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It is shown that the change in distance d between two linear defects in a two-dimensional superconductor can lead to the
existence of periodical singularities T~ (d—d,) ! in the dependence of transition temperature on d, such singularities are the
strongest among the ones known at present. The smoothing of these singularities is investigated with the following cutoff factors
taken into account: inequality to zero of the coefficient of transmission through defects, quasiparticle attenuation, the finiteness
of the temperature. The opportunity of raising T, of oxide superconductors by inserting planar defects normal to the Cu~O planes

is discussed.

1. Introduction

In the authors’ recent paper [1] the existence of
oscillations of the superconductor transition tem-
perature, T, with a change in distance between two
planar defects inserted in a superconductor was
shown: this effect is similar to the effect of quantum
oscillations which was observed in covered films [ 1-
4] and was discussed by Kagan and Dubovsky [5].
According to ref. [1], to raise T, one can use the co-
herent interaction of the planar defects; in the pres-
ent paper this opportunity is discussed in relation to
high-T, oxide superconductors [6].

We assume that the BCS-type theory with coupling
constant A, and frequency cutoff wy is valid for the
oxide superconductors; it does not matter what the
coupling mechanism between electrons (phonon, ex-
citon and so on) is. Let us insert into the supercon-
ductors periodically repeated couples of planar de-
fects, normal to the Cu-O planes: the distance d
between defects in the couple is much smaller than
a period L*#, and L<{,, where & is the coherence
length. Due to the planar defects the change in T

¥ On a qualitative level the obtained results are also valid in the
case d~L. This is the simplest case for realization in
experiment.

occurs. This change is defined by the following
expression [7]:

8T, 1
o = WL V%sz [No8N(z)+8N(2)?],
ON(z)=N(z)-N,, (1)

which is the exact consequence of the Gor’kov equa-
tions [7] for the case of localized space inhomo-
geneity; z-axis is normal to the plane defects, N(z)
is the local density of states at the Fermi level [4],
integration is carried out over the interval including
one couple of planar defects; T, Ny and V,, are cor-
respondingly transition temperature, the density of
states and BCS interaction constant for the pure su-
perconductor (we neglect the change of V near the
planar defects). If we neglect the interaction be-
tween the Cu-O layers, we may consider a two-di-
mensional superconductor with linear defects.

In a three-dimensional superconductor containing
planar defects with small transition coefficient the
oscillations of the transition temperature have a saw-
like form [1]: the system is divided by the defects
into weakly coupled subsystems — films of thickness
d, which have a quasicontinuous spectrum and the
films of thickness ¢ with a spectrum consisting of a
set of 2D bands (fig. 1). If thickness d is increased,
the distance between bands decreases; when the bot-
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Fig. 1. When the coefficient of transmission through defects is
small the system is divided by defects into weakly coupled sub-
svstems of two types — films of thickness d;, which have a quasi-
continuous spectrum and films of thickness d with a spectrum
consisting of a set of 2D-bands (on the right).

tom of some band intersects the Fermi level, 7, jumps
up due to the jump of the density of states. In the
two-dimensional case, 1D bands appear instead of
the 2D ones in fig. 2. In the vicinity of the bottom
of a 1D band the density of states depends on the
energy € as e~ /2, so one can expect the appearance
of periodical singularities ~ (d—d,)~'/? in T,. The
periodical singularities do appear (fig. 2), but they
are stronger than the ones discussed above,
T.~(d—d,)~'. The problem is that, in the intuitive
arguments given above, we consider 7 of the space-
inhomogeneous system as a function of the average
density of states only (situation corresponding to the

Anderson theorem [9]). According to eq. (1), this
is true in the case when in the integrand the first term
is dominant (for example in the case ON(z) <K Ny);
the doubling of the singularity power is the conse-
quence of the second term (in eq. (1)).

2. Form of T, oscillations without cutoff of the
singularities

Let the Cu~O layer lie in the plane (y; z); sepa-
rating the variables we get one-particle wave func-
tions and eigenvalues E,, in the form

Y. (y,2) =p,(z)exp(ikyy) ,

Ey=e,+k2/2m, (2)

where k; is the longitudinal quasimomentum and s
is the transversal quantum number. It is supposed
that the two-dimensional spectrum has the form
e(k)=k?/2m, and that linear defects have a negli-
gible thickness in the transversal direction and are
situated at the points z= t d/2 (accordingto eq. (1),
it is enough to consider only one couple of defects).
The boundary conditions for the wave function of
traversal motion ¢(z) at point z=d/2 have the form

9(d/2+0)=¢(d/2-0),

A
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Fig. 2. Form of T, oscillations with changing d (for d=const) without cutoff of the singularities; 1 and 2 are the envelopes of maxima
when x is finite (1) and / or T'is finite (2); 3 - asymptotic form of the envelope of minima for the case n>> 1.
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9'(d/2+0)—¢'(d/2-0)=xp(d/2) , (3)

and at point z= —d/2 the conditions are analogous.
Using the definition of the local density of states:

N(f, l‘)= z l lIUn(r) |25(6—En)

_/2m ,0(e—¢,)
= o Zs:|¢s(2)] \/6——65 > (4)

calculating ¢.(z) and e, transferring from summa-
tion by s to integration and neglecting terms ~a/L
(a is the interatomic space ), we get for N(z) =N(eg
v, z):

dg

m
=) =g

T

N(z)=

o t——F

2¢* 1429 /x*+ U, (g)cos 29z

= o) . lzl<d/,
Uz (q) . Usg) . ,:I
—2117 2 3347
[1+ () cos 2qgz’+ 7(q) sin2qgz’ |,
z'=|z|=d/2>0, (5)
where

V(g) = (sin gd+ (2q/x)cos qd)>+4(q/x)*,
Ui (g)=(2q/k)sin gd—cos qd ,
U,(q) = —sin2gd— (2q/x)sin 2qd
+(2¢%/x%) (1 =3cosqd) + (2 /x*)sin 2¢d ,
Us(q)=(2q/x)sin’qd+ (3¢*/x*)sin 2qd
+ (4¢3 /x>)cos?gqd . (6)

The expected increase of T, is large in the case of
the strong defect, i.e. under condition |x| > kg. Be-
low we shall discuss the case x>k only, because
mean-field theory is not valid in the case — k> kg #2.
The expression for local density of states in the re-
gion |z} <d/2 can be transformed to

%2 In the framework of mean-field theory in the vicinity of the
linear defects, a localization of the order parameter occurs due
to the existence of Tamm states, but in the case d>>a it is
destroyed by fluctuations. Thus, in the two-dimensional case
(in opposition to 3D), the existence of Tamm states has no
qualitative effect and the results for the case —x>> kg should
be similar to the ones for x> k.

dg 242

mn 4
2 (k%_42)1/2 K2

N(Z): T

© b '

1 —cos 2gz cos gd’
sin?qd’+4q%/k*

(7)
It is clear that the integrand is localized near the
points

q,=nn/d, d=d+2/x, (8)

and one can approximate it by the set of J-functions.
The same situation occurs in the case |z| >d/2. One
can get

N(z)

m f I—(=1)"cos2q,z
nd = (kg—qn)'?

No[1=Jo(2kez’)1, 2z'=]|z|—d/2>0, (9b)

lz| <d/2, (9a)

where No=m/2n, M= [ked' /7], Jo(Xx) is the Bessel
function. According to €q. (9b), the integral over the
region | z| >d/2 in eq. (1) does not depend on d and
it may be calculated for d=0, i.c. for the case when
two defects merge into one; the integral on the region
|z] <d/2 gives the oscillational part of T

87.(d) =8T:(0) + (8T(d) Yose - (10)

Substituting eq. (9a) in eq. (1), we get ([...] - in-
teger part of the number)

(STC)OSC 1 dl[ 4 2 2 ]
L B P S
Too Ao L S1+nS1+nS2 ’
[a] 1 el
Si= rZ’l (a2—n?)17?’ Sy = n;} aZ_n?’
a=ked (11)
T

In the case when « is not very large, S, and .S, consist
of several terms and they are calculated straightfor-
wardly; in particular, (87,)..=0 for 0<a<1. In the
case o> 1, one can express 87, in terms of peri-
odical functions y({«}) and f(a).

(STC)OSC _ 1
Teo  WAokpL
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X{ln 2a—l//({a})+21c\/&f(a)+4f2(a)—n} ,

Aa) = ‘i cos(2nn{a}—n/4)’ v de”

n=1 ﬁ T

(12)

where w(z) is the logarithmic derivative of the
gamma function [10], {...} is the fractional part of
the number. In the vicinity of the nth singularity we
obtain in the leading approximation in #:

(6TC)OSC — 1
TCO aan_ nlok}:L
f(a— 0 -
<ot/ 0 O 3
(13)

where f;m= —1.03 is the minimum of the function
“(a); the first term in brackets gives the envelope of
the minima of the oscillations (fig. 2).

Substituting eq. (9b) in eq. (1), one can calculate
the value of T,(0); the integral of (8N)? diverges
‘pgarithmically for large | z]. For dirty superconduc-
tors the cutoff distance is the electron mean free path
.. The finite value of / may be taken into account by
1ae substitution

:ne—En)ﬁ%m (14)
1n eq. (4), from which

IVNIZIo8N(z)e 21V [=pR/y. (15)
{zlculating the integral in eq. (1) we get #

T 1

‘__ = n/lokFL[ln(4kFl)_n] . (16)

1z =2 case of a clean superconductor, the result for

* Tre Zzmivation of eq. (1) for clean superconductors also re-

me~s wzlid in the dirty limit, but we must use the average

£ = = instead of the kernel K(z, z') (average is taken over

mrowTr Zistribution). Instead of N(z), the average quantity

~ ©  zrpearsineq. (1), which we can express in terms of

e mnee—Eme part of the average Green’s function < G(z; ') .

—zcal attenuation is taken into account by the
<—z+1y, which is equivalent to eq. (14).

STC(O) with logarithmic accuracy is obtained from
eq. (18) by the substitution /- L.

3. The cutoff of the singularities

Consider the main factors leading to the cutoff of
the singularities.
(1) The finiteness of x.

If « is finite, then in the region |z| <d/2 we may
write N(z) in the form

N(z)= ozo: A [1=(=1)"cos2qg,z], (17)
n=1
where
qm I 2g;/x?
= (qn+q) )2 (gd')*+4qn/x*

(18)

The singularities appear due to the Mth term of sum
(17) (gm~kg). Separating this term and assuming
K=co in the others, we obtain for 7 the expression

( 3 Tc ) osc
TcO

1
= AokeL

a—n

2 6m
N L ST
Calculating 4,, for finite x we get

(STc)oscl 1

Two = ThoksL

|Cl4>ﬂ

X{anmm\/ﬁ+n fF(u)+ 7k_2ﬂ }

T K .
u—zk—z(a ny, (20)

where the function F(u) describes the form of a
smoothed singularity and is defined by

1 [ dx 1
F(”>=;lﬁm

- L<u+(uz+1)”2>l/2
2 ur+1

21)
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Substituting F(u)— Fo=(3/4)¥4~0.81, one can
obtain the envelope of the maxima.
(2) The quasiparticle attenuation.

The substitution (14) in eq. (4) takes into ac-
count the finiteness of the electron mean free path.
In consequence one can obtain N(z) in the form (17)
with

w12 V
I [2my k%—qf,)
An= 21ta”< X ) F( 2my )’ (22)

and the function F () is the same as that in eq. (21).
Using eq. (19} we get

(STc)oscl _ L
To 1. m-kel

x—r

, 1/2
X{anmm\ E;:x(f—f) F(u)+6%%F(u)2} ,

(23)

The envelope of the maxima is obtained by the sub-
stitution F () — F_... It is interesting that its depen-
dence on n differs from eq. (20).

(3) The finiteness of the temperature.

When deriving eq. { 1) in ref. [7], it was supposed
that N(€, =) changes slowly on the scale w,, and can
be taken in the point e=¢g. Taking into account that
N (z) arises from 1he sum rule for the kernel,
“K(r, Pydr=T17 r»x(_rnn% , (24)
1t is easy to understand that in the general case we
must use

. © A(e 2)

N, =507 Y | de—== 25
#(z)=/0 .:_‘ 66;_{_&)2 (25)

instead of N( -\, where summation is taken on Mat-

subara frequencies w,=nT(2s+1), (|ws| <wp); it
is taken into account that 7'~ T . Transforming N
in the form (171, we get

A, J2m . Tvx‘.de 1

Tomd Tzl Jeler (a—kR) 2m P+
(26)

aJ
If {a} /o> ; € we return to eq. (13). In the op-
posite case. in accordance with eq. (19). we get

(8T osc| 1

Two = mhokeL

]a—>n

1/2
x{znfmﬁ+ %(e—;) G(u)

g el o }
+ 4 TnG(u) ’
€ A—1 Oodxth(x—u)
_wasn g, [unew
= Sw=] AT 27)

The cutoff of the singularities occurs at {a}/a~T/
€r; in the interval T/ep<<{a}/a << wy/ € the sin-
gularities have no pure power behavior due to log-
arithmic corrections. The function G(u) describes
the form of the maxima; we may obtain the envelope
of maxima from eq. (27) by the substitution
G (1) > Gra~3.8.

4. Discussion of the results

From egs. (20), (23) and (27) we obtain that the
highest increase in T, is reached under conditions

d~a: KZkF(éO/a)l/25 12505 (28)
and it has a value

8T, éra

T “T.L° 2%

If L~&, then we obtain 67 ,~ T, If 07,2 1., the
initial eq. (1) is not true, but from the physical sense
one can expect further increase in 7, when L be-
comes smaller than &,. The upper estimate (29) may
not be reached because (1) the planar defects are not
perfect; (2) in the vicinity of a singularity of the
states the Fermi level is unstable [11], etc.

In the limit k—oo, a two-dimensional supercon-
ductor is divided into 1D strips, in which supercon-
ductivity is destroyed by fluctuations. The fluctua-
tions are not important if J, 27 [12] (J, is the
transversal overlap integral). Substituting J, ~
ex(ka)~! we get in the case d~a)

kSke(&o/a) (30)
which is compatible with eq. (28).
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One can create the considered structures (fig. 1)
by the use of:

(a) the control of the twinning processes;

(b) the insertion of layers of alien atoms (a-ori-
ented superlattices of the oxide superconductors with
the period 100 A already created [13]);

(c) deposition of thin films (about several Cu-O
layers) on substrata with artificial periodicity.

It is interesting that the effect of increasing 7, oc-
curs even in the case of random position of the planar
defects (with the average distance L). Assuming that
the distance d between defects fluctuates on the scale
8d(kg'! « 8d<«<d, L) and taking the average of the
egs. (20), (23) and (27) by d in the interval from
0 to L, we get (taking into account egs. (10) and
(16)):

oT. _ —L—[3ln max{x—2 kil E—F}
TcO - TtllokFL k12: ’ V4 T

+Inmax(k/, kL)+In kd+0(1)] ,

i.e. the estimate 87,/T~a/L is valid with a loga-
rithmically large factor. This result is qualitatively
valid if 8d ~ d~ L, when the occurrence of the defects
is absolutely random. It is possible that the height-
ened 7 values which were irreproducibly observed in
the beginning of the high-T, superconductor inves-
tigation were stipulated by a high concentration of
the planar defects or their mutual disposition.

Acknowledgement

This work was supported by a Soros Foundation
Grant awarded by the American Physical Society.

References

[1] Yu.A. Krotov and .M. Suslov, Zh. Eksp. Teor. Fiz. (1992).
[2] V.M. Golianov, M.N. Miheeva and M.B. Tsetlin, Zh. Eksp.
Teor. Fiz. 68 (1975) 736;
V.M. Golianov and M.N. Miheeva, Zh. Eksp. Teor. Fiz. 70
(1976) 2236.
[3] K.A. Osipov, A.F. Orlov, V.P. Dmitriev and A K. Milay,
Sov. Solid State 19 (1977) 1226.
[4] H. Sixl, Phys. Lett. A 53 (1975) 333.
[51 Yu.M. Kagan and L.B. Dubovsky, Zh. Eksp. Teor. Fiz. 72
(1977) 647.
[6]J.G. Bednorz and K.A. Miiller, Z. Phys. B 64 (1986) 189;
M.K. Wu et al,, Phys. Rev. Lett. 58 (1987) 908.
[7]LM. Suslov, Zh. Eksp. Teor. Fiz. 95 (1989) 949;
idem, Supercond. Phys. Chem. Technol. 4 (1991) 2093.
[8]1 A.A. Abricosov, L.P. Gor'’kov and LE. Dzyaloshinskii,
“Methods of Quantum Field Theory in Statistical Physics”
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963).
[9] P.W. Anderson, J. Phys. Chem. Solids 11 (1959) 26.
{101 G.A. Korn and T.M. Korn, “Mathematical Handbook™
(McGraw-Hill, 1968).
[11] L.M. Suslov, Pisma V Zh. Eksp. Teor. Fiz. 46 (1987) 402.
[12]“The Problem of High-Temperature Superconductivity”,
eds. V.L. Ginsburg and D.A. Kirzhnits (Nauka, Moscow,
1977) pp. 261, 315.
[13] C.B. Eom, A.F. Marshall, J. M. Triscone et al., Science 251
(1991) 780.



