short as the interatomic distance,
can be estimated by the extrapolation of the data
of fig. 12 and using eq. (3). Such an estimation
gives To= 1.5 K. In other words, up to the hcp-
bee transition (and perhaps higher) the processes
occurring on the surface of helium crystals have
essentially quantum features.
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