Theory of localization in large-dimensionality spaces

I. M. Suslov
P. N. Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow

(Submitted 29 April 1986)
Pis’ma Zh. Eksp. Teor. Fiz. 43, No. 11, 544-546 (10 June 1986)

The divergence of the localization length does not lead to a divergence of the
dielectric constant in the case of a Bethe lattice. This conclusion resolves the
contradiction between two exact results which have been published. Comparison
of these results indicates that there is a difference in the correlation lengths above
and below the Anderson transition. This circumstance imposes severe constraints
on the possible nature of the theory.

Systematic formulations of localization theory are available only for spaces of
dimensionalities d =2 + € (Ref. 1) and d = « (Refs. 2 and 3). Study of the case
d = « has become particularly urgent because of the difficulties which the 2 + €
theory has recently encountered.*’

A realization of the limit d = « is a Bethe lattice, which is a branched tree (a
Cayley tree). A graphic way to interpret this lattice is as a cluster on a d-dimensional
lattice, where d must tend toward infinity along with the thermodynamic limit. The
validity of this interpretation is supported by our entire experience in the theory of
phase transitions; the extensive results for a Bethe lattice agree with the results for d-
dimensional lattices if the former is assigned an effective dimensionality d = o.

Two groups of results have now been published for a Bethe lattice: 1) The results
on the existence of a minimum metallic conductivity o, and a maximum dielectric
constant €,,,, obtained by Efetov ef al.> 2) The result v = 1/2 for the critical index
of the localization radius obtained by Kunz and Souillard.? In each case, the authors
claim an exact solution of the corresponding model"; furthermore, the result v = 1/2
and the existence of o, are supported by numerical calculations.®’ According to the
general understanding, however, the result v = 1/2 contradicts the existence of a €,,,,,
since a divergence of the localization radius would imply a divergence of the dielectric
constant. In the present letter we show how this contradiction is resolved.

We begin with the localization criterion derived by Thouless.® We partition the
system into blocks of dimension L, and we introduce the parameter g, as the ratio of
the scale value of the overlap integral between blocks to the scale value of the spread of
levels in adjacent blocks. In order of magnitude, g, is the total (not the specific)
conductivity of a block of dimension L in units of ¢’/#. The dependence of g; on L for
the various values g, which g; assumes at microscopic scale, /, must be as follows
(Fig. 1): g, ~1 at the point of the Anderson transition, g, = g; g, — oo in the limit
L— 0 in the region of delocalized states (g,>g.) and g, —0 in the localized phase
(8o <g.)- This criterion is based on a clear physical idea: At large values of g, , the
wave functions of the different blocks are mixed with roughly equal weights, while at
small values of g; there is essentially no mixing.

We introduce the correlation lengths & and &' for g, < g, and g, > g., respectively,
as scale distances over which the deviation of g, from g, reaches a value ~g,, and we
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FIG. 1.
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introduce critical indices for £, £’ and the conductivity o:
E~@ -8) ", Fo(@-g)", 0x(@-g). M

In general, there is no reason to assume that the indices v and v are equal.

For the indices s and v we have the relation
s =v' (d-2) (2)

For L &' we have g; ~g, by virtue of the definition of £; for L»>£ ' we have g, > 1,
and the disordered system is a good metal with a macroscopic specific conductivity o,
so that we have g, ~oL?~>. Combining these two relations for L~¢&', we find
o~g. &' ?~? and thus (2).

Using Efetov’s first result,? s =0, we find v = 0; using the result of Kunz and
Souillard,® we find v = 1/2. We can show that this result does not contradict Efetov’s
second result: the existence of an €,,,, -

The conclusion that there is a divergence of the dielectric constant at the transi-
tion point is based on the following considerations. A disordered system in a localized
phase may be represented as a system of metallic granules of size £ which are separated
by a dielectric layer. For wave vectors g2 1/ £, the dielectric constant is then of the
ordinary metallic nature: €(g) ~ 1/¢%. We thus find €(1/8) ~& 2 and letting £ go to
infinity, we find €(0) = co. Let us analyze this argument more carefully.

At small values of g and o, we can use the following expansion for the longitudi-
nal dielectric constant of a metal:

4
" + € + - (3

elq w) =
@)=~ iw +Dq*

where the diffusion coefficient D is related to o by the Einstein relation o = e>Dv(u),
and v(u) is the state density at the Fermi level. Assuming g~ 1/&, we find the dielec-
tric constant of the disordered system to be

4no 4)
1 A SR (
€( /E' w) T +D£E—2 + €

where o, and D, are the conductivity and diffusion coefficient of a granule of size &.
Since at LS <& we have g, ~g. by virtue of the definition of &, we can write

o, ~ g /£¢7?
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At large values of £, we find 0, —0 as d—w.

An important point is that the limit o, —0, »—0 in (4) depends on the order in
which the limits are taken. A lower bound is imposed on the frequency w by the
reciprocal of the measurement time, and the order in which the limits are taken is
determined from the causality principle: First the object of the measurement is select-
ed, and then the measurement is carried out. If the object of the measurement is a d-
dimensional lattice, the limit w—0 can be taken first, and the static dielectric constant
diverges as £— 0. If the object of the measurement is a Bethe lattice, the limit d— oo is
taken before the beginning of the measurements, so that the limit o,—0 is taken before
the limit @—0. The dielectric constant is therefore equal of €, and remains finite in the
limit £&— 0. The existence of a maximum dielectric constant is thus a specific feature
of a Bethe lattice and is not a property of a space of finite dimensionality.

The relation v =+' is known to follow from the hypothesis of one-parameter
scaling® by virtue of the assumption of the analyticity of the Gell-Mann-Low function,
which is the only reasonable assumption within the context of one-parameter scaling.
The results of Refs. 2 and 3 thus unambiguously rule out one-parameter scaling in
spaces of high dimensionality.?

Another consequence of the inequality vs£4/' is that it is not possible to construct
a mean-field theory in the form of the Landau theory for an Anderson transition.
Correspondingly, the e expansion near the upper critical dimensionality (if it exists)
cannot have the standard form of the theory of critical phenomena. This conclusion
rules out, in particular, approaches based on a reduction of the localization problem to
a percolation.

In summary, for high-dimensionality spaces the values offered by Mott'® more

than 20 years ago for the indices, s = 0, = 1/2, are correct. Whether they are correct
all the way to d =2 or to some upper critical dimensionality remains an open ques-
tion.
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also thank M. V. Sadovskii for a preliminary discussion of this question.
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