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Transitions associated with changes in the topology of the Fermi surface in two-dimensional (2D) 
metal systems have been studied theoretically and experimentally. The thermopower a in inver- 
sion layers at a silicon surface, near the (100) plane, has been studied experimentally. The plot of a 
versus the surface electron density Ns (or the Fermi level EF) is complicated, with abrupt singular- 
ities of the order of the observed effect. Near these features, the behavior of a is described by 
a - 0.7 ko.3 a n d a o c A ~ - ~ . ~ * ~ . ~  , where AE = E~ - E, , for two types of singularities related to 
(a) the appearance of a neck and (b) the nucleation of a cavity. For the diffuse part of the thermo- 
power, a , ,  and for the thermopower due to phonon drag, aph , the following expressions are 
derived theoretically: a, ad&-' and a,, a l A ~ 1 - " ~  in case (a) and a, aS(A&) and 
aph  ad^-"^@ (AE) in case (b). The temperature dependence of a near the singularities and the 
nature of the blurring of the singularities is studied. On the whole, the theoretical predictions 
agree reasonably well with experiment. 

1. INTRODUCTION separated because of the minigap A in the spectrum. 

The concept of topological transitions in metals was in- 
troduced in 1960 by I. M. Lifshitz.' These transitions are 
associated with changes in the topology of the Fermi surface, 
which can occur in one of two ways: through the appearance 
(or rupture) of a neck between two parts of the Fermi surface, 
or through the onset (or disappearance) of a new cavity. The 
point of the topological transition is a singularity of both the 
thermodynamic and kinetic  characteristic^.'.^ 

A three-dimensional (3D) system is difficult to study 
experimentally, however, since in such a system it is difficult 
to attain the large change in electron density which is re- 
quired for the occurrence of a transition. Such changes have 
actually been produced only by greatly deforming test sam- 
ples at high pressures or by introducing a large amount of an 
impurity .3-6 

In the two-dimensional (2D) case there are systems in 
which the electron density can be changed easily during an 
experiment: the so-called metal-insulator-semiconductor 
 system^.^ They consist of a metal electrode (the gate) separat- 
ed from a bulk semiconductor by a thin insulating film. By 
applying a voltage V, between the gate and the interior of the 
semiconductor, one can create a 2D electron gas with a sur- 
face density Ns which depends on V, in a thin surface layer 
(d - 50 A). 

A topological transition can be arranged at comparati- 
vely low densities Ns by using metal-insulator-semiconduc- 
tor structures on superlattices: systems in which an addi- 
tional spatial periodicity with a period large in comparison 
with interatomic distances, has been created. In the experi- 
ments described below, this additional periodicity arose 
from the use of surfaces of a silicon crystal with high Miller 
indices. The sequential changes in the Fermi surface which 
occur in these systems upon a gradual increase in the density 
Ns are shown in Fig. 1. We see that both types of topological 
transitions mentioned above occur here: the formation of a 
neck (A ) and the onset of a cavity (B ). The transitions are 

- The singularities in the electrical conductivity of 2D 
systems which result from topological transitions were first 
observed by Cole et a1.' and were found to be very weak. 
Recently, some considerably stronger singularities (changes 
on the order of the effect itself) have been observed in the 
thermopower a (Ref. 9). In the present paper we report the 
results of a more detailed experimental study of the thermo- 
power in metal-insulator-semiconductor structures near to- 

FIG. 1. The electron spectrum ~ ( k )  for metal-insulator-semiconductor 
structures on high-index silicon planes. Shown at the left are the sequen- 
tial changes in the Fermi surface as the density N, is increased; the letters 
specify the topological transitions. A-Appearance of a neck (shown at 
the bottom in larger scale); B-appearance of a cavity. Dashed line) 
Boundary of the Brillouin zone; dot-dashed line) centers of electron val- 
leys. 
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FIG. 2. Thermopower of 2D electron systems in metal-insulator-semicon- 
ductor structures on high-index silicon planes. For this sample, the tilt 
from the (100) plane is 6' = 10"301. The curves at the left correspond to the 
case in which the heat flux is directed along the superlattice, and those at 
the right correspond to a heat flux perpendicular to the superlattice. The 
ordinate scales are successively shifted. 

pological transitions in the temperature interval between 
0.45 and 2 K, for various directions of the heat flux with 
respect to the superlattice (Fig. 2). We will compare the ex- 
perimental data with a theoretical analysis of the singulari- 
ties in the thermopower of a 2D metal at the points of topo- 
logical transitions. 

2. EXPERIMENTAL PROCEDURE 

The thermopower a determines the electric field E 
which arises in a sample in which there is a temperature 
gradient VT but no electric current j : 

Ei=a,(VT),, j=O.  

The thermopower can usually be represented as consisting of 
a diffuse component a, and a component due to the phonon 
drag of electrons, a,, (Ref. 10): 

a=a,+aPh=aT+ bT3. (1) 

The apparatus shown in Fig. 3 was used to measure the 
thermopower. The test samples were metal-insulator-semi- 
conductor structures fabricated by the standard procedure 
on silicon planes making angles 8 = 9", 9"27', lV, 10"301, and 
1V40' with the (100) plane; in this case, a superlattice arises 
in the 2D system along the direction of the tilt. We measured 
the characteristics of the samples both along and across the 
superlattice. 

The dimensions of these metal-insulator-semiconduc- 
tor structures were 400X 1200 pm. The structures were on 
silicon wafers 0.3 X 3 X 10 mm in size. A wire heater HI was 
wound around one end of the wafer, while the other end of 
the wafer was soldered with indium (2) to a heat sink 3, which 
was in contact with a He3 bath 5 through a germanium insu- 
lating washer 4. Heater Hz was used to c h a n ~  the average 
temperature of the sample, which was measurtd with ther- 
mometer T. All these parts of the apparatus were inside a 
vacuum container 6. 

For the measurements of E, Pb-Sn superconducting 

FIG. 3. Apparatus used to study the thermopower in the inversion layers 
in metal-insulator-semiconductor structures. 

leads 50pm in diameter were soldered to the source and the 
drain. For the measurements of VT, the tips of a thermocou- 
ple of a superconductor and of ZLZh alloy were cemented to 
the side of the silicon wafer opposite the metal-insulator- 
semiconductor structure. The superconducting parts were 
connected to the apparatus outside the chamber by platinum 
capillaries sealed in glass beads (not shown in Fig. 3). 

The voltages across the sample and the termocouple 
were measured by bridge methods, with a SKIMP appara- 
tus'' used as null detector. An air-core transformer was used 
in the circuit for measuring the voltage across the metal- 
insulator-semiconductor structure. This transformer im- 
proved the current sensitivity of the apparatus to 10-13- 
10- l4 A. 

Most of the measurements were taken in the tempera- 
ture interval 0.45-1.2 K. We measured the conductivity a, 
the thermopower a, and the thermal conductivity x of the 
samples. Because of the small geometric size of the samples, 
the systematic error in the determination of the absolute val- 
ues of a or x could reach 20%. We therefore compared quan- 
tities characterizing the relative changes in these properties. 
For example, instead of the thermopower we used the ratio 
E / W, where W is the heat flux density in the interior of the 
sample corresponding to the temperature gradient VT along 
the structure. The value of VT along the sample and the 
metal-insulator-semiconductor structure was VT = W/x, 
and the value ofE / Wis directly proportional to the thermo- 
power a. According to the experimental results, x does not 
depend on the state of the electron system; we find 
x=:2.10-2T3W/(K.cm) in the interval 0.8-4 K and x - T2.6 
at T(0.8 K. The thermal conductivity is due to phonons, 
which are scattered primarily by the boundaries of the sili- 
con wafer. 

For the study of a we selected samples for which the 
leakage current through the SiO, insulating layer was 
< 10-12-10-13 A over the entire range of gate voltages V, 
used. Ifwe had not selected such samples, it would have been 
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necessary to take further precautions to maintain a constant q . .$ sample temperature when heater H I  was turned on and pro- 
duced a heat flux Walong the sample. In the experiments, we 
determined the behavior o fE  / Was a function of the density 
of surface electrons in point-by-point measurements.'' The 
density Ns was calculated from 

where e is the electron charge, Cis the specific capacitance of 
the structure, and V, is the threshold voltage (these proper- 
ties were determined in an independent experiment at 80 K). 
For each of the samples, the measurements were carried out 
in succession at several temperatures. 

Figure 2 shows a typical family of curves ofE / Wversus 
Ns for metal-insulator-semiconductor structures with 
0 = 10"301. The curves at the left correspond to a heat flux 
directed along the superlattice, while those at the right cor- 
respond to the heat flux directed across the superlattice. All 
of the curves have several sharp peaks, the largest of which 
we have labeled A and B. The shape of these peaks depends 
on the direction of the heat flux: When the heat flux is direct- 
ed along the superlattice, there is a minimum value of a at A,  
while for the heat flux in the perpendicular direction a 
reaches a maximum here. Regardless of the direction of the 
heat flux, features A and B occur at the same values N, and 
Ns (Fig. 4). 

The absolute heights of peaks A and B, A (E / W), can be 
determined only within an error of up to 10-20% from the 
Ns dependence of E / W. More-reliable information on the 
height of peak A can be found in terms of half the difference 
a: - a!. Figure 5 shows values ofA (E / W) found by the dif- 
ferent methods. We see that the absolute height of the peaks 
increases sharply as the temperature decreases, roughly in 

FIG. 5. Temperature dependence of peak A for samples with various an- 
gles &A-9";O-9"27';C10"301. 

thermal power was observed in Ref. 12 and was attributed 
there to a significant maximum in a,, in the 2D electron gas 
at q, = 2kF, where q, is the phonon wave vector corre- 
sponding to the maximum of the phonon thermal distribu- 
tion, and fikF is the electron Fermi momentum. 

These results show that in analyzing the peaks on the 
curves of E / W versus Ns we must take into account the 
changes in both the diffuse and phonon components of the 
thermopower at the topological transitions. 

On the conductivity curves a(Ns) between A and B we 
see W-shaped peaks with an amplitude of 3-5% of ur,, , simi- 
lar to those which have been described previou~ly.'.~ The 
height and shape of these peaks do not change as the sample 
is cooled to 0.4 K. For most of the samples the mobilityp,,, 
is z lo4 cmZ/(V.s); only for the samples with 0 = 9'27' does 
it reach 1.9.104 ~m-~/ (V.s ) .  

proportion to T- ' A .  

To distinguish the diffuse and phonon-drag compo- 3. THEORETICAL ANALYSIS OF THE PEAKS IN THE 

nents of the thermal Dower. it is convenient to examine the THERMOPOWER 

T 2  dependence of a / T  [see expression (1) and Fig. 61. This The peaks of a, and a,, [see (I)] differ in nature and 
behavior must of course be analyzed far from the peaks. We must be analyzed separately. 
find that at T< 1.5 K the thermal power can be described by I.Peak of a,. The diffuse component of the thermo- 
a / T  = a + b ~ 2 ,  whichfo~~owsdirectly fromexpression2'(1), power, a , ,  can be analyzed through a trivial generalization 
At higher temperatures we see that a / T  increases much of the theory of Ref. 13 forthe 3D case. For a, we can use the 
more rapidly with the temperature. The same behavior of the Matt formula'0 
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FIG. 4. Critical densities N, and N,  for samples with various angles 8. 45 1 2 <h' 

Filled and open circles-Measurements with a heat flux respectively 
along and across the superlattice; solid line-curve corresponding to FIG. 6. T~ dependence of a/T for samples with the following values of 
k, = 0.15 (2s/o)  sin 8. 8:~10"30';0-9027'. 



where o is the conductivity, E, is the Fermi energy, vk and k 
are the velocity and wave vector of the electrons, the integra- 
tion is carried out over the Fermi surface, and l ,  is the vector 
mean free path, the solution of the kinetic equation 

where W,,, is the probability for the scattering of electrons 
by impurities. 

Let us assume that the topology of the Fermi surface 
changes at the point k = 0, which is a center of symmetry (cf. 
Fig. 1). The equation of the Fermi surface near the singular- 
ity is 

where m,,  my > 0 in the case of the onset of a cavity or 
m, < 0, my > 0 for the appearance of a neck. For Aa = 0, the 
Fermi velocity v, vanishes at the point k = 0, giving rise to 
singularities in the physical properties.' For example, for the 
state density in the 2D case we have 

V reg 

(cavity) 

where m is the effective mass characteristic of the large parts 
of the Fermi surface. 

The structural features in the conductivity a and in the 
diffuse thermopower a, are associated with singularities in 
l,, which can easily be found from Eq. (3) (Ref. 13). The 
transition probability W,,. , treated as a function of E, and 
E ~ ,  varies over energy intervals characteristic of the energy 
spectrum, e.g., the band width, the height of the pseudopo- 
tential, etc. In the one-electron approximation, this prob- 
ability does not depend on the electron population, so it may 
be assumed regular at AE = 0. The term with 1,  in (3) has the 
same singularity as that in the state density (5). In the case in 
which a neck appears, this term diverges logarithmically as 
AE-0, while the term with 1,. remains finite (because of the 
condition 1,  = 0 at k = 0, a consequence of the odd parity of 
1,  ). We can thus find an explicit expression for 1,  : 

- - = ZkVk,  'Gk - 
lk  = ~ w ~ ~ ~ I z s ~ . I R ~ ~ ~  

l n l ! ~ ~ / A &  1 

In other words, the T approximation turns out to be rigorous 
(this result is a specific result for the 2D case). In the case in 
which a cavity appears, we can determine only the nature of 
the singularity in 1, : 

Substituting (6) and (7) into (2), we see that a- ' has the same 
singularities as in the state density (5 ) ,  and for the singular 
part of the thermopower a, we find (estimating the coeffi- 
cients in the T approximation) 

( I  m, I m,)'" Y reg -- 
m '" (neck) 

v A& (8) 

m 

2. Singularities in aph.  To analyze aph it is convenient to use 
the theory of the acoustoelectric effect derived in Ref. 14. In 
the 2D system a sound wave with wave vector q, polarization 
A, and energy flux density WqA excites an electric current 

2neqz A k Z  dlk 
jqiA = WqA d S k  --- 

(2zfi) ' ~ ~ , r p z D  ukZ dkq 
6 ( + k G ) ,  (9)  

where 1, is the solution of (3), w and s are the frequency and 
velocity of the sound, i, and 4 are unit vectors along the 
directions of v, and q, A , is the corresponding component of 
the strain potential, k,  = k$ and p,, is the density of the 
metal. Under the experimental conditions the phonons are 
scattered primarily at the boundaries of the sample, so that 
the phonon energy flux WqA produced by the temperature 
gradient can be assumed given, independent of the proper- 
ties of the electron system. To derive the thermoelectric cur- 
rent we need to sum3' expression (9) over q and A. We then 
find an expression 

- p h - o ; ~ ~ S d ~ G S d &  vi2 
a 

for the thermopower, where the function F(4) has the prop- 
erty F(4) = - F( - 4). In the T approximation for phonons 
this function is 

where I,, is the phonon mean free path. 
An integration over the directions of q in (10) eliminates 

the &function. Assuming that the symmetry plane passes 
through k = 0, we find 

2 j ~ x ( i ,  A) ar - 
a p h  = - .- t k x ,  

(JXX * u k Z  dk, 

where i, is the vector tangent to the Fermi surface at the 
point k, and we find an analogous expression for a$. When a 
neck appears, we have, by virtue of (6) and (4), 

We see from these results that the singularities in a$ and a$ 
(i.e., in measurements along and across the neck) are of oppo- 
site sign. 

Because of the square of V ,  in the denominator of the 
integrand in (12), the singularities in aph turn out to be stron- 
ger than those in the state density: 
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where 

The coefficients have been estimated for Wkkr = const, 
A = const, and I,, = const; E (k ) and K (k ) are elliptic inte- 
grals. Expressions for as can be found from (14) by inter- 
changing x and y. 

The logarithmic singularity in 1, in (6) cancels out with 
a similar singularity in a, so that no singularities of kinetic 
origin are found in a,, in the case in which a neck appears. 
In the case in which a cavity sets in, the singularity in 1, in (7) 
cancels out with one in u only under conditions such that the 
T approximation is applicable (e.g., with W,,. = const); in 
general, this singularity gives rise to an additional jump in 
a,, (Fig. 7), given by 

sing 
EPh =const O ( A e )  . (15) 

3. Factors limiting the singularities. In the discussion above 
we assumed 

where T is the electron relaxation time, IF = TV, is the elec- 
tron mean free path, and qT = T/* is the thermal momen- 
tum of the phonons. A nonzero value of any of the param- 
eters in (16) may lead to a cutoff of the singularities. The 
effect of the first parameter is associated with a spreading of 
the Fermi distribution; while that of the second is associated 
with the impurity spreading of the spectrum. These two pa- 
rameters cut off the singularities in both a, and a,, . 

The three other parameters in (16) are important only 
for a,, , and they lead to a shrinkage, rather than elimina- 
tion, of the singularities, as we will see. 

FIG. 7. Calculated changes in the diffuse and phonon components, a, and 
a,, , respectively, of the thermopower in the 2D electron system at the 
topological transitions. C,-Appearance of a neck; C,--onset of a cavity. 

To study the role of the parameter qT/kF we note that 
the S-function in (9) and (10) arises from the 6-function 
which expresses energy conservation, 

as a result of an expansion of the argument in q and the 
retention of only the first term. This simplification is justi- 
fied ifd&)fi2qT2/m, since in this case the minimum value of 
v, on the Fermi surface is large in comparison with @*/m, 
and the first term in (17) is the leading term. In a small neigh- 
borhood of the transition A ~ < f i ~ q ~ * / m ,  we can ignore the 
term fiv, q near the point k = 0 in (17) in comparison with 
the terms q2. In the case in which a neck appears m, <O, 
my > 0), this simplification does not interfere with the van- 
ishing of the argument of the S-function in the integration 
over the directions of q. Here the power of vk in the denomi- 
nator in (12) decreases from the second to the first, and the 
singularity in aph shrinks: 

sing' aDh ln 1 E ~ / A ~  1, A e / ~ ~ ~ ~ ( q d k F )  (neck). 

When a cavity appears (m, > 0, my > O), the argument of the 
S-function does not vanish at Ae 5 fi2q$/m, and the singular- 
ity at AE = 0 is eliminated. This effect results from the physi- 
cally obvious circumstance that a cavity of size k, 5 q, does 
not interact with phonons. The Kohn singularity which 
arises at k, - qT smoothes out to become a regular maximum 
after an integration over the phonon thermal distribution 
(Fig. 7). The singularity of kinetic origin, (15) persists. 

To study the role played by the parameter qTl, we fol- 
low Pippard,16 replacing the 8-function in (10) by a Lorent- 
zian function: 
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Near k = 0, the velocity vanishes, v, -4, and we can discard 
the term (qv, T ) ~  in the denominator in (18). As a result, the 
power of V ,  in the denominator in (10) decreases by one, and 
the singularity in a,, weakens to the size of the singularities 
in the state density, (5). This is true only if AE 5 ~,/(q,l ,)~, 
since in the opposite case the minimum value of v, on the 
Fermi surface would be greater than l/q,r, and it would be 
legitimate to use a 6-function in place of (18). 

To study the effects -s/u, in the 6-function in (17), we 
need to retain the term &a,. The condition for the vanishing 
of its argument, 

can hold only on those parts of the Fermi surface for which 
the condition v, )s holds. As a result, the singularities at 
E = E,, associated with the vanishing of v,, are eliminated 
[only the "kinetic" singularities, (15), remain]. In their place 
we find singularities at the point E = E,, , where the parts of 
the Fermi surface which do not interact with phonons 
( v ,  <s) first appear, and at the point E = E , ~ ,  where these 
regions disappear. 

Substituting the 6-function in (17) into (lo), retaining 
the term h, , and integrating, we find 

where QE(a = 1,2) are the solutions of (19). In general, the 
singularity in the integrand at v, = s is integrable and does 
not result in singularities in a,, . An exceptional case is that 
in which the velocity v, has an extremum on the Fermi sur- 
face, at which its value is s: 

Ue, t ,=S .  (21) 

This condition can hold only at isolated points on the E axis; 
for spectrum (4), these points are 

It should be kept in mind that for the extrema in (21) the 
vectors Qk, which are the solutions of (19), are generally ori- 
ented along a direction of a high crystallographic symmetry, 
and the function F' (4) in (20) may vanish. For spectrum (4), 
the vectors 4, at the extrema are directed along the x axis at 
E = E,, and along they axis at E = E,, . Making use of the 
behavior of F ' (4) near 4 = % and 4 = f Fx (4) -const, 
F (4) - qy , qy -0;F (4) - qx , F  (4) - const, q, -0, we find 
the following expressions for a,, near the singularities: 

The singularities are of the same type for the cases in which a 
cavity and a neck appear, but in the former case the two 

singularities lie in the same side of the point E = E,, and in 
the latter case they lie on different sides [see (22)l. 

Consequently, the finite size of the parameters/v, gives 
rise to a splitting of the singularities in the region 
AE - ms2 -E, (S/V,)~. For superlattices on silicon with a peri- 
od d- lOa, we have s h ,  -- 1/30, and the splitting is too 
small. This splitting would apparently be observable for su- 
perlattices with a period several times greater. 

4. Role of the 3 0  nature of thephonons. Up to this point 
we have been dealing with an idealized model of the 2D sys- 
tem. We will now discuss the extent to which this idealiza- 
tion is applicable for describing the processes in real metal- 
insulator-semiconductor structures. That the electron gas in 
these systems is a 2D system is beyond doubt: The electrons 
are localized in a thin layer of thickness d- 50 A near the 
surface of the semiconductor, in a lower quantum-size level. 
Their wave functions can be written 

I l k  ll=S-" exp (ikllrll) Q ( z )  , (24) 

where kil = (k, ,ky),rli = (x,y), S is the area of the surface, 
and Q> (z) is a normalized function, nonzero in the region 
O<z 5 d. The phonons in metal-insulator-semiconductor 
structures, in contrast, are a 3D system, free to move over 
the entire thickness of the sample, as is verified by estimates 
of the thermal conductivity and of the phonon-drag thermo- 
power a,, (Ref. 17). The 3D nature of the phonons should be 
taken into account in a discussion of the singularities in a,, . 

The probability for the electron-phonon interaction is 
knownx0 to contain the square of the matrix element of the 
phonon wave between electron wave functions: 

In the 3D case, qb, is a 3D plane wave, and Jreduces to 
6,. - , - , . For wave functions as in (24) we find 

J = ~ I c ~  -k ,l-q llI(qz) 

where I (q, ) can be evaluated easily in two limiting cases, 

[in the former case we can set eiqzZ = 1; in the second case, the 
integral is significantly different from zero at q,d 5 1, and 
the quantity I (q, )d has the properties of a 6-function]. Mak- 
ing this modification of the probability for the electron- 
phonon interaction, we calculate the acoustoelectric cur- 
rent: 

[k = (kx ,ky ) is a 2D vector]. To calculate the thermal elec- 
tric current we need to integrate over the 3D phonon mo- 
mentum q. If qTd, 1, we find, after a trivial integration over 
q,, expression (10) for a,, with qll instead of q and with a 
correspondingly defined function F(4). In the case qTd 5 1, 
expression (27) reduces to the form of (10) if we ignore effects 
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-s/uF. Let us write the functions F(q) in the T approxima- 
tion for the phonons: 

Consequently, all the results of Subsec. 2 and 3 apply to 
metal-insulator-semiconductor structures in the case 
qTd)l, and all the results except (23) apply in the case 
qTd 5 1. In this latter case, (23) are replaced by 

To derive these expressions we integrate over d 3q in (27) 
in polar coordinates. After an integration over q and p, the 
integrand has a singularity of the type in (23), but with the 
sound velocity 

g=s/sin 0 

instead ofs [see (22)l. Replacing s by 5 in (23), and integrating 
over 8, we find (29). 

Finally, we write expressions for aph for a spherical 
Fermi surface (far from a topological transition): 

Expression (30a) gives a satisfactory description of mea- 
surements of apt.,, in metal-insulator-semiconductor struc- 
tures'' and in conducting layers on germanium surfaces4' 
(Ref. 17). 

4. DISCUSSION OF RESULTS 

Working from the known energy spectrum of the 2D 
electrons in the samples with a superlattice (Fig. I), we 
would expect to find two topological transitions in the range 
of densities N, studied. We identify these two transitions 
with points A and B (Fig. 2); the first is associated with the 
appearance of a neck, and the second with the onset of a new 
cavity. 

Comparison of the experimental data (Fig. 2) with theo- 
retical results (Fig. 7) shows that the structural features ob- 
served in a in the region of the topological structure are 
associated with changes in both a, and apt.,, and are a super- 
position of curves a and b in Fig. 7. For example, feature A 
consists of a maximum and minimum separated by a sharp 
jump, as in the theoretical structural feature, a? a (AE)-'. 
For ax", however (for the case in which the heat flux is di- 
rected along the neck), the minimum is significantly deeper 
than the maximum is high, while for ayy the maximum is 
larger than the minimum. This fact can be explained in a 
natural way as due to aph , which is predicted theoretically to 

be negative in the former case (a$cg a - IAEI - 'I2) and posi- 
tive in the latter (a$'g a - ~AEI -'I2). 

For structural feature B the minimum should be inter- 
preted as an a, contribution of the type (a? a - ~(AE) ,  and 
the maximum as an aph contribution of the type 
(asing ph a (AE) -1120 (AE). AS the centers of the structural fea- 
tures (the arrows in Fig. 2) we choose the position of the 
minimum of the curve for a, for feature A and the position 
of the maximum for a,, ; for feature B we choose the position 
of the minimum of a .  These characteristic points undergo 
the least shift upon a change in temperature. 

The clear manifestation of both apg and a$g on the 
experimental curves is evidence for a relation a? -a:ig. At 
the same time, the data in Fig. 5 show that at the lowest 
temperatures (T-0.5 K ) we have aag - 5 a 2 ,  so that the rel- 
ative size of the structural feature, a f i g / a z ,  should be much 
greater than aY/a:g- 1. 

To estimate the size of the structural features, we write 
numerical values for the cutoff factors which we used above: 

( E ~  and kF are calculated from N, , while the time r is calcu- 
lated from the mobility p). We see that the primary cutoff 
factor for a, is W E ~ T ,  while that for a,, is the ratio qT/kF. 
Using these values, we find the following estimate of the size 
of the structural features at the minimum of A:  

sing sing 
a e  (Jrnzlm,)lh ERT - - - - -  Uph k~ 

10, ---- 3-6. 
urg m h a r e g  ph qr 

In the former case, the size of the structural feature predict- 
ed by the calculation is an order of magnitude greater than 
the experimental values. A possible explanation for the dis- 
crepancy is that the estimates in (8) and (14) were derived in 
the T approximation. Estimates (3 1) can be reconciled with 
the experimental results by assuming that the value of T near 
the singularity k = 0 is much smaller than the average value 
over the Fermi surface. 

The temperature dependence of the absolute size of the 
structural features is determined by the changes in the cutoff 
factors. As we mentioned earlier, the quantity a2/arg is 
determined by WE,T and is thus independent of the tem- 
perature, whileafig/az is determined by q,/kF and should 
increase in inverse proportion to the temperature. The quan- 
tity E / W, used in analyzing the experimental data, is pro- 
portional to a /T2  + b according to (1). Consequently, de- 
pending on whether the structural feature in a comes 
primarily froma, orapt.,, , weconcludethatA (E / W )  willvary 
either as T - 2  or as T - '. This conclusion is not in contradic- 
tion of the experimental results (Fig. 5), which yield A (E / 
W) - T - I s 6 .  

We are primarily interested in determining the behavior 
of the thermopower near the structural features and in relat- 
ing this behavior to the theory. The change in the surface 
density Ns of the 2D electron gas is related to the change in 
the Fermi level E, by the obvious relation 
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FIG. 8. Behavior of the height of the singularity near the topological 
transition. Solid line-Behavior proportional to (AN,)-'; dot-dashed 
line-(AN,) - ' 5 ;  dashed curves-change in the region of the thermal 
spreading L0-0.45 K; A--0.58 K]. 9: A-9';O--9'27'; *,A-10"30'. 

The state density Y ( E ~ )  has weak structural features (5) at the 
points of the topological transitions. Because of the spread- 
ing, these structural features are nearly indistinguishable (as 
is clear from the conductivity measurements), and near the 
transition Ns and E~ may be assumed proportional. For a, 
we consider the left wing of peak A and the right wing of B. 
(In the gap, the features A and B distort each other greatly.) 
To eliminate the regular part of a ,  we consider the derivative 
of a with respect to E ,  which is proportional to da/dNs. To 
calculate da/dNs, we use the experimental points (Fig. 8). 
For the sample with 6 = Y, the curve ofda/dNs is displaced 
- 0.6 along the ordinate axis, so that we have da/dNs+O 

withANs/NA ~ 2 0 % .  Outside the region of the temperature 
spreading (the dashed curve) the behavior of a near the sin- 
gularity is described by 

This result is consistent with the theoretical conclusions, 
which show that the exponent should be between - 1.5 (the 
dot-dashed line) and - 2 (the solid line in Fig. 8), depending 
on whether a,, or a, is predominant for feature A, while the 
exponent should be - 1.5 for feature5' B. 

For peak B, the maximum of a corresponds to the con- 
dition q, - k,, where k, is the size of the cavity. As the tem- 
perature changes, the distance between the maximum of a 
and the center of peak B increases approximately linearly 
(Fig. 9). This behavior is consistent with the behavior of the 
size of the cavity if we ignore the pseudopotential splitting, 
k, - ( E ~  - E,, ), as we may for sufficiently large cavities. 

The positions of the points of the topological transi- 
tions, A and B, depend on the period of the superlattice in 
question or on the angle (6 ) between the surface on which the 
metal-insulator-semiconductor structure is fabricated and 
the (100) Si plane (Fig. 4). If the superlattice pseudopotential 
is ignored, the two transitions would occur at the same point, 
whose position could be determined from the tangency of the 
two Fermi spheres in Fig. 1. Their radius k, would corre- 
spond to the distance from the center of the electron valleys, 
O.l5(2n-/a)sin6 (for Si, a = 543 A), to the boundary of the 

FIG. 9. Temperature dependence of the distance from B to the maximum 
of a,, for samples with the following values of 9: A-9'; 0-9'27';- 
10"30'. 

Brillouin zone. The results of an estimate of NA found in this 
manner (the solid curve in Fig. 4) agree reasonably well with 
experiment. The reason why structural features A and B are 
positioned asymmetrically with respect to the solid line ap- 
pears to be some distortion ( a cos6 ) of the shape of the elec- 
tron valleys. 

The distance between peaks A and B determines the size 
of the minigap, A .  A calculation of A from the experimental 
values of N, - NA and the average state density, 
Y ( E ~ )  = 1.6.10" ~rn-~.meV-', yields a result in agreement 
with direct measurements of A (Refs. 18 and 19). 

We thank A. F. Andreev, M. I. Kaganov, and A. I. 
Shal'nikov for discussions, Z. D. Kvon for participation in 
the initial part of this study, and N. A. Nikitin for technical 
cooperation. 

"Continuous measurements were impeded by the long times required for 
relaxation to the equilibrium density N, ( V, ). 

"The diffuse component of the thermopower is aFP = 1.3.10-"T V/C. 
An estimate for a free electron gas yields a,-dk2T/31el 
E, = 1.9.10-6T V/C. 

3'See Ref. 15 for more details on the relationship between the thermo- 
power and the acoustoelectric effect. 

4'There are some errors in the calculation of a,, in the Appendix to Ref. 
17 -. .  

"At extremely low temperatures, T5: 0.5 K, irregularities appear at the 
left on the a(N,), curves. These irregularities cause a scatter of the 
points on the curve in Fig. 8 from the smooth behavior (see, for example, 
the results for 9 = 10"30', AN- 10%NA ). 
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