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A system of noninteracting electrons moving in a field of two periodic potentials with incommen- 
surate periods is considered. An Anderson transition takes place in such a system at a certain 
value V, ofthe potential. The conductivity ofafinite sample (oflengthL )is a(L ) a exp( - L /( )in 
the region of localized states (V> V,) and o(L ) cc L in the metallic phase (V< V,). The quantity 
g = o(L )/L as L-+ a, i.e., the total (not specific) conductivity of a macroscopic sample, vanishes 
at the transition point jumpwise at T = 0 and linearly at finite temperature. 

PACS numbers: 71.50. + t, 72.10. - d 

INTRODUCTION 

In this paper, which is a direct continuation of a preced- 
ing one,' we consider the problem of motion of an electron in 
the field of two periodic potentiah with incommensurate 
periods (irrational ratio of the periods). This problem is of 
interest both for the understanding of the properties of in- 
commensurate systems,2s3 and for the understanding of ef- 
fects of localization in disordered ~ystems.~ 

In recent papers5-' arguments were advanced, con- 
firmed by numerical experiments, favoring the assumption 
that for the simplest model, described by the tight-binding 
equation with periodic modulation of the levels 

al+i+al-i+V cos (2nf~I)at=Ea1, (1) 

wherep is an irrational parameter, the value of the potential 
V = 2 is the Anderson-transition point: at V> 2 all the eigen- 
functions of Eq. (1) are localized, and at V< 2 they are delo- 
calized. On the other hand, Azbe13 has shown that the spec- 
trum of an incommensurate system has the character of a 
"devil's staircase," and presented a method of calculating 
this spectrum for numbers@ in whose expansion into a con- 
tinued fraction 

all j?, PI, p2 ,... turn out to be small. 
In my preceding paper,' by modifying somewhat Az- 

bel's m e t h ~ d , ~  an algorithm was obtained for constructing 
the wave functions of an incommensurate system for p, Dl, 
&,...(I, and the existence of an Anderson transition at 
V = 2 was shown in a consistent manner. In this approach 
there appears in natural fashion single-parameter scaling, 
close to that proposed in Ref. 8 for disordered systems. In 
addition, it is shown in Ref. 1 that the description of an in- 
commensurate system of general form near the localization 
threshold reduces to Eq. (1). 

In view of the great interest evinced recently in the con- 
ductivity of disordered systems near the Anderson transi- 
tion, it is natural to consider the analogous problem for in- 

commensurate systems. There is no doubt that there is no 
static conductivity at T = 0 in the region of localized states 
(V> 2); on the other hand, the existing notions concerning 
the conductivity of the metallic phase are rather indetermin- 
ate and frankly hypothetical in character. Sokolof fS sug- 
gested continuous vanishing of the conductivity as the tran- 
sition is approached. Azbe13 emphasized the non-ohmic 
character of the conductivity: Ohm's law R a L (L is the 
length of the sample) is possible only on the average, neglect- 
ing the oscillatory dependence on L, which results from the 

' 

presence of the devil's staircase. 
An investigation of the conductivity of incommensu- 

rate systems is the main purpose of the present paper. The 
corresponding calculations, carried out for a small pk ,  are 
described in §$ 3,4; sufficient for their understanding is ac- 
quaintance with the physical picture given in Ref. 1 of the 
spectrum and of the wave function. However, the renormal- 
ization group constructed in Ref. 1 is insufficient for the 
purposes of the present paper, since it is not applicable in 
some sections of the spectrum (for more details see Ref. I), 
which are precisely the ones which determine mainly the 
conductivity. Therefore another variant of the normaliza- 
tion group is proposed in Q 1 below and is applicable already 
for all states. The result is in fact that the reasoning of Ref. 1 
is applicable to the entire spectrum, despite violation of the 
tight-binding approximation in some of its sections. Simulta- 
neously, the method of $1 has made it possible to consider 
arbitrary irrational numbers (without assuming small Pk). It 
turned out that the results of Ref. 1 are valid for all irrational 
numbers, expect for their set of zero measure, for which lo- 
calization takes place only in a weak sense ($2). 

91. RENORMALIZATION GROUP 

1. We consider an auxiliary equation obtained from (1) 
after approximatingp by a rational fraction M /N, which we 
shall assume to be irreducible: 

al+,+al-,+V cos [2n ( M I N )  (l+cp) ]al=Eal, (3) 
where q, is a constant phase. This equation describes a peri- 
odic system with a period consisting ofNatoms, and its spec- 
trum consists of N energy bands. It  will be shown below that 
the dispersion laws of these bands E, @), wherep is the quasi- 
momentum, which depend one, as a parameter, are given by 
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E ,  ( p ,  cp) = ~ , [ c o s  N p + V ( N )  cos Z x M q ] ,  s = l ,  2 ,  . . . , N ,  (4) 

wheref,(x) is a smooth and monotonic function. Within the 
limits of applicability of the method of Ref. 1, the function 
f,(x) turned out to be linear, and the coefficient V(N) played 
the role of a scaling parameter in scale transformations. Ac- 
tually the generalization proposed here for the renormaliza- 
tion group consists of introducing a functionf, (x) of general 
form and retaining V(N) as the scaling parameter. We shall 
show that this choice of the scaling parameter is physically 
correct. 

We put in Eq. (1) 

BE= (MINI I l + ~ ( l )  I ,  ( 5 )  
after which it goes over into (3), but with a variable phase 
e, = e,(l ). The properties ofEq. (3)  with a variable p(l ) can be 
explained by starting from the properties of this equation 
with a constant e,. 

We subdivide the considered system into blocks of N 
atoms in each. Motion within each individual block corre- 
sponds to N energy levels and wave functions localized with- 
in an individual block (Fig. 1). At constant e, all the blocks 
are identical because of periodicity, and have identical sys- 
tems of levels; when e, varies, all the levels vary in the same 
manner in all the blocks, with a characteristic amplitude 
W N .  The possibility of a transition for one block to another 
leads to broadening of all the levels into bands having a 
width of the order of the overlap interval of the wave func- 
tions J N .  It can be seen from (4) that, regardless of the con- 
crete form of the functionsf,, the ratio of the characteristic 
value of the band shift with changing e, to the characteristic 
width of this band is determined by the parameter V(N). 
Thus, 

V ( N )  -WN/JR. (6) 

The foregoing reasoning is valid, strictly speaking, when the 
width of the bands JN is small compared with the distance 
SEN between them (tight binding). Since W, 5: SEN (see Fig. 

FIG. 1.  Systems of energy levels and wave functions corresponding to 
motion inside individual blocks: a-the phase cp is constant in space, 
dashed-the system of levels at a different value of p; b-QI varies linearly 
in space. 

FIG. 2. Graphic solution of Eq. (20). Solid curve-the polynomial Q,(E). 
The separated sections of the E axis correspond to allowed bands. 

lb  and Fig. 2 below), the estimate (6) is valid at any rate for 
V(N)>l.  

Let now e, vary in space in accordance with (5), i.e., 
linearly. As a result, the energy levels in different blocks 
become different, oscillating periodically in space. If e,(l) 
changes slowly enough so that the argument of the cosine in 
(4) does not change too rapidly within the limits of the block: 

6 ( 2 n M q ) G l  at 61 -1 ,  (7) 
then the amplitude of the level oscillations will be - WZv, and 
the overlap integrals remain -JN.  If the period TN of the 
level oscillations is not too large, e.g., not larger than Qof the 
blocks, i.e., 

6  (2xMrp) > l / Q  a t  61-!Y, (8) 

then the parameter V(N) can be interpreted as the ratio of the 
"deviation" of the levels in the neighboring blocks to the 
overlap integral J N .  This ratio, as is well known, is indeed a 
good scaling parameter for the l oca l i~a t i on .~~~  

We discuss now the restrictions (7) and (8). From the 
definition (5) of p(l ) we obtain 

6  ( 2 n M q )  =2n ( p -MIN)  N Z ,  61=M. (9) 
It is known from mathematics1° that the inequality 

I F-MINI <1 /2N2  ( 10) 
can be reached only when M /N is a convergent p ,  /qk of the 
number fl, i.e., it is obtained by terminating the continued 
fraction (2) at the k th step (by equatingfl, to zero). Compar- 
ing (9) with (lo), we see that the condition 

6 ( 2 n M v )  Cn, 62=N 
is reached only for a convergent. In  view of (7), we are in fact 
forced to choose M /N only in the form of a convergent. 

Let M / N  be the convergent p , /q , .  Then, using the 
known recurrence relationslo 

we can show that 

Substituting (12) in (9) we obtain the estimate 

Assuming flk to be bounded from below (we shall return to 
this question in § 2), we easily satisfy the condition (8). 
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Thus, the interpretation of V(N) as a ratio of the value of 
the level deviation in the neighboring blocks to the overlap 
integral, at any rate, it is valid when M / N  is a convergent. 
This is sufficient for carrying out scale transformations. We 
shall show that as V (N )-+ m and N-+ m localization takes 
place. We put N = q, and choose k such that V(qk))Q [see 
(8)]. We combine m blocks into one large block - no collec- 
tivization will take place because WN,JN - the wave func- 
tions corresponding to motion in an individual block remain 
localized in it. This situation is preserved when m is in- 
creased to a certain m,,,. As will be shown below, 
mm,N>qk + 1. Thus, the radius of localization of the 
"block" wave functions is not changed when the size of the 
block is changed from q, to q, + , . Breaking up again into 
blocks of size N = q, + , , we can repeat the same reasoning. 
Consequently, a finite localization radius is preserved also as 
N-+m . 

When mma, is determined, two cases can be encoun- 
tered. 

a. If the period TN of the level oscillations is such that 
TN/N is close to an integer m, accurate to - l /V(N), we 
have m,, = m,, since the first and the (m, + 1) st blocks 
have close levels and resonance is possible at m = m, + 1. 
From the relation 

which follows from (5), ( l l ) ,  and (12), recognizing that 
V(N)%Qzmaxk(l/P,), we see that qk+ , <moqk, i.e., 
4k+1 <m*,N. 

b. If TN/N is not close to an integer and lands in the 
interval (m,, m, + 1), no resonance takes place at 
m = m, + 1 and m,,, >m, + 1. Since q, + , < T,, we have 
qk+ 1 <(mo + 1)NGmmaxN. 

If, however, V(N )( 1 as N-+ m , it can be readily shown 
that WN (J,, and when several blocks are joined into one the 

pend onp. Expanding the determinant in terms of the upper 
row, and the resultant determinants in terms of the column 
that contains exp(ipN ), we obtain the dependence of A onp: 

A ( p )  =2 cos pN+const ( p )  . (151 

To determine the dependence ofA on p it is convenient 
to introduce a new variable: 

and use the following properties: 

The properties (16) follow from the fact that the substitu- 
tions p - -  - p and p-q + 1 transform the system described 
by Eq. (3) into a system that is physically equivalent to it: 
formally, the Hamiltonian is reduced to its previous form by 
making the respective substitutions I-+ - I and 1-1 - 1. 
The determinant A, however, being a polynomial in E, is 
determined completely by its zeros, i.e., by the spectrum of 
Eq. (3). 

It is clear from the form of (13) that A is a sum of differ- 
ent products V'", V'", .... V(,), and by virtueof(14) it isconse- 
quently the sum of terms of the form 

cosn' 9 sin' $, m+l<N. 

In view of (l6a), the sine functions enter only raised to even 
(c) degrees; they can therefore be expressed in terms of the 
cosines and we can write 

or re-expanding in a Fourier series 

arr-ponding wave functions are mixed with 
firom the property (16b) and from the irreducibility of the ly qua1 weights, i.e., delocali=tion of the states takes place. 
fraction M,N it follows that all the coeficients B, in ( 18), 

Thus, the asymptotic behavior of V(N) as N+ m makes it 
except B, and BN, are equal to zero. To find the coefficient possible to assess the character of the eigenfunctions of Eq. 

i l \  B, we note that the term containing cosN$in (17) stems only 
\A!. 

We proceed now to derive Eq. (4). After imposing on the from the product 

wave functions of Eq. (3) the Bloch boundary condition V(l )V( ' ) .  . .VtN)=VN cos $ cos($+2nMIN). . . C O S ( +  

al+N=eiPNal +2nM(N- i ) /N]  = ( - l ) N + ' V N  cosN ++. . .  , 

where 
Combining (15) and (19) we obtain the secular equation 

v"'=V cos 2n (MJN) (l+cp) . ( 14) in the form 
The determinant A is a function ofp, p, E, and V. Its depen- cos zJrp+ (v1.2)" cos 2nMcp=QN ( E )  , 
dence onp and q, can be determined. 

(20) 

We note that only two elements of the matrix (13) de- where QN(E) is a polynomial of degree N in E. 

the spectrum of the system is determined by the determinant and this determines A,. On the other hand, the connection 
of an N x N matrix between BN and A N  follows from the expansion of cosN$ in 
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A =  

V N  
(13) 

A (+) = ( -1 )  N + l  - cos Ng+const ($) . 2"-1 (19) 

V( l )  - ,y 1 0 0 . . .  e - z p  \ 

1 v@'-E 1 0 . . .  0 
. . .  0 1 v ( ~ ) -  ,y 1 0 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
ezP \ O . . . . . . . .  1 L . ' ' ' - E  

power of cos $: 
. . .  cos N$=2N-1 cosN ++. 

, By virtue of the foregoing, the dependence of A on $ takes 
the form 



Since the matrix (13) is Hermitian, it follows that Eq. 
(20) has exactly N real roots at arbitrary p and p;  therefore 
the polynomial QN(E ) takes the form shown in Fig. 2, i.e., it 
has N - 1 extrema that break up the E axis into N intervals 
of monotonicity QN(E ), on each of which Eq. (20) can be 
solved relative to E to obtain the dispersion laws of each of 
the N bands of Eq. (3): 

E=E, ( p ,  c p )  =f, (cos pN + ( V / 2 )  cos 2 n M q ) ,  
- .. - (21) 

s=1,2 , . . . ,  N. 

By the same token we obtain Eq. (4) with the scaling param- 
eter 

v ( N )  = ( V / 2 J N .  (22) 

Equation (22) determines the sought transformation of 
the renormalization group. In the case V>2 we have 
V (N )+ w as N+ a, , meaning localization of all the stares, 
and at V< 2 we have Y (N )4 as N+ a,, meaning their delo- 
calization. By the same token V = 2 is the Anderson transi- 
tion point in accordance with the result of Ref. 1 for small 
8,. 

Substantial changesof V (N ) take place on the character- 
istic line 6 -  I ln(V/2]1- ', which has at V >  2 the meaning of 
the localization radius, and diverges near the threshold like 

Ea I V-ZI-', (23) 

i.e., with index 1 in accordance with the results for small pk 
(Ref. 1). Since an incommensurate system of general form 
reduces' to Eq. (I), this index is universal. At V< 2, the quan- 
tity f has the meaning of the effective period of the system - 
if the size of the block N amounts to several [, it can be 
assumed that there is no level-oscillation effect, so that the 
incommensurate system is indistinguishable from a periodic 
system with period N. 

2. We apply the foregoing results to the case P, P I ,  
P, ,... 4 1. Using for M /N the convergent p, /q, , the phase 
~ ( 1 )  turns out to vary slowly: 

(24) 

[we have used (5) and [12)]; therefore the quasiclassical ap- 
proach is applicable, and for each of the q, bands into which 
the spectrum of Eq. (11 breaks up in this approximation, we 
can write down its own Schrodinger equation. The Hamilto- 
nians of these bands are obtained from (21) by the substitu- 
tionsp--+a = - id /dl and p ~ ( 1 ) .  The scaling transforma- 
tion 

k '  p~k-'j', P51 
yield (we omit the primes) the Schriidinger equation of the 
sth band: 

V k = ( 2 ) ,  s = l ,  2 ,  . . . , q,, 

which corresponds to the k th stair of the devil's staircase of 
Ref. 1. 

how the transition takes place from one stair of the devil's 
staircase to another. On the first stairp,/q, = l/n, [see (2)], 
and Eq. (26) yields 

f. (COS j + V l  cos 2npl l )  a ( 1 )  =Ea ( 1 )  , 
(271 

Vi=(V/2)"1,  s=l, 2, . . . , n,. 

For s not close to n,/2, the tight-binding approximation 
yielded in Ref. 1 the equation 

(cos pf V ,  cos 2nb11)a( l )  = E a ( l ) ,  (28) 
i.e., the functionf,{x) is linear. For s close to n,/2, the tight- 
binding approximation cannot be used andf,(xj is essentially 
nonlinear. At PI 4 1, however, this does not prevent a transi- 
tion to the next stair of the devil's ladder. Following the 
method of Ref. 1, we put P, = l/n2 and seek the dispersion 
laws&,@, q, ), r = 1, 2, ..., nz (we assume the indexsto be fixed 
and leave it out) of the bands of Eq. (27). They are connected 
in obvious fashion with the dispersion laws &'j@, q) of Eq. 
(28): 

E ,  (P, ~ ) = f  ( E ~ ' ( P ,  V) ). 

At pi( 1 all the bands are narrow and the argument of the 
function f (x) changes little; expanding it in a series, weobtain 

E , ( P ,  T )  = A , + B , E , ~ ( P ,  cp), 

i.e., the spectra E,@, e, ) and E;@, p ) differ only in a shift of 
the energy and by a constant factor, and this has no effect 
whatever on the succeeding iterations. Recognizing that 
Eqs. (27) and (28) have identical eigenfunctions and the same 
shapes of the phase trajectories, we can conclude that at P, 
PI ,  P2,. .. ( 1 we can use the reasoning of Ref. 1, without pay- 
ing attention to the fact that the tight-binding approxima- 
tion is not applicable in some sections of the spectrum. 

92. RAPIDLY DECREASING 8, AND WEAK LOCALIZATION 

In 5 1 we have assumedp, to be bounded from below, to 
make the period of the oscillations of the levels 
TN - N /& (N = q, ) not too large. At arbitrary P, , the de- 
viation of the levels between neighboring blocks is - WN/TN -P, WN and the role of the scaling parameter is 
assumed by the quantity VkBk rather than V, . In particular, 
the localization condition is 

V h $ ~ + m ,  k + w .  v9) 
In view of the rapid increase of V, at V> 2: 

Vk-{VIZ) Rh-l (for p ,  P I ,  . . .<I). 

The difference between (29) and the condition Vk+ w used 
above is inessential at any reasonable rate of decrease of a, as 
k+m. Nonetheless, one can always construct a sequence of 
fl, (meaning also find an irrational number /3 ) such that 

VkBk+O, Vk+m as k + w .  (30) 

Let us consider this case in greater detail. 
As explained in detail in Ref. 1, an incommensurate 

system has an infinite sequence of characteristic lengths: 

L I -  I / @ ,  L2-I /ppI , .  . . , Lh- I I p p i .  . . F ~ - I ,  . . . . (3 1) 

To establish the connection with Ref. 1, we examine At a system length L-L, ,  one Wannier function of order k 
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can be fitted within the limits of the system (see Ref. 1); the 
localization radius6 (L,) ofthe function is determined by the 
size of the classically attainable region 61- 1/ V, - ,P, - , for 
the Schrodinger equation of the (k - 1)st stair [see (26)l. Re- 
calling that the unit length for this equation is L, - , -9, - , 
[see (25)], we obtain 

E(LI) -1IVk-ipfit. . .fik-I-LJVk-L. 

In view of (30) we have 

E(Lh) +w, E(Lk)/Lk*O as 
i.e., when the size of the system is increased the localization 
radius diverges, but decreases compared with the length of 
the system. 

We consider now the normalization integral of the wave 
functions. At L -L, the wave function has a localization 
radius 6 (L,) - l/VBand contains, with a substantial weight, - l/Vp initial Wannier functions; at L - L, it contains - 1/ 
V,p, Wannier functions of the first order, i.e., - l/VPV,p 
initial Wannier functions, etc. Recognizing that the Wan- 
nier functions are orthonormal, we obtain 

Consequently, in the limit as L-co we have 

i.e., the normalization integral diverges, but more slowly 
than the size of the system. Consequently, the wave func- 
tions are localized but weakly - with increasing distance 
from this localization center they decrease on the average, 
but not rapidly enough to ensure normalization. Since the 
functions are not square-integrable, they belong to the con- 
tinuous spectrum; the spectrum, however, is singularly con- 
tinuous, (see the terminology in Ref. 1 l), since the energy 
interval occupied by it has a measure zero (§ 3). 

It is curious that at L - L, + , the values of the wave 
function on the edges of the system, as can be easily seen 
from Eq. (26) are 
$(Lh+l) - V;@x- (V/2)-'/@@* R*-e-Lk."E, E-I/ln(V/2), 

i.e., an impression is created that a constant localization ra- 
dius is present, the same as for slowly decreasing p,. For this 
reason, Aubry's approach,6 based on the use of Thouless 
formula (which contains the values of the wave function only 
at the edges of the system), leads to the conclusion that the 
localization is the same for all the irrational numbers p. 

It is clear from the foregoing that for the conclusions of 
4 1 and Ref. 1 to be valid it is necessary to restrict the rate of 
decrease ofp, (or of the increase of n,). We assume the sim- 
plest sufficient condition: 

nk<Ak2 forall k. (32) 

The set of numbersfl that do not satisfy this condition at any 
A has a measure zero (Ref. 10); therefore the weakening of 
(32) is only of academic interest. Under the condition (32), 
only logarithmic corrections, which do not influence the 

critical exponent, can appear in the law (23). 
Thus, the conclusions concerning the character of the 

wave functions of an incommensurate system, obtained in 
§ 1 and in Ref. 1, are valid for practically all irrational 
numbers. Summarizing them, we can formulate the follow- 
ing theorem, which replaces for incommensurate systems 
the Bloch theorem. 

For each small section of the spectrum of an incommen- 
surate system there exists a critical value of the potential Vc 
at which a phase transition takes place. This transition is 
characterized by a certain length 6 (V) ,  which diverges near 
the transition with index 1, and has far from the transition 
the order of magnitude of the interatomic distance. At 
V> Vc the wave functions are exponentially localized in a 
region with dimension - 6, and at V < Vc they are indistin- 
guishable from the Bloch waves corresponding to a period 
- <. 

53. ENERGY SPECTRUM 

In the subsequent calculations (48 3,4) we confine our- 
selves to irrational numbers such that b, p,, &, ... ( 1, since 
this simplifies greatly the calculations and makes the phys- 
ical picture more lucid. These numbers, while constituting a 
set of zero measure, are, as we have seen in 5 1, typical repre- 
sentatives of irrational numbers. 

The energy spectrum of an incommensurate system has 
the structure ofa devil's staircase'.': the initial band of width - 1 splits in first-order approximation (on the first stair of 

FIG. 3.  Deformation of the spectrum of an incommensurate system with 
changing V- the allowed energy intervals are shaded. All the forbidden 
bands exist at arbitrarily small V, but have extremely small widths. At 
V >  2 the spectrum is discrete (or, in the case of rapidly decreasing B,, 
singularly continuous). 
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the devil's staircase) into n, - 1/P, bands of first order, each 
of which splits into n, bands of second order, etc. The defor- 
mation of the spectrum with change of V is shown in Fig. 3: 
when Vincreases the widths of the forbidden bands increase, 
and the energy interval occupied by the spectrum r (i.e., the 
total width of the allowed bands) decreases. At V>2 the 
value o f r  becomes zero. Indeed, since Eq. (20) has exactly N 
real roots at allp and p, the polynomial Q,(E) should have 
an oscillation amplitude not smaller than V(N) + 1 (see Fig. 
2); therefore at V(N ), 1 the total width of the allowed bands 
is 

rciv)GIIV(N) - ( V / 2 ) - N  

and tends to zero as N - P  w . This agrees with the fact that the 
localized states correspond to a discrete spectrum. 

Let us ascertain the law according to which r vanishes 
as it approaches the threshold from the side of the metallic 
region. Let V = 2 - 8, where S< 1. On the first stair of the 
devil's staircase the initial band of width T(,, - 1 splits into 
n, bands; the widths of almost all these bands are exponen- 
tially small, of the order of V - "I. Exceptions are the bands 
located in the energy interval of width -/3 near E = 0, i.e., 
near the center of the initial band. In this interval, the tight 
binding approximation is violated and the band widths turn 
out to be of the order of the distances between them. There- 
fore the total width of the bands on the first stair is 

r(l,-P. 

On the second stair, each of the first-order bands splits into 
n, second-order bands, which all are exponentially small 
with the exception of the central ones, so that 

r(2~-r(i)Bl-PBi, 

and in general on the k th stair 

r,,,-ppl. . .ph-,. (33) 

This process, however, does not go on to infinity, since the 
coefficients V, in the Hamiltonian (26) for the k th stair de- 
crease and the width of the forbidden bands decreases. 
Therefore, to obtain the value of T it is necessary to substi- 
tute for k in (33) the number of stairs in which the sequence 
V, from the initial one V,, = V = 2 - S decreases to a certain 
small value. Expanding (22) near the threshold and recogin- 
izing that N- l/m,...P, - , , in the case considered, we ob- 
tain 

vk-2- (V-2)/$pl. . .PI-1. 

Putting V, - 2 = const and comparing with (33), we obtain 

ra I V-21, (34) 

i.e., r tends to zero in power-law fashion with a critical expo- 
nent equal to unity. '' 

The law (34) remains in force if r is taken to mean the 
total width of the allowed bands located inside a certain in- 
terval AE situated in an arbitrary section of the spectrum, 
since this interval contains several bands of k th order, orga- 
nized in the same way as the initial band. On the other hand, 
the coefficient in the relation (34) depends strongly on the 
position of the interval AE in the spectrum, and ranges from 
unity to exponentially small values. 

§4. CONDUCTIVITY 

Let a system of noninteracting electrons be located in 
the considered incommensurable potential and let them fill 
the previously obtained single-electron states in accordance 
with the Pauli principle. We shall obtain the conductivity of 
such a system. 

As explained in Ref. 1, an incommensurate system has a 
sequence of characteristic lengths 

LiMf/p9 LZ-1/BPl7 . 7 Lk-1/@$1.  - . p k - I 3  . . . 7 

which are quasiperiods of the system: in the first approxima- 
tion an incommensurate system is similar to a periodic one 
with a period L,, and with still higher accuracy it is approxi- 
mated by a periodic system with period L,, etc. These con- 
siderations lead directly to a simple method of calculating 
the conductivity. 

We are interested in the conductivity of a macroscopic 
sample. It is convenient to take the macroscopic limit as 
L - ~ w  by a special method. We choose m such that 
l(m<min,(l/fl,). Let the length of the system L lie in the 
interval 

By virtue of the condition L>mL,)L,, the length of the 
system spans many periods L,. We shall assume that the 
spectrum of the system is defined by this period, and the 
influence of the periodicity of next order, with period L, + , , 
will be taken into account as a perturbation. Let J, be the 
width of one of the bands, corresponding to the period L,. 
For a sample of length L, this band consists of L /L, individ- 
ual levels; their spacing is -J,L,/L. The influence of the 
period L, + , manifests itself in the form of periodic oscilla- 
tion of these levels with amplitude W,. We choose k such 
that 

- this is always possible in a metallic phase, since at V< 2 
the sequence V, = Wk/Jk decreases exponentially (9 I), 
V, -exp( - L,/{), andL,/L>L,/mL,+, - l/mP, by vir- 
tue of (35) [we do not consider the rapidly decreasing Pk (see 
4 2)]. Under the condition (36) the periodicity of order 
(k + 1) causes only a small change in the wave functions of 
the system. The path length I, however, is the distance over 
which the scattering potential causes a substantial change in 
the free-motion wave functions (according to Mott12 this is 
the loss of phase coherence): over this distance there should 
take place one collision, i.e., there should be accumulated a 
reflection coefficient - 1. Therefore under the condition (36) 
we have 1 > L, i.e., the scattering takes place mainly from the 
boundaries of the sample. 

Since Wk/Jk decreases rapidly with increasing k, all the 
arguments presented above are valid for all k that are larger 
than the one indicated above. Therefore all that needs be 
done is to calculate the conductivity of a periodic system 
with period L, of finite length L from the interval (35), and 
go to the macroscopic limit, letting k tend to infinity. 

The conductivity of the periodic system is estimated in 
the usual manner, but with account taken of the fact that the 
spectrum has an arbitrarily sparse structure, so that even 
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within the limits of the thermal smearing of the Fermi distri- 
bution there exist both allowed and forbidden bands. As usu- 
al, it can be assumed that the electric field F causes a shift of 
the Fermi distribution by an amount 

Gp-eFr/A, 

where T is the relaxation time. Therefore the nonequilibrium 
distribution function is 

where fO(&) is the Fermi function. The electric current is 
equal to 

where we have replaced n$ by the mean free path, the latter 
determined by the length of the system L. The conductivity 
is therefore 

where the integration is only over the allowed energy inter- 
vals. If there are no forbidden bands within the limits of the 
thermal smearing, the integral in (37) is equal to unity; in the 
general case, however, it is determined by the density of the 
allowed bands near the Fermi level: 

a(L) - (eYh) L(AI'/AE),, mLa+l>L>mLk, (38) 
where A r i s  the total width of the allowed bands in the inter- 
val AE-T located near the Fermi level, and the index k 
indicates that the spectrum corresponds to the k th stair of 
the devil's staircase. Formula (38) yields the estimate we 
need. This estimate is exact at L 5 6 in the metallic phase, but 
can be used as an upper-bound estimate at L 5 6 also in the 
region of localization of the states (in this case the condition 
I >  L is not satisfied and we discard an essential scattering 
source). 

As is clear from the preceding section 

therefore as L+CO we have 

and consequently, for an infinite system 

Thus, the disorder connected with the incommensurability 
is insufficient to produce in the metallic phase in the system a 
proper mean free path - this agrees with the viewpoint ad- 
vanced in § 1 that at V <  2 an incommensurate system be- 
haves like a periodic system with period -{; in the region of 
localized states, however, the conductivity, as assumed, van- 
ishes. 

It is of interest that the oscillations of a, predicted by 
A ~ b e l , ~  as have functions of L a substantial amplitude only 

at L 5 6. It is easily seen how they arise. At L ,< { the inequa- 
lity I >  L is satisfied only in the intervals 

[the maximum level scatter connected with L, + , has within 
the limits of the system a value - WkL /Lk + , and should be 
less than JkLk/L; recognizing that W, - Jk at L 5 6 we ob- 
tain (41)l. The estimate (38) is valid in the interval (41); with 
further increase of L the condition I > L is violated and a 
ceases to depend on L until restructuring of a spectrum with 
a period L, + , sets in at L L, + , ((AT/AE ), changes to 
(AT/AE ), + , ). At L)( the inequality I >  L is established in 
the entire length interval, and the sequence (AT/AE), 
reaches its limiting value, so that the oscillations are damped 
and a(L ) becomes asymptotically linear2'. 

For a more detailed study of the behavior of the conduc- 
tivity near the transition we consider the quantity 

which is the total (not specific) conductivity of the micro- 
scopic sample, i.e., a directly observable quantity. In the me- 
tallic region, g is a constant: 

The subsequent results depend on which of the limits, as 
T 4  or as V-2, is taken first; we consider in succession two 
cases. 

a. T #O, V+2. In this case the interval A E -  T is con- 
stant. Since the total widths of the allowed bands in any 
interval A E  decrease in accordance with (34), we have 

b. V #2, T+O. In this case we should let A E  tend to 
zero. Since a decrease of AE leads us to higher and higher 
stairs of the devil's staircase [first A E  contains one band of 
order k, then one band of order (k + I), etc.], and the coeffi- 
cients Vk in the Hamiltonian of the k th stair (26) decrease 
with increasing k, AE contains fewer forbidden bands, so 
that 

therefore 

gaconst. 

The complete picture of the dependence of g on V is 
shown in Fig. 4. The quantity U, which determines the dis- 
tance from the threshold at which the transition from a con- 

FIG. 4. Behavior of the conductivity of an incommensurate system near 
the localization threshold. 
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stant to a linear dependence takes place, is of the order of 

U-aT, 

where the coefficient a depends strongly on the position of 
the Fermi level, and, generally speaking, is exponentially 
large [it is connected with the coefficient in the relation (34)l. 
We note that the presence of an abrupt transition at T #O is 
due to the absence of inelastic scattering processes. 

A few words on the dependence of g on the position of 
the Fermi level E ~ .  At T = 0 this dependence is smooth with 
the exception of isolated points at which g vanishes and 
which correspond to intersection of the Fermi level with the 
band boundaries. At finite but small T, the isolated points 
smear out into minima of finite width and the a (& , )  depen- 
dence becomes oscillating; the envelope of the maxima re- 
mains smooth, however. Finally, at T larger than a certain 
To, the u(E,) dependence becomes extremely irregular - the 
amplitude of the oscillations varies exponentially strongly 
with changing E,. The temperature To is of the order of the 
width J,  of the narrowest of the bands of order k, corre- 
sponding to the stairs with L,  -6. 

The author is grateful to the late I. M. Lifshitz, to A. F. 
Andreev, and to A. L. Efros for a discussion of the results 
and to A. L. Talapov for a discussion of a number of ques- 
tions in the theory in commensurate systems. 

''Strictly speaking, the index is obtained with logarithmic accuracy up to 
terms -(In l/max B,)-'. However, theonly way it can beuniversal, i.e., 
independent of the model parameters, is to be exactly equal to unity. 

''For rapidly decreasing Bk ((g 2), oscillations remain also at L&{. 
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