“Anderson transition” in superconductmg superlattices

. M. Suslov
P. N. Lebedev Physics Institute, Academy of Sciences of the USSR, 117924, Moscow

. (Received October 31, 1990; accepted December 5, 1990)
Sverkhprovodimost’ (KIAE) 4(6), 1065-1072 (June 1991)

Superconducting superlattices consisting of alternating layers of two materials, with
thicknesses d, and d, which are small in comparison with the coherence length, are analyzed.
An analog of the de Gennes and Cooper equations is derived for the case of clean
superlattices consisting of metals differing in effective mass and Fermi momentum, for an
arbitrary transmission of the interfaces. Under certain conditions, there is a localization of
the order parameter in the layers of one of the materials, and an “Anderson transition” can
occur from a localized state of a delocalized state as d, or d, is varied.

1. INTRODUCTION

Some recent papers'? analyzing the mechanism for the superconductivity of twin planes
and interpreting the “superconductivity explosion” of 1987 have taken up the possibility of a
localization of the order parameter in small regions of coordinate space and the possible occur-
rence of an “Anderson transition” from a localized state to a delocalized one upon a variation in
the parameters of the system. Attempts to directly observe these effects experimentally, how-
ever, run into the difficulty that in practice it is not a simple matter to arrange the necessary
variations in the parameters in the situations discussed in Refs. 1 and 2. As we will show below,
these effects can be easily observed in superconducting superlattices.

Interest in experimental®* and theoretical®™ research on superconducting superlattices has

recently been heighténed by the development of new technological deposition methods (molecu-
lar beam epitaxy, among others) and especially by the discovery of the high T oxide supercon-
ductors,? since the layered structure of the latter materials makes superlattlces suitable models
for studying the properties of those materials.

We consider a superlattice consisting of alternating layers of materials 0 and 1, with thick-
nesses d,, and d,;==d and with an overall period L = d,, -+ ;. The constant V of the four-fermion
interaction of the BCS theory and the density of electron states at the Fermi level, &, take on the
values ¥, N, and V,, V|, respectively, in the layers. The Debye energies w,, of materials 0 and 1
are assumed to be identical. This approximation is justified in a weak-coupling theory because
of the comparatively weak w,, dependence of the transition temperature 7, of the superlattice.

If d, and d, are large in comparison with the coherence length £, the superlattice can be
described by the Ginzburg-Landau theory with suitable boundary conditions.” We are instead
interested in the opposite case, d, d; <&, (but d,,, d,>a, where a is the interatomic distance). In
this case, T, of the superlattice is given by the BCS formula T, ~w,, exp( — 1/A.5), where A4
is given in the case N, = N,=N by the Cooper formula'®

~ dg + Ad :
Qﬁ=£%%;j4wxo=mwwiﬁ;nN. 0
In other words, it is found by taking a simple spatial average of the quantity A = V. This result
remains in force for an arbitrary coordinate dependence of V' (Ref. 11). For extremely dirty
superconductors, expression (1) was generalized by de Gennes'? to the case” N,#N,:

VoNidy + VN3,
Aetf =" Nedo T Nyd; o (2)
In the present paper we are interested in clean superconductors with N, N,, which is a case
not covered by Eqgs. (1) and (2). As in Egs. (1) and (2), the quantity 4.4 turns out to depend
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“on only the ratio dy/d,, and it lies between 4, and /,. The nature of the averaging of 4 depends
,' strongly on the penetrability of the interfaces between materials O and 1. The localization of the
~order parameter which we mentioned above is seen in the circumstance that under certain
" conditions A.q does not tend toward A, as d, 0 (under the conditions for the applicability of
_these equations, d,>a). The Anderson transition is seen as a slope change on the plot of T,
ersus d, (under the condition L = const). It stems from an abrupt restructuring of the order
arameter in a small interval of d; values. These effects obv1ously do not occur under conditions
uch that Egs. (1) and (2) are applicable.

. PROPERT!ES OF THE SUPERCONDUCTING CORE

.~ We adopt the direction of the spatial variation of the superlattice as the z axis, so the
arameters ¥ and N are functions of z. In calculating T, of the superlattice we ignore surface
ffects; i.e., we ignore the detailed behavior of physical quantities over distances ~a from the
nterfaces. At the same accuracy level we can discuss a two-layer sandwich in place of a super-
attice. We assume that the region 0 <z <d is filled with material 1, and the region d<z< L
ith material O.

-~ Under the condition L <€vg/wp (v is the Fermi velocity) the kernel K(z,z') in the
Gor’kov equation

AR = V) [ K (5 2) AR d 3)

>can be regarded as piecewise-constant? [like the function V(x)]:

K;,0<z2z <d,

Vi,0<z<d
K(z,z')= Koo,d<Z,Z’<Ln ) V(z): Vl d<z<lL (4)
" Kop» (z = d)(z' — d) < 0, 0
We can then seek a solution of (3) in the piecewise-constant form
b ALO0<z<d,
A& =1pgd<z<L. (5)
The temperature dependence of K; turns out to be logarithmic (§4):
1,14 wp,
= Lij In 7 - ) (6)
- The equation for T, is
' Lldwp : 1, 14 ®
1= (VoLoodp + ViLydy) In ———= + VoVydody (LooLyy — Ly’ ——2=o.
(7N
From the sum rules'? for the kernel K(z,7')
1, 14 w
[ K(z, ') dz’ = N(z) ln =——2 (8)
_We find two equations relatmg Ly, Ly, and Ly;:
Loodo + Loydy = No5  Lyydo + Lyydy = Ny . A £

For dirty superconductors, the de Gennes diffusion equation'? yields a third relation
among the L;. It thus becomes possible to derive Eq. (2). For clean superconductors one of the
Quantitites L; must be calculated from a microscopic model.
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3. MICROSCOPIC MODEL , . ¢

For materials 0 and 1 we adopt isotropic quadratic spectra of the general form

& K- k% & K- k%
So(k)=Uo+mE—2—nT"; Sl(k)=U1+2_,nl‘E"-2';'n_l—‘.

(10)
The energy is reckoned from the Fermi level, so K, and X, are the corresponding Fermi mo-
menta. By virtue of the separation of variables in the Schrddinger equation, the one-particle
wave functions are of the form @(z)exp(iKr, ), where r, = (x,p) and K | = (K.,K,). If the
unit cells of materials O and 1 are identical in volume, the boundary conditions at the interface
(at the z = d plane for a sandwich) are'®

P+ 0 =pd =0 p@+0) @ =Cmmpdy

. The parameter x is a characteristic of the interface. It determines the transmission coefficient of
the interface, D:

D ~kk/%? for ®2 2 Kk

D~1 for 2 < k%-
(12)

In the estimates we assume ky~k,; ~kr ~a~ ' and m ~m,. We are ignoring the dependence of »
on k, as we are justified in doing near the band edge. :

The one-particle eigenfunctions P, (z) and the eigenvalues £, (k) are classified in terms
of the transverse quantum number 5 and the longitudinal quasimomentum k. At a fixed &k,
states s of the superlattice may belong to any of the following: a continuous spectrum, a guasi-
discrete spectrum, and a discrete spectrum. In general, one can distinguish four spectral regions
(Fig. 1): region I, in which the states belong to the continuum and propagate throughout the
superlattice; region II, in which the states are localized within the layers of material 1 and form
a quasidiscrete spectrum because of a quantum size effect (the overlap of the wave functions
corresponding to neighboring layers of material 1 is ignored); region 111, which contains states
of a quasidiscrete spectrum which are localized in the layers of material 0; and region IV, which
contains surface states (Tamm states) which belong to a discrete spectrum and which are
localized near the interfaces. For definiteness we assume k, > k.

For a two-layer sandwich with homogeneous boundary conditions at the points z=0 and
z = L, the expressions for Pu, (2) and €, ( k) in region I are

FIG. 1. Spectrum of a superlattice for m, m,>0. Line 1
[e=(k} —k3)/2m] and line 2[e= (k§ — k})/2m] break up
the (£,k ) plane into four regions. Region I—continuous spectrum

k, (the structure of this spectrum which is associated with the splitting
into minibands is not shown); II, III-—quasidiscrete spectrum
(consisting of a set of two-dimensional bands); IV~the region out-
side the spectra of materials 0 and 1, in which there are surface
states (line 3). - .
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ﬁ sin ksdo .
: ' — - sin ¢gz , O<z<d;
o ¢sku(z) = {Ydsin kg + dg sin? qsd (13)

~v2 sin ¢, d
Yd sin? kdy + dy sin? q,d

sink(z-L), d<z<L,

2 2 7
ex(k)) = (ks + k] — kg)/2m = (¢ + Ky — k3)/2m, ; (14)
g
2 = , x o omi : 15
ksdg = 2ms + 7 + 2 arccot [k_s‘+ my &, cot qsd] . - a4y
‘ 4. CALCULATION OF Lo,

The kernel K (2,2') is expressed in terms of Pk, (z) and £, (k):

- %k Psk(2) Psk (2) Pk (2) Pk (2)
K(z,z)=T i i 1l o 7
= Imgwof (?Jt)z w @7 eky)  —iw = ES:(k") (16)

As Kirzhnits and Maksimov have shown,'! under the condition L €v,/@ we can discard
terms with 555" in (16). That this simplification is legitimate can be verified by noting that for
s#s' we have |, (k) — &, (ky)|>w, and by evaluating the terms in the sum over s and s,
ignoring the dependence of ¢ (z) on k. Incorporating the latter dependence does not change
the estimates of the terms with s = ; it can only reduce the terms with s#s’. As an example, let
us calculate K,,,. Assuming 0 <z<d and d <z’ < (see endnote®) in (16), and assuming that z
and Z are separated from interfaces by distances large in comparison with the interatomic
distances, we see that only region I contributes. Substituting in (13)—(15), and noting that the
vicinity of the points g; = g, k, = k,, where

, qf={;3_k2l; kF@—:kf, (17)

- contributes to the sum over s, we expand the slowing varying functions in g, ..— g,and k, — k,.
Expressing sin k,d,, in terms of cot ¢,d and using Eq. (15), we find a sum over the wave vectors
g, which are the solutions of the equations W(g,) = s with the following function W(q):

- p g G— 9 »  mg ~
2_7rW(q) 7w + 2d, [ ke + my % ]“+ 2 arccot {kf + ks cot gd| . (18)

Using the transformation

o0

> Fg)= _f dq F(q)

§ = —00

> W@ 8(Wa) - s

s= -

(19

=[daFg w1 Y M9,

§= -~

we find (v, = ¢q/m,)
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y = L) dg—L
Koy (z, 2') T% |k|;|[<k° ) ALK Uk 'y

4 sin? gz sin® [(kf+ m _kQ)q](z' -0
my f 2 eiZ:tsW(q) , (20)

[¢+ doftad)] [w2 + (g - af)’] £

where

2
. X q
f(gd) = sm2 qd + Z. sin qd + —m—fcos qgd| .
f my K¢
(21)
We expand the periodic functions of gd in Fourier series, introduce a shift g—¢ + ¢,, and
discard the terms which contain rapidly oscillating factors e™%%, ¢ with s5£0, ¢*%, etc.,

which vanish upon the integration over k. As a result, we are left with only the term withs =0
in (20), and the dependence on z, z' disappears:

Ko = in 21420 y 1m1 dy
T i<k, @0 atlyo 4t d0)" (22)
Evaluating the other integrals, we find the following -expression for Lg;:
_Imyld '
YA
. 2 Y
Y"f"f;”‘? = (g +x)1+ 22% ] - k) + o (kl ko+—,ﬁ)
X 0
L2 ﬂi LLm
- d m? do m2

(23)

Expression (23) along with (7) and (9) gives us a complete solution of our problem of calculat-
ing T. of the superlattice.

5. ANALYSIS OF THE EQUATIONS DERIVED HERE

- It is easy to see from (7), (9), and (23) that T, is given by the BCS formula
T, = 1.14wp exp( — 1/A4), where A is a function of only the ratio d/d,, not of d or d,
separately. With m = m,, k, = k,, and x = 0, the expression for 1., becomes Cooper’s formula,

(1).

With k,~ky,~k, — ko and m ~m,, the structure of the radicals in (23) distinguishes three
regions in which simple asymptotic expressions can be derived: the regions d /d, <D, D<d /
dy<D "', and d/dy>D ~"' (for D~1, the-second of these regions does not exist). Setting
Ao = VolN,, and A, = V| N,, and introducing

1.
T" = 1,14 wpe AL A= ViN°, ‘ (24)
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.- where N * is the density of states at the Fermi level corresponding to region II of the quasidis-
- crete spectrum,

= 1 — N
kl>|k"|>k° (271) d 2'?‘1 - =0 2% | 0 (25)

}\we ﬁnd in the region d /do<D
T~ T _ VoNi =N (ViN1 — VoNo) d

. , T > T. ; .
:Tw (VoNo (VoNo — VN L7 7% (26)
T =7+ o|T" & , To<T.
DL @7)
In the region D<d /d,<D ™' we find
T.- Ty 1 d ko
c —
T WoNg | dg 2’ T Ters
T, =Ty 1Ny do k(z)
T - 2 ¥ "5 TCO < TCl
Sl 2aviN)*
’;In the region d/dy>D ~' we find
L Te= Ty _ ViNo(VolNo — V1N1) dy
Ta My’ L (28)

Figure 2 shows 7. versus d at a constant L for various relations among 7y, T,;, and T* (in all
cases, the relation 7* « T, holds). Here are the most characteristic features of these curves: (a)

FIG. 2. T, of the superlattice versus d at constant L. a—
T, >T*>T4;—T,>To>T* Thecase T, > T, is
similar to case (b) with 7* = 0 and with an interchange
of materials 0 and 1.

K]
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As D0 we find T, = max(T,;,T ). This is just what we would expect to find on the basis of
physical considerations, since the layers of materials 0 and 1 become independent in this case.
(b) The value of T, lies between the transition temperatures T, and T,, of the original
materials, 0 and 1. (¢) In the case T* > T, (Fig. 2a), T, does not tend toward 7, as d—0 {(in
the region of applicability, d>a), because of a localization of the order parameter in the layers
of material 1. A similar effect occurs for a planar defect in a superconductor,? in which case
the effect stems from the presence of Tamm levels. In the case at hand, the role of the Tamm
levels is played by states of the quasidiscrete spectrum which are localized in the layers of
material 1. (d) In the case T, > T'* (Fig. 2b), an “Anderson transition” occurs at the point
d =d_ ~ D, from a regime of a localization of the order parameter in the layers of material 1 to
a delocalized regime in which the order parameter propagates throughout the superlattice. The
transition causes a slope change on the plot of T, (d). To study this transition we set
Ny - Ny

Ly, ET; Tyg= 1,14 wpe
express Ly, and L, in terms of Ly, in accordance with (9), and substitute the results into (7).
In the region d €d, we can omit the terms ~d /d,; we find T. = max(T,,, T, ) (see endnote).
Since N, changes from N * to N, with increasing d, the quantity 7, (see endnote”) changes
from T* to T,,, and at a certain point d, it intersects 7. In this approximation the curve of
T.(d) thus has a slope change at d = d,. From the Gor’kov equation (3), with the kernel in
(4), we easily find '

VIKOIdO —-A VI(NI_NO)Ndln(1714wD/TC) )
-ViKd "% 1-WVNyin(Ll40p/T) (30)

~-1/ViN, , (29)

Ford<d. wehave T, = T, and A, ~A,. For d>d_, the denominator vanishes, and we have"
A/Ay = . When the terms ~d /d, which we discarded are taken into account—these terms
are on the order of D near the transition—the slope change on the T, (d) curve is stretched out
over a distance 5d ~ D '/?d_, and the ratio A,/A, is on the order of D ~!in the region d>d,. At
small values of D (which can be arranged by sputtering a thin layer of an insulator between
materials 0 and 1), the transition is sharp. If a magnetic dopant is introduced in the layers of
material O, the curve of T, (d) changes only in the region d < d,.. This property might be utilized
to detect the transition.

For T, > T.,, a corresponding transition occurs in the region d,~DL. This case is similar
to the preceding case with T'* = 0, and with an interchange of materials O and 1.

I wish to thank A. F. Andreev for a discussion of these results.

YStrictly speaking, the topics in Refs. 10 and 12 were two-layer sandwiches, rather than superlattices. However,
since 7, of a film of thickness d <&, is the same, within surface effects ~a/d, as T, of the bulk material,*™" it
is easy to see that 7, of a superlattice will be the same as T, of a sandwich within terms ~a/d, and a/d,. The
opposite assertion in Ref. 7 is incorrect; in particular, it contradicts the results of Refs. 6 and 11

2The assertion that K(z,2') is piecewise-constant was made by de Gennes'? for dirty alloys with L<&~EJ (lis
the mean free path), but the stronger condition L €/lvz/w, was formally used in Ref. 12. In clean supercon-
ductors, property (4) is valid under the condition L <vz/@p ($4). At LR ve/wp, this property does not hold,
as is clear from simply the properties of the kernel K,(r) for a homogeneous superconductor [Ko(7) «r™" for
velwp Sr5é,]. Nevertheless, the scale value vx/@, is not manifested at all in several cases, and the results are
valid over the broader region LS &, (cf. Ref. 6). l S ‘

*The Russian pages from which this translation was prepared were afflicted with many small omissions, appar-
ently caused by a mispositioning of the pages during copying (translator’s note) :

4 Another omission on Russian page. It’s possible that this should be T, =max(T4,,7,); the subscnpt “a' » and
the “)” are guesses (translator’s note).

S Another omission; the subscript “d ™ is a guess (translator’s note).
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