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We prove the Vollhardt–Wölfle hypothesis that the irreducible vertex Ukk′(q) appearing
in the Bethe–Salpeter equation contains a diffusion pole (with the observable diffusion
coefficient D(ω, q)) in the limit k + k′ → 0. In the quantum kinetic equation, the
quantity Ukk′(q) plays the role of a transition probability Wkk′ and its anomalous
growth as D(ω, q) → 0 is the physical reason for localization. As ω → 0, the relation
D(ω, q) = (−iω)d(q) holds in the localized phase, where d(q) is a regular function of q2,
related with the properties of a typical wave function. The presence of a diffusion pole
in Ukk′(q) makes it possible to represent the quantum ”collision operator” L̂ as a sum
of a singular operator L̂sing, which has an infinite number of zero modes, and a regular

operator L̂reg of a general form. Investigation of the response of the system to a change

in L̂reg leads to a self-consistency equation, which replaces the rough Vollhardt–Wölfle
equation. Its solution shows that D(0, q) vanishes at the transition point simultaneously
for all q. The spatial dispersion of D(ω, q) at ω → 0 is found to be ∼ 1 in relative
units. It is determined by the atomic scale, and it has no manifestations on the scale
q ∼ ξ−1 associated with the correlation length ξ. The values obtained for the critical
exponent s of the conductivity and the critical exponent ν of the localization length in
a d-dimensional space, s = 1 (d > 2) and ν = (d−2)−1 (2 < d < 4), ν = 1/2 (d > 4),
agree with all reliably established results. With respect to the character of the change
in the symmetry, the Anderson transition is found to be similar to the Curie point of
an isotropic ferromagnet with an infinite number of components. For such a magnet,
the critical exponents are known exactly and they agree with the exponents indicated
above. This suggests that the symmetry of the critical point has been established
correctly and that the exponents have been determined exactly.
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1. INTRODUCTION

It is now widely acknowledged (see, for example, Ref. 1, p. 76) that the theory of
phase transitions should, in principle, be constructed as a symmetry theory. Specifically,
the effective Hamiltonian of the system is represented in the form

H = Hc + τHint (1)

where Hc is the critical-point Hamiltonian, possessing a high symmetry; Hint is a general
operator which is compatible with the symmetry of the total Hamiltonian H; and, τ is a
parameter that measures the distance to the transition. The most general motivation for
the separation (1) is that the set of Hamiltonians Hc (for example, Hamiltonians of different
ferromagnets at the Curie point) should be separated from the set of all Hamiltonians H
by imposing some kind of additional conditions which can be interpreted as generalized
symmetry requirements.

In this approach, the problem consists of determining the complete symmetry of the
Hamiltonian Hc; thus far, it has been impossible to do for most phase transitions. For exam-
ple, the well-known Landau theory [2] starts from the obvious symmetry of the Hamiltonian
and does not take into account scale invariance and other symmetry elements arising as a
result of the fluctuations near the critical point (Ref. 3, Chap. 9, §2). The Landau theory
is exact, giving an example of a complete symmetry theory, only in high-dimensional spaces
where the additional symmetry associated with fluctuations does not arise. Another ex-
ample is the conformal theory of phase transitions for the two-dimensional case [4], which,
proceeding from the conformal invariance of the system at the critical point and the finite-
ness of the number of strongly fluctuating quantities, fixes a discrete set of possible values
for critical exponents.

In the present paper we adopt the symmetry approach to the investigation of the An-
derson transition [5 – 10], making a separation of the type (1) not for the Hamiltonian H
but for an operator L̂ which is the quantum analog of the Boltzmann collision operator.
The theory is based on the following initial assumptions.

1. The Schrödinger equation in a space of dimension d

[ε(p̂) + V (r)]ψ(r) = Eψ(r) (2)

describing the motion of non-interacting electrons with an arbitrary spectrum ε(p) in a
random potential V (r) is studied. As for the random potential, it is assumed only that the
averages with respect to its realizations can be calculated by the diagrammatic technique.
The existence of a diagrammatic technique for the standard models of a random potential
can be proved directly [1, 11, 12]. In the general case, the limits of applicability of the
diagrammatic approach are poorly investigated: some problems certainly arise for quasi-
random systems [13, 14].

The exact Green’s function of Eq. (2) is expressed in terms of the eigenfunctions ψs(r)
and eigenvalues εs (s = 1, 2, ..., N),

GR,A
E (r, r′) =

∑
s

ψs(r)ψ
∗
s(r

′)
E − εs ± iδ

. (3)
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The averaged Green’s function 〈G(r, r′)〉 is determined by a diagrammatic series (Fig. 1a),
and in accordance with current ideas [8, 15] it is assumed to be analytic at the point of
the Anderson transition: For d ≥ 4 this was recently proved by the present author [16, 17].
The quantity

φ(r1r2, r3r4) = 〈GR
E+ω(r1r2)G

A
E(r3r4)〉 (4)

which contains information about the kinetic properties, has a singularity at the transition
point. This quantity is determined by a series of diagrams with four legs, constructed on
GR and GA lines (Fig. 1b), and its properties are similar to those of the two-paricle Green’s
function in the theory of interacting particles [11]. It satisfies the Bethe–Salpeter equation,
containing an irreducible vertex U (Fig. 1c).

2. The following symmetry elements are assumed:
(a) Spatial uniformity in the mean. This leads to a conservation law for the external

momenta in the diagrams. This makes it possible to express 〈G〉 in terms of the self-energy
Σ

〈GR,A
E (k)〉 ≡ GR,A

k =
1

E − εk − ΣR,A
k

, (5)

and to introduce for the function φ the three-momentum notation φkk′(q) (Fig. 1d) and to
write the Bethe–Salpeter equation (Fig. 1c) in the form

φkk′(q) = GR
k+q/2G

A
k−q/2{Nδk−k′ +

1

N

∑

k1

Ukk1(q)φk1k′(q)}. (6)

Here and below the energy variable is equal to E + ω for the functions GR and E for the
functions GA.

(b) Isotropy and inversional invariance in the mean. With this symmetry taken into
account, the function φkk′(q) depends only on scalar products constructed from k,k′ and
q, whence, specifically,

φkk′(q) = φ−k,−k′(−q). (7)

Similarly, GR
k and GA

k depend on k2 and are even functions of k.
(c) Time-reversal invariance. This property makes it possible to choose real eigenfunc-

tions ψs(r) and to drop the conjugation sign in Eq. (3). Then G(r, r′) = G(r′, r) and
interchanging r1, r2 and r3, r4 in Eq. (4) gives in the momentum representation

φkk′(q) = φ−k′,−k(−q) (8)

φkk′(q) = φ(k−k′+q)/2,(k′−k+q)/2(k + k′) (9)

Comparing Eqs. (7) and (8), we obtain

φkk′(q) = φk′k(q). (10)

Solving Eq. (6) formally for the function Ukk′(q) and using Eqs. (7) and (10), it is easy
prove similar properties for this function:

Ukk′(q) = U−k,−k′(−q), Ukk′(q) = Uk′k(q). (11)
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Figure 1: a, b — Diagrams for the average Green’s function (a) and the quantity φ (b),
which correspond to a Gaussian random potential [1] or a Born approximation for randomly
distributed impurities [11] (in what follows, their specific form is not used). c — Graphical
representation of the Bethe–Salpeter equation; d — explanation of the three-momentum
notation.
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3. It is conventionally assumed that the Anderson transition occurs from a phase with
exponential localization of the wave functions into a phase with a finite diffusion coefficient.
The existence of exponential localization in the limit E → −∞ and finite diffusion for large
positive values of E (for d > 2 and an unbounded spectrum ε(p), 0 ≤ ε(p) ≤ ∞) has been
firmly established, as a result of many investigations, for Eq. (2). The proof of the existence
of a mobility edge is based mainly on Mott’s argument [7]: The existence of states with
different degree of localization and the same energy is impossible because of instability with
respect to an infinitesimal perturbation of general type. Mott’s argument does not forbid,
however, the existence of intermediate states — with power-law localization, hybrid states,
and so on — and correspondingly different types of ”Anderson transitions” (for example,
in the quasi-random systems [13, 14] the transition occurs from exponential localization to
a ballistic regime). In the present paper the first instability, arising with a motion from
deep in an exponentially localized phase, is investigated and it is shown that it does indeed
correspond to a transition into a phase with finite diffusion.

4. The general notions of the modern theory of critical phenomena [1] (such as para-
meter space, critical surface, relevant and irrelevant parameters) are used.

5. The theory is based on the physical idea that the localization phenomenon is asso-
ciated with a diffusion pole in the irreducible four-leg vertex

Ukk′(q) = U reg
kk′ (q) + U sing

kk′ (q) = U reg
kk′ (q) +

F (k,k′,q)

−iω + D(ω,k + k′)(k + k′)2
(12)

proposed by Vollhardt and Wölfle in the so-called ”self-consistent theory of localization”
(see Ref. 18, and also Refs. 10 and 19).

This idea agrees with the theory of weak localization [20 – 22], according to which
the diffusion pole in Ukk′(q) determines the main quantum corrections to the conductivity
which in turn determine the scaling behavior in a space with dimension d = 2 + ε. The
diffusion pole in Ukk′(q) with the classical diffusion coefficient Dcl arises as a result of
summation of fan-shaped diagrams [20]; Vollhardt and Wölfle conjectured that when all
diagrams are taken into account, Dcl is replaced by the exact diffusion coefficient D(ω,q).
They approximated Ukk′(q) by Eq. 12 with U reg

kk′ (q) = const, F (k,k′,q) = const and solved
approximately the Bethe–Salpeter equation (6), which, using the Ward identity [18]

∆Σk(q) =
1

N

∑

k1

Ukk1(q)∆Gk1(q), (13)

∆Gk(q) ≡ GR
k+q/2 −GA

k−q/2 , ∆Σk(q) ≡ ΣR
k+q/2 − ΣA

k−q/2 (14)

was rewritten in the form

[−ω + (εk+q/2 − εk−q/2)]φkk′(q)+

+
1

N

∑

k1

Ukk′(q) [∆Gk1(q)φkk′(q)−∆Gk(q)φk1k′(q)] = ∆Gk(q)Nδk−k′ . (15)
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There exists a simple estimate which gives the same results. We note that the second term
in the left-hand side of Eq. (15) is reminiscent of a Boltzmann collision integral and indeed
transfer into it in the limit of weak disorder (Sec. 3). It is significant that in the quantum
region the quantity Ukk′(q) plays the role of a ”transition probability”. Using analogue of
τ -approximation, D ∝ l ∝ 〈U〉−1 (l is the mean free path, 〈...〉 denotes averaging over the
momenta), and taking into account Eq. (12), we obtain the self-consistency equation of
the Vollhardt–Wölfle theory

D ∼ const

(
U0 + F0

∫ ddq

−iω + D(ω, q)q2

)−1

. (16)

This estimate is no less accurate and demonstrates more clearly the crux of the matter
than the approximate solution given in Ref. 18 for Eq. (15). As the degree of disorder
increases, the ”transition probability” increases anomalously as a result of a decrease of the
diffusion coefficient, making it possible for this coefficient to vanish. Neglecting the spatial
dispersion D(ω,q), Eq. (16) makes it possible to determine the critical exponents for the
conductivity σ and the localization length ξ

σ ∼ τ s, ξ ∼ τ−ν (17)

(τ is the distance to the transition); setting D = const(ω) ∼ σ in the metal phase and
D ∼ (−iω)ξ2 in the localized phase, we obtain

s = 1 , d > 2 ; ν =





1

d− 2
, 2 < d < 4

1

2
, d > 4

. (18)

The drawbacks of the self-consistent theory [18] can already be seen from the exposition
given above:

(a) The method used to solve the Bethe–Salpeter equation is rough;
(b) The spatial dispersion D(ω, q) is ignored, while it can change substantially the

estimate of the integral in Eq. (16);
(c) An approximation is used for Ukk′(q) that leads to a singularity ∼ 1/ω on the

right-hand side of Ward’s identity (13) in the localized phase, and this is incompatible with
regularity of Σ at the transition point.

One of the most interesting questions in the theory of localization is connected with the
drawback (b). It follows from the Berezinskii–Gor’kov criterion [24] that in the localized
phase D(0, q) ≡ 0 (Sec. 4). The question arises, how the spatial dispersion of D changes
near the Anderson transition. Vollhardt and Wölfle had in mind that D(0, q) vanishes at
the transition point simultaneously for all values of q; in the clear form, such hypothesis
was stated by Efetov [21]. The vanishing of the whole function cannot occur accidently and
it must be supported by a deep symmetry. Does this symmetry exist? What is its nature?
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Another fundamental question of the theory is touched upon in the drawback (c). If
the diffusion pole in Ukk′(q) exists, then why is there no 1/ω singularity on the right-hand
side of Ward’s identity (13)? The condition for this pole to be cancelled imposes stringent
requirements on the approximation employed, while the satisfaction of Ward’s identity has
actually never been checked in any of the existing theories [10].

A theory free of the drawbacks (a–c) and answering the questions raised is expounded
below. The first half of this paper follows the scheme of the Vollhardt–Wölfle theory and
contains a proof of the relations obtained in Ref. 18 by a chain of hypotheses or doubtful
approximations. In Secs. 2 and 3 the diffusion poles of φkk′(q) are separated out and
the result (12) is proved. In Sec. 4 the general properties of the diffusion coefficient and
its relation with the localization of the wave functions are determined. The content of
Secs. 5–7 replaces the rough solution of the Bethe–Salpeter equation [18]: In Sec. 5 a
hierarchical structure of the spectrum is obtained for the quantum collision operator L̂; a
separation of the type (1), convenient for a symmetry analysis, is established; a condition
on the transition point is found and a self-consistency equation, replacing Eq. (16), is
derived. The diffusion coefficient D(ω, q) is sought with no assumptions on the character
of the spatial dispersion (Secs. 6 and 7), but only the solution with a weak q dependence
is found to be internally consistent. Such weak dependence does not affect the estimate of
the integral in Eq. (16) and leads to the result (18) for the critical exponents. In summary,
all basic results of Ref. 18 are found to be correct, which is surprising for such a rough
theory.

The theory expounded starts from the obvious symmetry of the system and the ad-
ditional symmetry of the critical point is determined in the course of the analysis. The
inevitable question is: Are the hidden symmetry elements completely determined? There
is a serious argument, that the determination is complete (Sec. 8): with respect to the
character of the change in symmetry, the Anderson transition is found to be similar to the
Curie point for an isotropic n-component ferromagnet in the limit n →∞. This model of a
ferromagnet is the basis of the 1/n expansion [1], its critical exponents are known exactly,
and they are in exact agreement with Eq. (18). The isotropy of the equivalent ferromag-
net is the symmetry that makes D(0, q) vanish simultaneously for all q. The approximate
(to an accuracy ∼ ω) orthogonality of the singular part of Ukk′(q) and ∆Gk(q) results in
cancellation of singularity in the right-hand side of the Ward identity [Sec. 5.3, Eq. (13)].

Another method for checking the completeness of the symmetry found is to compare
with the results of model investigations. The hypothesis that the exponents (18) are exact
was actually stated in Ref. 25 on the basis of an analysis of all known results:

(a) For d = 2 + ε Wegner’s relation s = (d − 2)ν, following from the existence of
one-parameter scaling [21], is valid and the ε expansion for the exponent ν has the form
[26]

ν =
1

ε
+ 0 · ε0 + 0 · ε1 + O(ε2), (19)

which agrees with Eq. (18), if the coefficients of the higher order powers of ε are also zero.
(b) The result (18) separates the dimensions of the space dc1 = 2 and dc2 = 4, which
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on the basis of independent analysis are considered to be the lower [21] and the upper (see
the discussion and references in Ref. 16) critical dimensions.

(c) The entire experience of the theory of phase transitions shows that for d > dc2 the
critical exponents do not depend on d, which is the case in Eq. (18).

(d) The exponents (18) agree with the results for d = ∞ : ν = 1/2 (Refs. 27 and 28)
and s = 1 (Ref. 29); the disagreement with the result s = ∞, obtained in Ref. 28, is
discussed in Sec. 9.

The value ν = 1 of the exponent for d = 3 agrees satisfactorily with the results of
numerical calculations (ν = 1.2 ± 0.3 (Ref. 30) and ν = 1.5 ± 0.2 (Ref. 31) and the
qualitatively behavior of ν as a function of d agrees with the estimates from hierarchical
models [14]. In Wegner’s work [32] a finite contribution ∼ ε2 is obtained in Eq. (19).
This makes the agreement with the numerical calculations of Refs. 30 and 31 much worse.
However, this result was derived for the zero-component σ-model, whose correspondence
with the initial disordered system is controversial (Wegner himself [32] does not reject this),
and it is apparently correct only in the lowest orders in ε (Sec. 9).

A qualitative result of this work, which can be checked experimentally, is the assertion
that there is no spatial dispersion of D(ω, q) on the scale ξ−1 in the limit ω → 0 (compare
with Refs. 33, 34, and 35). The absence of significant spatial dispersion does not contradict
the strong dependence of the diffusion coefficient DL of a finite system on its size L [21].
This dependence is connected with the temporal dispersion and is determined in terms of
the known function D(ω, q) by the relation DL ∼ D(DL/L2, 0) [18].

2. RELATIONS BETWEEN THE QUANTITIES IN THE PRESENCE OF
SPATIAL AND TEMPORAL DISPERSION

In this section the existence of a diffusion pole in the quantity

φ(q) =
1

N2

∑

kk′
φkk′(q), (20)

which is the Fourier transform of the quantity (4) for coinciding arguments r1 = r4, r2 = r3,
will be proved. In contrast to Ref. 18 and other works, it will not be assumed that q is
small. In view of the great confusion in the literature, we shall give a complete summary
of the formulas which are relevant here.

We shall consider the response of a system to an electric field E(r, t) ∼ eiq·r−iωt. The
frequency ω is assumed to be finite only in order to remove the uncertainties which appear;
the limit ω → 0 is taken in the final results. Neglecting magnetic effects, the field E is
a purely potential field. This makes it possible to confine attention to the longitudinal
components of the susceptibilities (Ref. 36, §103). In the presence of spatial dispersion two
definitions of the conductivity are possible:

j(ω,q) = σ̃(ω,q)E(ω,q)
je(ω,q) = σ(ω,q)E(ω,q)

j = je + jdiff , (21)
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which relate E with the total current j or its electric component je; the diffusion component
of the current jdiff (ω,q) = −iqD(ω,q)ρ(ω,q) is due to the deviation of the electron density
ρ from the equilibrium density. This deviation is determined by the polarizability α (ϕ is
a scalar potential):

ρ(ω,q) = α(ω,q)ϕ(ω,q). (22)

The conductivity σ̃ appears in Kubo’s formulas (see below), which determine the total
response of the system to the field E. The conductivity σ is related with the diffusion
coefficient D by the Einstein relation

σ(ω,q) = e2N(εF )D(ω,q) (23)

since the change in the scalar potential ϕ and the chemical potential µ with µ(r, t) +
eϕ(r, t) = const does not destroy the thermodynamic equilibrium (N(εF ) is the density
of states at the Fermi level). A relation between σ, σ̃, and α follows from the continuity
equation:

−iωσ̃(ω,q) = [−iω + D(ω,q)q2]σ(ω,q),

ωα(ω,q) = −iq2σ̃(ω,q), (24)

so that the difference between σ and σ̃ is important only for q 6= 0. Using the relation (23),
we obtain for the polarizability α and the permittivity ε

α(ω,q) = −e2N(εF )D(ω,q)q2

−iω + D(ω,q)q2
,

ε(ω,q) = 1− 4π

q2
α(ω,q) = 1− 4πσ̃(ω,q)

iω
. (25)

It is clear from Eqs. (23 – 25) that if the diffusion coefficient D(ω,q) is given, then all
quantities introduced above can be determined.

The quantities σ̃ and α are given by Kubo’s formulas (Ref. 2, §126, and Ref. 37, §75)

σ̃(ω,q) =
1

ω

∞∫

0

dteiωt
∫

dre−iq·r〈ĵ(r, t)ĵ(0, 0)− ĵ(0, 0)ĵ(rt)〉, (26)

σ̃(ω,q) =
1

q

∞∫

0

dteiωt
∫

dre−iq·r〈ĵ(r, t)ρ̂(0, 0)− ρ̂(0, 0)ĵ(r, t)〉, (27)

α(ω,q) = −i

∞∫

0

dteiωt
∫

dre−iq·r〈ρ̂(r, t)ρ̂(0, 0)− ρ̂(0, 0)ρ̂(r, t)〉 (28)

which determine, respectively, the response of the current to a vector potential, the response
of a current to the scalar potential, and the response of the density to a scalar potential.
The equivalence of Eqs. (26) and (27) and the relation (24) between σ̃ and α follow from
the continuity equation for the density operator ρ̂ and the longitudinal component of the
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current operator ĵ and the asymptotic expressions for σ̃ and α in the limit ω → ∞ (Ref.
36, §78).

We note that according to the precise meaning of Kubo’s formula (see the detail dis-
cussion in Ref. 38), the response of the system to the field D produced by external charges
must be calculated. In this approach the Coulomb interaction between the electrons must
be necessarily included in the Hamiltonian to avoid contradictions in the Maxwell’s equa-
tions; Kubo’s formulas have a form that is somewhat different from Refs. 26–28 (Ref. 37,
p. 413), and the correlation functions appearing in them must be calculated taking into
account the Coulomb interaction. A different approach [38] is more convenient: The in-
teraction between the electrons is divided into a short-range and slowly-varying long-range
parts; the first part is included explicity in the Hamiltonian and the second part is taken
into account as a self-consistent field, leading to screening of the field D; for this reason,
the response to a real physical field E is studied and the correlation functions appearing in
Eqs. (26–28) are calculated only taking into account the short-range part of the interaction.
The latter part can be taken into account in the spirit of the Fermi-liquid theory. We shall
neglect it completely, since in its classical formulation the Anderson transition problem
is a problem of noninteracting electrons. We emphasize, that the word ”noninteracting”
must be understood precisely in the sense indicated above, since otherwise the concept of
conductivity cannot be introduced in a consistent manner.

The correlation function in Eq. (28) for noninteracting electrons in a random potential
is calculated similarly to the correlation function for a Fermi gas (Ref. 2, §117) using,
instead of the plane-wave representation, a representation in terms of the eigenfunctions
ψs(r) of Eq. (2)1:

α(ω,q) = e2

∞∫

−∞
dε

∞∫

−∞
dω′

f0(ε)− f0(ε + ω′)
ω − ω′ + iδ

N(ε) 〈ρερε+ω′〉q. (29)

Here f0(ε) is the Fermi function, and 〈ρEρE+ω〉q is the Fourier transform of the Berezinskii–
Gor’kov spectral density [24]

〈ρE(r)ρE+ω(r′)〉 =
1

N(E)
〈∑

ss′
ψ∗s(r)ψs′(r)ψ

∗
s′(r

′) ψs(r
′)δ(E − εs)δ(E − εs′ + ω)〉. (30)

For small ω and zero temperature, taking the imaginary part of Eq. (29), we obtain the
inversion of (29)

〈ρεF
ρεF +ω′〉q = −ImαεF

(ω,q)

πe2ωN(εF )
(31)

(in the absence of interaction ψs(r) and εs do not depend on εF and εF can be replaced by
E). The standard diffusion form for 〈ρEρE+ω〉q (Refs. 10 and 24) is obtained by substituting
the expression (25) into Eq. (31), assuming D(ω,q) is real, which in general is not the case.

1For definiteness, all quantities refer to the same spin projection. For purely potential scattering the
spin subsystems are independent and the number of spin components can be easily taken into account in
the final results.
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The following expression can be easily obtained for the function φ(q) (E and ω are
parameters appearing in Eq. (4)):

φ(q) =

∞∫

−∞
dε

∞∫

−∞
dω′

N(ε)〈ρερε+ω′〉q
(E + ω − ε + iδ)(E − ω′ − ε− iδ)

. (32)

The polarizability α(ω,q) is a generalized susceptibility (Ref. 2, §123; Ref.36, §103) and
the oddness of Imα(ω,q) as a function of the frequency makes it possible to write

Imα(ω,q) =
α̃(ω,q)− α̃(−ω,q)

2i
, α̃(ω,q) = α(ω,q)− α(0,q). (33)

Substituting the expressions (31) and (33) into Eq. (32), we obtain integrals with α̃(ω′,q)
and α̃(−ω′,q) that converge separately. Making the substitution ω′ → −ω′ in the second of
the integrals and shifting upwards the contour integration over ω′, and taking into account
the fact that α(ω,q) is analytic in the upper half-plane, we obtain

φ(q) =
1

e2

∞∫

−∞
dω′′

α̃E+ω′′(ω
′′,q)

(ω′′ − ω − iδ)(ω′′ + iδ)
' 2πi

e2ω
α̃E(ω,q), (34)

where ω′′ = ε−E. The second equality follows by neglecting ω′′ in the argument E+ω′′, as a
function of which appreciable changes in α̃ occur on the atomic scale and are not important
in the region ω′′ ∼ ω, which makes the main contribution to the integral. Substituting
α(ω,q) in the form (25), we obtain

φ(q) =
2πN(E)

−iω + D(ω,q)q2
+ φreg(q), (35)

where the contribution φreg(q) originates from the region of large values of ω′′ in Eq. (34)
and is regular in the limit ω,q → 0. In the localized phase, when D(ω,q) ∼ (−iω) (Sec.
4), to obtain the expression (35) we should add a small real frequency-independent term in
the denominator, in order for all expressions to be meaningful; it is essential in separating
α(0,q) from α(ω,q). In conclusion, the quantity φ(q) has a diffusion pole which contains
the observable diffusion coefficient.

3. SEPARATION OF DIFFUSION POLES FROM THE
BETHE–SALPETER EQUATION

We introduce the operator L̂, which is the symmetrized version of the operator on
the left-hand side of Eq. (15), which arises as a result of the replacement φkk′(q) →
φkk′(q)

√
∆Gk(q) and division of Eq. (15) by

√
∆Gk(q):

L̂(q) = L̂0(q) + M̂(q) (36)
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L̂0ψk ≡ 1

N

∑

k1

Ukk1(q)[∆Gk1(q)ψk −
√

∆Gk(q)∆Gk1(q)ψk1 ],

M̂ψk ≡ (εk+q/2 − εk−q/2)ψk.

The operator L̂ acts in the complex space and, by virtue of Eq. (11), it is symmetrical
with respect to the scalar product

(φ, ψ) =
1

N

∑

k

φkψk. (37)

Its eigenfunctions e
(s)
k (q) form a complete orthonormal basis, and the eigenvalues λs(q)

are, generally speaking, complex. In terms of λs and e(s) the formal solution of the Bethe–
Salpeter equation (15) has the form

φkk′(q) =
∑
s

f
(s)
k (q)f

(s)
k′ (q)

−ω + λs(q)
,

f
(s)
k (q) =

√
∆Gk(q)e

(s)
k (q). (38)

At least, one eigenvalue — for definiteness λ0(q) — behaves as λ0(q) ∼ q2 for small q.

Indeed, the operator L̂0 has a zero mode ψk(q) =
√

∆Gk(q) and, treating the operator

M̂ ∼ q as a perturbation, we can construct the iterative series

e
(0)
k (q) = const[ψ

(0)
k (q) + ψ

(1)
k (q) + ...],

ψ
(0)
k (q) =

√
∆Gk(q),

λ0(q) = λ
(1)
0 (q) + λ

(2)
0 (q) + ..., λ

(n)
0 (q) , ψ(n) ∼ qn, (39)

(ψ(0), ψ(n)) = 0 , n 6= 0

in the Brillouin–Wigner form [39]. The eigenvalues λs(q) are even with respect to q (see

Appendix) and the correction λ
(1)
0 is equal to zero, as one can easily verify directly. To

second order in q we have

λ0(q) =
(ψ(0), M̂ψ(0)) + (ψ(0), M̂ψ(1))

(ψ(0), ψ(0))
(40)

where ψ(1) satisfies the equation

−P̂⊥M̂ψ(0) = L̂0ψ
(1) (41)

and P̂⊥ is a projection operator onto the space orthogonal to ψ(0) (Ref. 39). Making the
substitution

ψ
(1)
k (q) = −i

√
∆Gk(q)q · lk (42)
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and noting that
1

N

∑

k

∆Gk(q) =
1

N

∑

k

2iImGR
k = −2πiN(E) (43)

we rewrite (40) in the form (vk is the velocity of electrons with momentum k)

λ0(q) =
i

2πN(E)

[
1

N

∑

k

(q · vk)(q · lk)(−i)∆Gk(q) +
1

N

∑

k

(q · vk)∆Gk(q)

]
. (44)

For an isotropic spectrum ε(k) = k2/2m the expressions (44) and (41) assume, to lowest
order in q, the form

λ0(q) = −iD(0, 0)q2, D(0, 0) = σ(0, 0)e−2N−1(E), (45)

σ(0, 0) =
e2

2πd

1

N

∑

k

(vk · lk)i∆Gk(0) +
e2

2πm

1

N

∑

k

ReGR
k , (46)

vk =
1

N

∑

k′
iUkk′(0)∆Gk′(0)(lk − lk′). (47)

In the limit of weak disorder, when

∆Gk(0) = GR
k −GA

k = 2iIm
1

E − εk + iγ
≈ −2πiδ(E − εk) (48)

we obtain from Eqs. (46) and (47)

σ(0, 0) =
e2

d

1

N

∑

k

vk · lkδ(E − εk), (49)

vk =
1

N

∑

k′
2πUkk′(0)(lk − lk′)δ(E − εk′), (50)

i.e., σ(0, 0) is the classical conductivity, D(0, 0) is the classical diffusion coefficient, and lk
is the vector mean free path length, determined by the standard classical equation (50)
for scattering by impurities [40]. The results (46) and (47) extend the concept of a kinetic
equation and a mean free path into the quantum region. The differences from the classical
equations reduce to the following:

(a) The δ-function expressing the energy conservation law is smeared;
(b) the transition probability is replaced with 2πUkk′(0);
(c) σ acquires a quantum correction [last term in Eq. (46)] of the order of the Mott

minimum conductivity [7].
It is obvious from Eq. (45) that the diffusion pole is related with the zeroth term in the

sum in Eq. (38). To compare with Eq. (35), we sum the expression (38) over k and k′:

φ(q) =
A0(q)2

−ω + λ0(q)
+

∑

s 6=0

As(q)2

−ω + λs(q)
,
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As(q) =
1

N

∑

k

√
∆Gk(q)e

(s)
k (q). (51)

Neglecting in Eq. (36) the operator M̂ , we have e
(0)
k (q) ∼

√
∆Gk(q), whence A2

0(q) =

−2πiN(E), As(q) = 0, s 6= 0. Taking M̂ into account by perturbation theory, we obtain

A2
0(q) =

−2πiN(E)

1 + B(q)
, B(q) ∼ q2;

As(q)2 ∼ q2, s 6= 0 (52)

and comparing the expressions (51) with Eq. (35) gives

D(ω,q)q2 = iλ0(q)[1 + B(q)]− iωB(q),

φreg(q) ∼ q2. (53)

The decomposition into regular and irregular parts is not unique and admits a ”gauge
transformation”

φ̃reg(q) = φreg(q)− 2πN(E)C(q),

D̃(ω,q)q2 =
D(ω,q)q2 + iωC(q)[−iω + D(ω,q)q2]

1 + C(q)[−iω + D(ω,q)q2]
,

C(q) ∼ q2 (54)

up to which the identity (53) is valid. For this reason, it is convenient to set by definition

λ0(q) = −iD(ω,q)q2 (55)

making the assumption that the diffusion coefficient D(ω,q) determined in this manner
is related to be observed diffusion coefficient Dobs(ω,q) by relations of the type (53) and
(54). For any B(q) and C(q), we have D(0, 0) = Dobs(0, 0), and D(0,q) and Dobs(0,q)
vanish simultaneously. In practice, the difference between D(ω,q) and Dobs(ω,q) is not
important. The point is that the spatial dispersion of D(ω,q) on the scale q ∼ Λ (Λ is
a parameter of the order of the inverse interatomic distance) is of little interest; only the
”anomalous” dispersion, determined by the scale ξ−1, which can arise near the Anderson
transition, is of interest. The quantity B(q) does not contain anomalous dispersion, since
it is determined by the function ∆Gk(q), which is regular at the transiion point, and the

function e
(0)
k (q), which can be assumed to be constant (Sec. 5.4); this is also true of the

quantity C(q), relating, according to Eq. (54), two regular functions (see, however, Sec.
4). On the basis of what we have said above, the expression (38) assumes the form

φkk′(q) =
if

(0)
k (q)f

(0)
k′ (q)

−iω + D(ω,q)q2
+ φ

(1)

kk′(q), φ
(1)

kk′(q) ∼ q2. (56)
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Figure 2: a — Structure of the diagrammatic series for φkk′(q). b — same, with the upper
G line inverted; the U and Ũ blocks are topologically equivalent, but they correspond to
different values of the momenta.

It follows from the relation (9) that φkk′(q) contains a diffusion pole in the limit k+k′ → 0,

which can be separated from φ
(1)

kk′(q):

φkk′(q) =
if

(0)
k (q)f

(0)
k′ (q)

−iω + D(ω,q)q2
+

if
(0)
k−k′+q/2(k + k′)f (0)

k′−k+q/2(k + k′)

−iω + D(ω,k + k′)(k + k′)2
+ φreg

kk′(q). (57)

In diagrammatic language, the pole in the limit q → 0 is related to the fact that for
the diagrams containing two or more blocks U (Fig. 2a), the contour of integration in the
integrals

∫
ddkiG

R
ki+q/2G

A
ki−q/2 (58)

is confined between the poles of two Green’s functions. For small U the divergence in
the expression (58) in the limit ω, q → 0 is limited only by the small damping ImΣ in
the denominators of the G functions and compensates the smallness associated with the
addition of an extra block U ; all diagrams in Fig. 2a are found to be of the same order,
and the series diverges, leading to a diffusion pole. For arbitrary U the divergence of
the series in the limit ω, q → 0 is guaranteed by the Ward identity (13). It is important
that the diffusion pole is determined by diagrams with a large number of blocks U . Since
G(r1, r2) = G(r2, r1) the result for φkk′(q) will remain unchanged, if in constructing the
diagrams the upper G line is reversed; then the diagram contains blocks Ũ (Fig. 2b),
topologically equivalent to the blocks U , but taken for other values of the momenta. Now
the poles of the two G-functions converge toward one another as k+k′ → 0, giving a second
diffusion pole in the expression (57). When the upper G line in Fig. 2a is reversed, the
diagrams containing two or more U blocks become irreducible and enter into a Ũ block (Fig.
2b) and, conversely, reversion of the G line in the diagram with one U block generates the
entire sequence of diagrams in Fig. 2b with more than two Ũ blocks. For this reason, the
second pole term in the expression (57) is contained, with no changes, in Ukk′(q), differing
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only by the contribution of the four external G lines. The result (12) with a function
F (k,k′,q) of the form

F (k,k′,q) = if
(0)
(k−k′+q)/2(k + k′)f (0)

(k′−k+q)/2(k + k′)(GR
k+q/2G

A
k−q/2G

R
k′+q/2G

A
k′−q/2)

−1 (59)

is valid for Ukk′(q). This proves the Vollhardt–Wölfle hypothesis.

4. BEREZINSKII–GOR’KOV CRITERION AND ITS CONSEQUENCES

The spectral density (30) contains a singular contribution ∼ δ(ω), originating from
terms with s = s′, which is finite in the localized phase and vanishes in the delocalized
phase in the thermodynamic limit. This is the Berezinskii–Gor’kov localization criterion
[24]. The δ(ω) singularity in 〈ρEρE+ω〉q leads to, by virtue of the Eq. (32), a 1/ω singularity
in the function φ(q) (Ref. 10)

φ(q) =
2πN(E)

−iω
A(q) + φreg(q), (60)

A(q) =
∫

dre−iqrA(r),

A(r) =
1

N(E)
〈∑

s

|ψs(r)|2|ψs(0)|2δ(E − εs)〉. (61)

A number of important consequences follow from the relation (60).
1. Comparing Eqs.(60) and (35) shows that in the localized phase D(ω,q) ∼ ω. A

slower dependence would destroy the 1/ω singularity in Eq. (60) and a more rapid de-
pendence would cause the dependence on q to vanish in the singular part (35); such a
dependence obviously exists according to Eq. (60). This result, valid in the D(ω,q) gauge,
in which the functions φreg(q) in Eqs. (35) and (60) are identical, remains valid in any
other gauge [see Eqs. (53) and (54)]. Therefore

D(ω,q) = (−iω)d(q), (62)

where it is assumed that the limit ω → 0 is taken in the function d(q). Therefore it follows
from the Berezinskii–Gor’kov criterion that D(0,q) vanishes for all q. This completes the
proof of all of the main localization criteria [6, 10]. In view of Eq. (62), the second diffusion
pole in Eq. (57) leads to the singularity 1/ω in the sum over s in Eq. (51). To eliminate this
singularity from φreg(q) the expression (54) must be transformed with C(q) ∼ 1/ω, without
destroying the proportionality of D(ω,q) and D̃(ω,q) to the frequency. The function C(q)

is determined, by virtue of Eq. (57), by the quantities ∆Gk(q) and e
(0)
k (q), which are

regular at the transition point and do not lead to anomalous dispersion, while the associated
renormalization of D(ω,q) is small near the transition because of the divergence of d(q)
(see below).
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2. A relation between the diffusion coefficient and the properties of the wave functions
follows from Eqs. (35), (60), and (62):

1

1 + d(q)q2
= A(q) =

∫
dre−iq·rA(r). (63)

Exponential localization of the wave functions leads to exponential decay of A(r) at large r
[see Eq. (61)] and the finiteness of the coefficients in the expansion over q of the right-hand
side of Eq. (63). Because of isotropy in the mean, there are no odd powers of q and d(q) is a
regular function of q2. It is important that this function does not contain noninteger powers
of q, which arise naturally in the case of diffusion over fractal structures [41]. The reality
and positiveness of d(q) follow from the reality of A(q) and the inequalities 0 ≤ A(q) ≤ 1
[10, 24].

3. Restrictions on the form of the spatial dispersion of D(ω,q) follow from the relation
(63). In the localized phase the spatial dispersion is determined by the expansion2

1 + d(q)q2 = ξβ0 + ξβ1q2 + ξβ2q4 + ... + ξβnq2n + ...,

β0 = 0, (64)

where βn ≥ 0, since the contributions, associated with the atomic scale Λ−1 and corre-
sponding to βn = 0, obviously exist.

Different estimates show that the smoothed (over oscillations) behavior of the squared
modulus of a typical wave function has the form

|ψ(r)|2 = const

{
r−b, Λ−1 <∼ r

<∼ ξ

exp(−r/ξ), r
>∼ ξ

. (65)

This behavior should actually be expected on the basis of Poincare’s theorem on the analytic
dependence of the solution of a differential equation on a parameter. If the behavior of
the wave function at the transition point is characterized by the exponent b (0 ≤ b ≤ ∞),
|ψc(r)|2 ∼ r−b, then near the transition we have ψ(r) ≈ ψc(r) for sufficiently small r, as
a consequence of Poincare’s theorem. The theorem is valid only for a finite region, whose
maximum size is determined by the scale ξ on which the exponential decrease of ψ(r) starts.
By virtue of Eq. (61) the function A(r) has a similar behavior

A(r) = const

{
r−d−ζ , Λ−1 <∼ r

<∼ ξ

exp(−r/ξ), r
>∼ ξ

, (66)

where const is chosen from the condition A(q) = 1 at q = 0. The series expansion of A(q)

A(q) = ξγ0 + ξγ1q2 + ξγ2qn + ... + ξγnq2n + ..., γ0 = 0 (67)

2In expansions of the type (64) arbitrary coefficients are assumed. Taking them into account is beyond
accuracy of the present analysis.
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Figure 3: Possible configurations of the exponents βn and γn for ζ < 0 (a) and ζ > 0 (b).

and the estimate of the integrals arising in Eq. (61) show that only two variants are
possible: (a) γn = 2n for ζ < 0 and (b) γn = max{0, 2n − ζ} for ζ > 0. Substituting the
expressions (64) and (67) into Eq. (63) gives a relation between γn and βn

γn = maxi+j+k+...=n{βi + βj + βk + ...}, (68)

leading to the two possibilities for the exponents βn: β1 = 2, βn ≤ 2n for ζ < 0 (Fig. 3a)
and βn = max{0, 2n− ζ} for ζ > 0 (Fig. 3b). For these results to be valid it is important
only that if the integral of A(r)rn diverges in the limit ξ → ∞ as ξa, then the integral of
A(r)rn+m should diverge as ξa+m, since it is determined by the region r ∼ ξ. The specific
approximation (66) is actually not used, but it is convenient for interpreting the results.

To determine the localization length ξ from the known diffusion coefficient, in general,
it is necessary to know all the exponents βn. The result D(ω, 0) ∼ (−iω)ξ2 proposed in
Refs. 18 and 10 is valid only for ζ < 0. From Eq. (25) we obtain for the permittivity

ε(0, 0) = 1 + 4πe2N(εF )d(0) =





∼ ξ2, ζ < 0
∼ ξ2−ζ , 0 < ζ < 2
∼ 1, ζ > 2

. (69)

In the framework of the general analysis, ε(0, 0) can diverge according to a law that is
different from ξ2 (obtained by cutting off the metallic behavior of ε(0,q) ∼ q−2 on the scale
q ∼ ξ−1). More than that, ε(0, 0) can even be finite in the limit ξ →∞ (see the discussion
in Refs. 23, 40, and 41).

5. BASIC STRUCTURE OF THE THEORY

It is convenient to begin the construction of the theory by analyzing the localized phase,
while the metallic state will be obtained as a result of the instability of the localized phase.

18



Figure 4: Evolution of the spectrum of eigenvalues λs on transferring from L̂sing to L̂, i.e.,

with the ”gradual switching on” of the operator L̂reg.

5.1. Spectrum of the operator L̂ in the localized phase

Let M be the set of values of the index s that enumerates the eigenvalues λs of the
operator L̂. We shall show that in the localized phase the decomposition

M = M0 ⊕M1 ⊕M∞ (70)

such that

λs =





ωνs, s ∈ M0

νs, s ∈ M1 , νs ∼ 1
νs/ω, s ∈ M∞

(71)

(Fig. 4) is valid. The set M0 is not empty, since it contains the element λ0 ∼ ω, related with
the diffusion coefficient. We shall show that it is not the only element. According to Eq.
(57), φkk′(q) contains the singularity 1/ω, associated with two diffusion poles. In Eq. (38)
this singularity originates from terms with s ∈ M0. Comparing these two representations
and taking into account the fact that the diffusion pole at q = 0 corresponds to the term
with s = 0 in Eq. (38), we obtain

f
(0)
k−k′+q/2(k + k′)f (0)

k′−k+q/2(k + k′)

1 + d(k + k′)(k + k′)2
= i

∑

s∈M ′
0

f
(s)
k (q)f

(s)
k′ (q)

1 + νs(q)
, (72)
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where M ′
0 is the set M0 without the element s = 0. Since d(q) diverges as ξ →∞ [see Eq.

(64)], the left-hand side of Eq. (72) contains a δ-function singularity at k + k′ = 0, which
terms fkfk′ on the right-hand side of Eq. (72) with k′ = −k cannot have at the arbitrary
point k. The same is true for the sum of a finite number of such terms. The example of
the Fourier expansion

1

1 + d(k + k′)(k + k′)2
=

∑
x

Axe
i(k+k′)·x (73)

shows that the pole term in Eq. (72) can be reproduced by an infinite number of terms
fkfk′ and that this does not require a complete system of functions (eliminating from the
sum in Eq. (73) terms with small x leads to the appearance of a smooth component, but
it does not change the singularity at k + k′ = 0). It is clear now, that the set M0 contains
an infinite number of elements, but generally speaking it does not coincide with the set M .

Sadovskii [10, 44] proposed a localization criterion according to which a nontrivial so-
lution of the homogeneous Bethe–Solpeter equation appears in the limit ω → 0. We can
make a stronger assertion: An infinite number of such solutions appears at the transition
point.

The following decomposition of the operator L̂ follows from Eqs. (36) and (12):

L̂ = L̂reg + L̂sing, (74)

L̂regψk ≡ M̂ψk + ∆Σk(q)ψk − 1

N

∑

k′
U reg

kk′ (q)
√

∆Gk(q)∆Gk′(q)ψk′ , (75)

L̂singψk ≡ − 1

N

∑

k′
U sing

kk′ (q)
√

∆Gk(q)∆Gk′(q)ψk′ . (76)

In the localized phase the diffusion pole in U sing gives a 1/ω singularity,

L̂ = L̂reg +
L̂1

ω
, (77)

where the limit ω → 0 has been taken in the operator L̂1 and terms of higher order in ω
are included in L̂reg. From Eqs. (76), (12), and (72) we obtain the following representation

for L̂1

L̂1ψk =
1

N

∑

k′


 ∑

s∈M ′
0

g
(s)
k (q)g

(s)
k′ (q)

1 + νs(q)


 ψk′ ,

g
(s)
k (q) =

f
(s)
k (q)

√
∆Gk(q)

GR
k+q/2G

A
k−q/2

. (78)

It is clear, that the eigenvectors of the operator L̂1, corresponding to nonzero eigenvalues,
lie in the subspace constructed on the vectors g

(s)
k (q), and the number of eigenvalues is
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equal to the number of elements in M ′
0. The nonzero eigenvalues of L̂1 correspond to the

eigenvalues ∼ 1/ω of the operator L̂sing.

The overall picture is as follows (Fig. 4). The operator L̂sing has an infinite number of
eigenvalues ∼ 1/ω and an infinite number of eigenvalues equal to zero. When the operator
L̂reg ∼ 1 is added, the eigenvalues ∼ 1/ω change very little and form the set M∞ of the

operator L̂; the zero eigenvalues become, generally speaking, of order one, forming the set
M1, but infinite number of them remain ∼ ω and lie in the set M0. The number of elements
in M∞ is equal to the number of elements in M ′

0; no assertions can be made with respect
to the set M1, but this is not important for what follows.

5.2. Relation between L̂ and L̂sing

We now introduce the spectral representation for the singular part of the operator
L̂sing = L̂1/ω

L̂1 =
∑
s

|us〉ηs〈us|, ηs =

{
0 s ∈ M0 ⊕M1

∼ 1 s ∈ M∞
(79)

and find a relation between L̂ and L̂sing, regarding L̂reg as a perturbation. For s ∈ M∞
the ordinary perturbation theory can be used, since all differences of the eigenvalues ∼ 1/ω
and a regular expansion in powers of ω is obtained:

|es〉 = |us〉+ ω
∑

s′ 6=s

〈us′|L̂reg|us〉
ηs − ηs′

|us′〉,

λs =
ηs

ω
+ 〈us|L̂reg|us〉, s ∈ M∞. (80)

For s ∈ M0 ⊕M1 we seek the eigenfunctions of L̂ in the form

|e〉 =
∑

s∈M0⊕M1

Cs|us〉+ ω
∑

s∈M∞

Ds|us〉, (81)

where Cs, Ds ∼ 1. Substituting (81) in the eigenvalue equation, we obtain a system of
equations for Cs and Ds, which can be solved by iterations in ω. Eliminating Ds, we obtain
to first order in ω

∑

s′∈M0⊕M1

(λsδss′ − Tss′)Cs′ = 0, s ∈ M0 ⊕M1,

Tss′ = 〈us|L̂reg|us′〉 − ω
∑

s′′∈M∞

〈us|L̂reg|us′′〉〈us′′ |L̂reg|us′〉
ηs′′

, (82)

i.e., an ordinary secular equation taking into account the first correction from transitions
into states with s ∈ M∞.
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5.3. Mechanism for satisfying the Ward identity

We now demonstrate the cancellation of the singular contribution ∼ 1/ω, associated
with the diffusion pole in Ukk′(q), on the right-hand side of the Ward identity (13). The
specific form of L̂reg was not used in Secs. 5.1 and 5.2. To determine L̂reg in the form (75)

with M̂ ≡ 0 we have

1

N

∑

k

√
∆Gk(q)e

(s)
k (q) = 0, s ∈ M∞, (83)

since
√

∆Gk(q) is the exact eigenfunction of L̂ belonging to the set M0. By virtue of the

relation (80), the difference of |us〉 from |es〉 for s ∈ M∞ is of order ω for any L̂reg, whence

1

N

∑

k

√
∆Gk(q)u

(s)
k (q) = O(ω), s ∈ M∞. (84)

Comparing Eqs. (76) and (79), we have

−U sing
kk′ (q)

√
∆Gk(q)∆Gk′(q) =

1

ω

∑

s∈M∞

u
(s)
k (q)ηs(q)u

(s)
k′ (q), (85)

so that the singular contribution on the right-hand side of Eq. (13), taking into account
Eq. (84), has the form

1

N

∑

k′
U sing

kk′ ∆Gk′(q) = − 1

ω

∑

s∈M∞

u
(s)
k (q)ηs(q)√

∆Gk(q)

1

N

∑

k′

√
∆Gk′(q)u

(s)
k′ (q) =

O(ω)

ω
(86)

and the 1/ω singularity cancels. For the same reason, there will be no singularities on the
right-hand side of Eq. (13) as the transition into the metallic phase is approached. In
this case the spectrum of the operator L̂ has the same structure (Fig. 4) with ω replaced
by D0 — the characteristic value of the diffusion coefficient (Sec. 6.2) — and we obtain
O(D0)/D0 on the right-hand side of Eq. (86).

5.4. Symmetry approach

The symmetry of the system is clearly expressed in the properties of the operator L̂sing:
(a) The spatial uniformity in the mean makes it possible to introduce the three-momentum

notations (Fig. 1d) and to introduce the operator L̂ in general and the operator L̂sing in
particular.

(b) The isotropy in the mean, combined with time-reversal invariance, guarantees that
L̂ and L̂sing are symmetrical and the existence of orthonormal bases of eigenvectors for
them.
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(c) As a result of time-reversal invariance, L̂sing has a high symmetry, manifested in the
existence of an infinite number of zero modes3.

The decomposition (77) represents the operator L̂ as a sum of the operator L̂sing with

a high degree of symmetry and a regular operator L̂reg of a general form. It is similar
to the decomposition (1) and is convenient for symmetry analysis. The condition on the
transition point will be determined below and the origin of the parameter τ will thereby
be determined.

Following Sec. 1, we consider the response of the system to a perturbation δL̂reg of a
general form. Not all changes in the system will be important. We decompose the change
in the operator L̂ into two parts

δL̂ = δL̂λ + δL̂e, (87)

where δL̂λ changes the eigenvalues and δL̂e changes the eigenfunctions of L̂. For an infini-
tesimal δL̂ such a decomposition is trivial — δL̂λ and δL̂e are the diagonal and off-diagonal
parts of the operator δL̂ in the representation of the eigenvectors |es〉. Changes of the δL̂e

type do not change the eigenvalues of L̂ and therefore the diffusion coefficient D(ω,q),
directly related with λ0(q). The diffusion coefficient determines uniquely the location of
the system — in a localized phase, in a metallic state, or at the transition point. It is clear
that the changes δL̂e do not drive the system out of the transition point, they only displace
the system along the critical surface [1]. Such displacements do not lead to nonanalyticity
of the physical quantities4 and they can be ignored. The critical exponents obtained by
motion along the normal to the critical surface are identical to the exponents obtained un-
der an arbitrary nonzero angle to the tangent plane. Similarly, in perturbations of the δL̂λ

type, the part corresponding to a change in λs with s ∈ M1⊕M∞ need not be considered.
Only the changes in the eigenvalues λs from the set M0 are important, and their re-

sponse to a perturbation is indeed nontrivial. Let the system lie deep in the localized phase.
A small perturbation δL̂reg does not drive the system out of the state of localization and

preserves the proportionality λs ∼ ω for s ∈ M0. On the other hand, a perturbation δL̂reg

of a general form possesses nonzero matrix elements with the respect to the eigenvectors |es〉
of the subspace M0 and should lead to small but nonvanishing, in the limit ω → 0, values of
λs. The resolution of this contradiction will lead to the self-consistency equation (Sec. 5.6).

5.5. ”Rotation” of the singular operator

To formulate an adequate language for the further discussion, we shall consider the
following problem of the ”rotation” of a singular operator.

Let the decomposition (77), where ω → 0, be valid for the operator L̂. The operator
L̂reg acts in the space Ω, while the operator L̂1 has nonzero eigenvalues ∼ 1 in the subspace

3Their presence (see Sec.5.1) is associated with the existence of a diffusion pole for k + k′ → 0, which
follows from Eq. (9) (see Sec. 3).

4Singularities associated with a change in the type of phase transition — for example, a second-order
phase transition into a first-order phase transition — can occur on the critical surface. We assume that
the system is far away from such singularities.

23



Ω1, which is a part of Ω, Ω = Ω0 ⊕ Ω1. This justifies retaining in Eq. (77) two terms
of different orders. Let δL̂1 be a perturbation of the operator L̂1. If this perturbation
is of a general form, then the addition δL̂1/ω to the operator L̂ can be studied by the
standard perturbation theory and gives corrections ∼ 1/ω. Let the perturbation δL̂1 be
such, however, that the operator L̂1 + δL̂1 has the same properties as the initial operator
L̂1. Then the dimension of the subspace Ω1 remains the same and only a ”rotation” of the
operator L1 occurs; in this case δL̂1 has no nonzero matrix elements in Ω0. What is the
result of such a perturbation in the subspace Ω0?

Let η̄s and |ūs〉 be the eigenvalues and eigenvectors of the initial operator L̂1. The
operator L̂reg can be neglected in the ”upper” subspace Ω1, and in the ”lower” subspace Ω0

a secular equation in terms of the matrix elements 〈ūs|L̂reg|ūs′〉 should be written out. The

perturbation δL̂1 produces the change δus ∼ δL̂1 of the eigenvectors |us〉 and the matrix
of the secular equation is determined by the elements

〈us|L̂reg|us′〉 = 〈ūs + δus|L̂reg|ūs′ + δus′〉 ≡ 〈ūs|L̂reg + δV̂ |ūs′〉. (88)

The qualitative result is that a limitation of the form of the operator δL̂1 weakens its action
on the lower subspace: The effective perturbation δV̂ appears to be ∼ δL̂1 instead of δL̂1/ω
for the operator of general form.

The change in |us〉 in the subspace Ω1 can be calculated by the standard perturbation
theory, since all differences of the eigenvalues ∼ 1 and a series in the small parameter arises:

|us〉 = |ūs〉+
∑

s′ 6=s

〈ūs′ |δL̂1|ūs〉
η̄s − η̄s′

|ūs′〉, s ∈ Ω1. (89)

An arbitrary choice of |us〉 that is compatible with the orthogonality relations can be made,
in view of degeneracy, in the subspace Ω0. To first order in δL̂1 we can set

|us〉 = |ūs〉 −
∑

s′∈Ω1

〈ūs|δL̂1|ūs′〉
η̄s′

|ūs′〉, s ∈ Ω0. (90)

Substituting the expression (90) into Eq. (88), we obtain for the matrix elements of the
effective perturbation

〈ūs|δV̂ |ūs′〉 = − ∑

s′′∈Ω1

〈ūs|δL̂1|ūs′′〉〈ūs′′ |L̂reg|ūs′〉+ 〈ūs′|δL̂1|ūs′′〉〈ūs′′ |L̂reg|ūs〉
η̄s′′

. (91)

5.6. Self-consistency equation

It is now easy to understand how to resolve the contradiction stated in Sec. 5.4. The
perturbation δL̂reg produces the change δd(q) in the diffusion coefficient (62), which in view
of the relation

L̂singψk =
1

N

∑

k′

W (k,k′,q)ψk′

−iω + D(ω,k + k′)(k + k′)2
=
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=
1

(−iω)

∫ ddq̃

(2π)d

W (k,−k + q̃,q)ψ−k+q̃

1 + d(q̃)q̃2
≡ L̂1ψk

ω
(92)

gives the following change in L̂1:

δL̂1ψk = (−i)
∫ ddq̃

(2π)d

q̃2δd(q̃)

[1 + d(q̃)q̃2]2
W (k,−k + q̃,q)ψ−k+q̃. (93)

Rotation of the subspace M∞ of the operator L̂sing produces in the subspace M0 the effective

perturbation δV̂ , which in zeroth order in ω compensates δL̂reg.

Introducing into Eq. (82) the small changes δL̂reg and δL̂1 [the latter enters via the
change in the eigenfunctions (90)], we obtain for the matrix of the secular equation

Tss′ = 〈ūs|T̄ + δL̂reg + δV̂ |ūs′〉 s, s′ ∈ M0 ⊕M1, (94)

where the overbar denotes the unperturbed value, and T̄ and δV̂ are determined by the
expressions (82) and (91) (with the substitution Ω1 → M∞, Ω0 → M0⊕M1). In the terms
∼ ω we confine ourselves to zeroth order in the increments. The choice of the vectors |ūs〉
in the subspace M0 ⊕M1 is arbitrary in view of the degeneracy. We choose them so as to
diagonalize the matrix T̄ — then, to zeroth order in ω, they are identical to the eigenvectors

|ēs〉 of the operator ˆ̄L [see Eq. (81)]. Since the eigenvalues of the matrix T are identical to
the eigenvalues of L̂, we have

Tss′ = λ̄sδss′ + 〈ēs|δL̂reg + δV̂ |ēs′〉, s, s′ ∈ M0 ⊕M1. (95)

For infinitesimal δL̂reg and δV̂ , the diagonal elements of the matrix T̂ determine the eigen-

values of the operator L̂

λs = λ̄s + 〈ēs|δL̂reg + δV̂ |ēs〉, s ∈ M0 ⊕M1 (96)

and the off-diagonal elements determine the corrections to its eigenfunctions; the latter
correspond to the perturbations of the type δL̂e (Sec. 5.4) and can be dropped. For
constant |es〉 it is possible to switch in Eq. (96) from infinitesimals to finite increments.
Further, the changes in λs in the subspace M1 can be ignored (Sec. 5.4). Finally, we note
that fixing λ0(q) for all q means fixing the diffusion coefficient, which in turn determines
all λs(q) with s ∈ M ′

0, which can be reconstructed according to the binary decomposition
(72). Therefore if Eq. (96) is satisfied for s = 0

−i[D(ω, q)q2 − D̄(ω, q)q2] = 〈ē0|δL̂reg|ē0〉 − 2
∑

s′′∈M∞

〈ē0|δL̂1|ēs′′〉〈ēs′′|L̂reg|ē0〉
η̄s′′

(97)

(Eqs. (55), (91), and (80) were employed), then it is automatically satisfied for all s from
M0. It is easy to show (see Appendix) that the expansion in q of the right-hand side of Eq.
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(97) contains only even powers of q, and terms ∼ q0 are absent in each of the two terms.
Setting

〈ē0|δL̂reg|ē0〉 = −iq2δf(q) (98)

and substituting the expression (93) into Eq. (97), we obtain

D(ω, q)− D̄(ω, q) = δf(q) + Q̂δd(q), (99)

Q̂δd(q) =
∫ ddq̃

(2π)d

B(q, q̃)q̃2

[1 + d(q̃)q̃2]2
δd(q̃), (100)

where δf(q) and B(q, q̃) are regular functions of general form of the arguments q2 and q̃2.
The quantity W (k,k′,q) in Eq. (92) can be expressed, by virtue of Eqs. (76), (12), and
(59), in terms of functions which are regular at the transition point. This makes it possible
to vary only d(q) on switching from Eq. (92) to Eq. (93). The equation (99) contains
the diffusion coefficient on the right- and left-hand sides and replaces the self-consistency
equation (16) of the Vollhardt–Wölfle theory.

5.7. Condition on the transition point

In deep of the localized phase D(ω, q) and D̄(ω, q) vanish at ω = 0 and Eq. (99)
determines the change δd(q) = −Q̂−1δf(q) for the prescribed perturbation δL̂reg. Making

the small changes δL̂reg, we obtain the corresponding changes δd(q), which preserve the
proportionality D(ω, q) ∼ (−iω). This situation remains as long as there exists an operator
inverse to Q̂, i.e. as long as all eigenvalues of Q̂ are nonzero. Let a nonzero eigenvalue of
the operator Q̂ appear at some point in the course of the motion from the interior of the
localized phase. As we shall see below, such a point corresponds to the physical notions of
the Anderson transition.

The divergence of d(q) in the limit ξ → ∞ (Sec. 4) means [see Eq. (100)] that at the
transition point the operator Q̂ vanishes entirely or on some subspace. For this reason, it
should be kept in mind in the analysis that many or even all eigenvalues µs of the operator
Q̂ can vanish simultaneously at the transition point. It is convenient to introduce the
critical exponent δs ≥ 0 for each of them:

Q̂φs(q) = µsφs(q), µs ∼ τ δs (101)

As d(q) → ∞, the changes of the function B(q, q̃) cannot make the operator Q̂ finite
and therefore they do not drive the system out of the critical point; they only displace
it along the critical surface and can be ignored. So the function B(q, q̃) is considered as
independent of τ . In this case, the equality

∫ ddq

(2π)d
B(q, q̃)φ(q) = 0 (102)
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cannot be satisfied for any function φ(q). Indeed, it corresponds to the presence of a zero
mode for the transposed operator Q̂T (and therefore for the operator Q̂ itself) not only at
the transition point but also in a finite interval around it.

6. SOLUTION OF THE SELF-CONSISTENCY EQUATION

6.1. Classification of the possible solutions

The self-consistency equation for the metallic phase can be derived only by making
specific assumptions about the functional form D(ω, q). For this reason, it is convenient to
examine several cases which exhaust all possibilities.

(a) Let there be among the exponents δs in Eq. (101) a maximum exponent (for
definiteness, δ0), i.e., among the set of soft modes, one mode is the softest. Then, as the
transition is approached, the component const φ0(q), contained in δf(q), will give rise to
an anomalously large response constτ−δ0φ0(q) in the function δd(q). For this reason, near
the transition the solution can be sought in the form

D(ω, q) = D0[φ0(q) + ϕ(q)], ϕ(q) ¿ φ0(q). (103)

For φ0(q) to dominate for all values of q, it is necessary that φ0(0) 6= 0, which we shall
assume is the case.

(b) Let several exponents have the maximum value δ0 = δ1 = ... = δp, and let at
least one of the functions φ0(q), φ1(q), ... φp(q) [for example φ0(q)] be different from zero
at q = 0. Then near the transition

D(ω, q) = D0[φ0(q) + C1φ1(q) + ...+

+Cpφp(q) + ϕ(q)], (104)

where C1 ∼ C2 ∼ ... ∼ Cp ∼ 1, ϕ(q) ¿ φ0(q).
(c) If for two eigenfunctions we have φ0(q) ∼ q2n0 , φ1(q) ∼ q2n1 in the limit q → 0, and

n0 > n1, δ0 > δ1, then in the expansion of D(ω, q) in φs(q) both functions must be retained.
Although the coefficient of φ0(q) grows more rapidly near a transition, the function φ1(q)
dominates for small values of q. In the general case, d(q) must be sought in the form of the
expansion (64) with arbitrary βn.

Actually, as we shall see below, the case (b) is realized (Sec. 6.3). But the analysis
of this case is virtually identical to the simpler case (a) (Sec. 6.2), which reproduces the
solution of the self-consistent theory of localization [18]. Analysis of the case (c) requires a
special mathematical apparatus (Sec. 7), and there is no need to extend this analysis for
the metallic phase, since the solutions different from (b) do not exist.
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6.2. Case of a single dominant mode

We seek the solution in the form (103). The definition of the operators L̂1 and Q̂ in
Sec. 5 presumed that only the dependence on ω in the localized phase is investigated. To
investigate the dependence on ω and τ it is necessary to take into account the fact that
near the transition and in the metallic phase the magnitude of the diffusion denominator
is determined by the parameter D0 À ω. Making the decomposition

1

−iω + D(ω, q)q2
=

1

D0

{
1

φ0(q)q2
− ϕ(q)− iω/D0q

2

φ0(q) [−iω/D0 + φ0(q)q2 + ϕ(q)q2]

}
(105)

we write L̂sing in the form

L̂sing =
ˆ̄L1 + δL̂1

D0

, (106)

where ˆ̄L1 and δL̂1 correspond to the first and second terms in the braces in Eq. (105).
Substituting δL̂1 into Eq. (97) gives, instead of Eq. (99), the equation

D(ω, q) = τf(q) + Q̂Rϕ(q)− iω

D0

Q̂Rq−2, (107)

Q̂Rψ(q) ≡
∫ ddq̃

(2π)d

B(q, q̃)

φ0(q̃)[−iω/D0 + φ0(q̃)q̃2]
ψ(q̃), (108)

where we have neglected ϕ(q) in the denominator of Eq. (105), and have written δf(q) in

the form τf(q). We also accept that the operator ˆ̄L1 corresponds to the limit ω, τ → 0 (see
Fig. 5 below) and put D̄(ω, q) ≡ 0. For the decomposition (103) to be unique, we require
that ϕ(q) satisfy the condition

(φ̄0(q), ϕ(q)) = 0 (109)

expressing the requirement that ϕ(q) ”not contain in itself” the component const · φ0(q)
(φ̄0(q) is an eigenfunction of Q̂T

R that corresponds to the eigenvalue µR
0 ). Forming the scalar

product of the expression (107) with φ̄0(q), we obtain

D0(φ̄0, φ0) = τ(φ̄0, f)− iω

D0

(φ̄0, Q̂Rq−2), (110)

where the last term is different from zero in view of the impossibility of Eq. (102), and
the term with ϕ(q) is absent since (φ̄0, Q̂Rϕ) = (ϕ, Q̂T

Rφ̄0) = µR
0 (ϕ, φ̄0) = 0. Written out in

detail, Eq. (110) has the structure

D0 = Aτ − iω

D0

∫ ddq̃

(2π)d

B(q̃)

φ0(q̃)q̃2[−iω/D0 + φ0(q̃)q̃2]
. (111)

For d > 4 the integral is determined by large values of q̃, and −iω/D0 in the denominator
can be neglected. For d < 4 the integral is determined by small q̃, and we can set q̃ = 0 in
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the slowly varying functions B(q̃) and φ0(q̃); the region of integration can be taken infinite
and the integral can be made dimensionless. The result for both cases can be written in
the unigue form

D0 = Aτ + B
(
− iω

D0

)1/2ν

, (112)

introducing exponent ν according to Eq. (18). The equation (112) has two types of
solutions: in the metallic phase D0 = const 6= 0 as ω → 0 and Eq. (112) gives D0 = Aτ
in accordance with the value s = 1 for the conductivity exponent (18); in the dielectric
phase D0 = (−iω)ξ2 and ξ ∼ τ−ν in accordance with the definition of the exponent of the
localization length (in the case at hand, the configuration of exponents βn corresponds to
the case Fig. 3a). The equation (112) and the values of the indices s and ν are identical
to those obtained in Ref. [18].

For the case d > 4 Eq. (112) reduces to a quadratic equation and it is easy to trace
how the solutions are selected (Fig. 5). For ω = 0 the terms D0 = Aτ and D0 = 0 are
intersected (Fig. 5a); for finite ω, the degeneracy is removed by the amount ∼ ω1/2ν+1 (Fig.
5b), and of the two branches, only one satisfies the condition ReD(ω, q) ≥ 0, following from
Eqs. (31) and (35) and the non-negativity of 〈ρEρE+ω〉q. Choosing the indicated branch
and passing to the limit ω → 0, we obtain finiteness of D0 only on one side of the transition
— for definiteness, for τ > 0 (Fig. 5c).

From Eq. (107) we have for the function ϕ(q)

ϕ(q) = Q̂−1
R P̂⊥

(
D0φ0(q)− τf(q) +

iω

D0

Q̂Rq−2
)

, (113)

where P̂⊥ is a projection operator onto the subspace which is orthogonal to φ̄0(q). Since
Q̂R ∼ 1 (see below), we obtain ϕ(q) ∼ max{|τ |, ω1/(2ν+1)}, which justifies the assumption
ϕ(q) ¿ φ0(q). For d > 2 the integral in Eq. (108) is determined by large values of q̃ for
any regular function ϕ(q̃) and all eigenvalues µR

s of the operator Q̂R are found to be of
order unity. For the operator Q̂ from Sec. 5 (which differs from Q̂R in the localized phase
by the factor ξ−2) this means that all µs vanish according to the same law. Therefore the
assumption that one mode predominates is not confirmed by the result and actually the
case (b) of Sec. 6.1 is realized.

6.3. Case of several dominant modes

We seek D(ω, q) in the form (104), where the choice of the function ϕ(q) is fixed by
the conditions (φ̄0, ϕ) = 0, Ci = const(τ) as τ → 0 (if ϕ is required to be orthogonal to
φ̄1, ..., φ̄p, then the coefficients Ci are functions of τ , and this leads to inconveniences in

defining the operator ˆ̄L1 corresponding to the limit ω, τ → 0 and not depending on τ).
Using instead of φ0 the ”correct” linear combination φ0 + C1φ1 + ... + Cpφp and repeating
the agruments of Sec. 6.2., we arrive at equations of the type (107) and (108); forming the
scalar product of the first equation with φ̄0, we arrive at Eq. (112) with all consequences
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Figure 5: Selection of the solutions of the self-consistency equation: a — Intersection of
the terms for ω = 0; b — splitting into physical and unphysical branches for ω > 0; c —
behavior of D0(τ) for the physical branch at ω = 0.
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following from this. Once again, all eigenvalues of Q̂ vanish according to the same law and
the limit p →∞ must be taken in Eq. (104), i.e., all φs(q) must be included in the correct
linear combination. Forming the scalar product of the analog of Eq. (107) with φ̄1, φ̄2, ...,
we obtain a system of equations for Ci:

D0Ci(φ̄i, φi) = τ(φ̄i, f) + µR
i (φ̄i, ϕ)−

− iω

D0

(φ̄i, Q̂Rq−2), i = 1, 2, ..., (114)

where µR
i ∼ 1. The function ϕ(q) is found to be ∼ τ , and in the limit ω → 0, it has a

discontinuity at τ = 0, i.e.,

ϕ(q) = τ

{
BM

1 φ1(q) + BM
2 φ2(q) + ..., τ > 0

BD
1 φ1(q) + BD

2 φ2(q) + ..., τ < 0
. (115)

Substituting the expression (115) into Eq. (114), we obtain in the limit ω → 0 the equations

D0Ci(φ̄i, φi) = τ(φ̄i, f) + τµR
i BM

i (φ̄i, φi)

0 = τ(φ̄i, f) + τµR
i BD

i (φ̄i, φi) + ξ−2(φ̄i, Q̂Rq−2) (116)

for the metallic and dielectric phases, respectively. For any Ci the equations (116) can be
satisfied by appropriate choice of BM

i and BD
i , i.e., the coefficients of the correct linear

combination are completely arbitrary. The meaning of this arbitrariness will be explained
in Sec. 8.

Finally, D(ω, q) near the transition has the form

D(ω, q) = D0d̄(q),

D0 ∼




τ, τ À ω1/(2ν+1)

ω1/(2ν+1), |τ | <∼ ω1/(2ν+1)

(−iω)|τ |−2ν , −τ À ω1/(2ν+1)

, (116a)

where the function d̄(q) ≡ d(q)/d(0) varies on the scale q ∼ Λ. This result, obtained for
D(ω, q) defined as in Eq. (55), is also valid for the observed diffusion coefficient Dobs(ω, q),
since the renormalizations associated with the functions B(q) and C(q) in Eqs. (53) and
(54) either contain no anomalous dispersion or they are small.

7. UNIQUENESS OF THE SOLUTION

In this section the self-consistency equation (99) in the localized phase is investigated
assuming for d(q) an expansion of the general form (64).

7.1. Method of supporting points
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Figure 6: a — Construction of the upper tangent at the point xk to the set of points
(n, αn); b — convex envelope α̃(x) for the sequence αn.

In what follows, integrals of the form

Ik =
∫ ddq

(2π)d

q2k

ξα0 + ξα1q2 + ... + ξαnq2n + ...
, αn ≥ 0 (117)

are essenrial. The asymptotic expressions of these integrals in the limit ξ → ∞ are cal-
culated by the method of ”supporting points”. We choose an appropriate scaling in order
to make the integrals dimensionless, making the substitution q = ξ−bt, and removing the
common factor ξa from the denominator; as a result, the indices αs become αs − a − 2sb.
By choosing appropriate values of a and b the exponents in two terms of the denominator
in Eq. (117) can be made to be zero and the remaining exponents become negative. Then

Ik = ξ−a−b(d+2k)
∫ ddt

(2π)d

t2k

t2s1 + t2s2 +
∑

s 6=s1,s2

ξαs−a−2sbt2s
∼ ξ−a−b(d+2k). (118)

The integer numbers s1 and s2 should satisfy the condition 2s1 < d+2k < 2s2, guaranteeing
that the integral converges after the sum over s is dropped; to avoid uncertainties, we
assume that d is noninteger, and pass to the limit of integer d in the final results. The
procedure described above admits a simple geometric interpretation5. Let us plot a sequence
αn against n (Fig. 6a), mark on the abscissa axis the point xk = (d + 2k)/2, and construct
”an upper tangent” at the point xk to the set of points (n, αn). If we imagine, that the
points are represented by nails, then this construction is made with the aid of ”stick” (solid
line in Fig. 6a) and ”rope” (dashed line). The numbers of the points, on which the upper
tangent ”lies”, determine s1 and s2, and its equation α = a+2bn determines the parameters
a and b.

5Similar constructions arise in the investigation of Burgers equation [45].
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Constructing the broken line, consisting of segments of the upper tangents (Fig. 6b),
we obtain a ”convex envelope” α̃(x), in terms of which the result (118) assumes the form

Ik ∼ ξ−α̃(xk), xk =
d + 2k

2
. (119)

By construction the function α̃(x) is increasing and convex (in the not strict sense). For a
bounded sequence αn with maximum at n = n0, α̃(x) is strictly increasing for x < n0 and
constant for x > n0 (for xk > n0 the supporting point s2 lies at infinity). For a strictly
increasing and strictly convex sequence αn, the following inequalities follow from Eq. (119):

I0 À I1 À I2 À ... À Ik À Ik+1 À ..., (120)

Ik1Ik2 ¿ Ik1−1Ik2+1 ¿ Ik1−2Ik2+2 ¿ ... , k1 ≤ k2. (121)

For an arbitrary sequence αn, some of the strong inequalities are replaced by weak inequali-
ties. In what follows, for definiteness, we proceed from the strong inequalities in Eqs. (120)
and (121), having in mind that the results remain valid in the order of magnitude for the
general case.

7.2. Symmetrization of the operator Q̂

We set in Eq. (99) δf(q) ≡ δτf(q) and expanding all functions in series

f(q) =
∞∑

k=0

fkq
2k, δd(q) =

∞∑

k=0

δdkq
2k, B(q, q̃) =

∞∑

k,k′=0

Bkk′q
2kq̃2k′ (122)

we obtain in the limit ω → 0

−δτfk =
∞∑

k′=0

Bkk′
∞∑

k′′=0

Ik′+k′′δdk′′ , (123)

where

Ik =
∫ ddq

(2π)d

q2k+2

[1 + d(q)q2]2
. (124)

The matrix B̂ = ||Bkk′ || and the column matrix f̂ = ||fk|| are of general form with elements

∼ 1. The column matrix ˆ̃f = B̂−1f̂ has the same properties. Multiplying Eq. (123) by
B̂−1 we obtain

−δτ

∣∣∣∣∣∣∣∣∣∣∣

f̃0

f̃1

f̃2
...

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

I0 I1 I2 . . .
I1 I2 I3 . . .
I2 I3 I4 . . .
. . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

δd0

δd1

δd2
...

∣∣∣∣∣∣∣∣∣∣
, (125)

i.e., an equation of the type (99) but with the symmetrized matrix of the operator Q̂.

33



Using the expansion (64) for d(q), the integrals (124) acquire the form (117) with the
exponents

αn = max{ki}(βk1 + βk2)k1+k2=n (126)

and an extra q2 in the numerator. The exponents βn are nonnegative and increase not
faster than 2n (Sec. 4). This guarantees the condition αn ≥ 0 and make is possible to
construct a convex envelope.

7.3. Inversion of the operator Q̂

Restricting the upper limit of the summation in Eq. (122) by some finite n, we obtain
in Eq. (125) a system of equations of finite order that can be solved by Cramer’s rule. The
determinant of the matrix Q̂ in Eq. (125) consists of all possible products of the form

Ik0Ik1+1Ik2+2...Ikn+n, (127)

where k0, k1, ..., kn is a permutation of 0, 1, ..., n. We separate in Eq. (125) the pair
Iks+sIk′s+s′ with s < s′. If ks > ks′ , then it follows from Eqs. (120) and (121) that

Ik′s+sIks+s′ À Iks+sIks′+s′ (128)

and the product (127) can be increased by interchanging ks and ks′ , without touching the
other ki. It is obvious that in the maximum product among the products (127), which
determines the order of magnitude of the determinant Q, should have k0 < k1 < ... < kn,
whence k0 = 0, k1 = 1, ..., kn = n and therefore

detQ ∼ I0I2I4...I2n. (129)

The minor Qi
j of the matrix Q, obtained by crossing out the ith row and the jth column,

consists of all possible products of the form

Ik0Ik1+1...Ikj−1+(j−1)Ikj+1+(j+1)...Ikn+n, (130)

where k0, k1, ..., kj−1, kj+1, ..., kn is a permutation of 0, 1, ..., i−1, i+1, ..., n. In the maximum
product these two sequences are identical. It is easily verified that

Q0
j ¿ Q1

j ¿ ... ¿ Qn
j ∼ I0I2...I2j−2I2j+1I2j+3...I2n−1. (131)

Solving Eq. (125) by Cramer’s rule and using Eqs. (129) and (131), we obtain

δdk ∼ δτ
1

I2k

I2k+1I2k+3...I2n−1

I2k+2I2k+4...I2n

, k = 0, 1, ..., n (132)

and, using Eq. (119), the result can be expressed in terms of the sequence αk. For a convex
sequence βk, we have from Eq. (126) α2m = 2βm, α2m+1 = βm+βm+1, which can be written
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in the form αk = 2βk/2, if the sequence βk is additionally defined at half-integral points by
the relation βk+1/2 ≡ (βk + βk+1)/2. Since the values of βk+1/2 lie on the convex envelope

β̃(x), for arbitrary x we obtain
α̃(x) = 2β̃(x/2). (133)

This result remains valid for an arbitrary sequence βk. To prove this, it is necessary to
introduce an auxiliary convex sequence β̄k = β̃(k) ≥ βk and note that replacing βk by β̄k

does not change the value of the integrals Ik. For convex βk we have

β̃(k + ϕ) = (1− ϕ)βk + ϕβk+1, 0 ≤ ϕ ≤ 1, (134)

which makes it possible to switch from the convex envelope directly to the values of βk. In
the general case Eq. (134) is correct with βk replaced by β̄k. Setting

d ≡ 4m + 4ψ, m− integer, 0 ≤ ψ ≤ 1 (135)

we obtain from Eqs. (132), (119), (133) and (134) in the limit n →∞

δdk ∼ δτξS(k),

S(k) =

{
(1− 2ψ)β̄m+k + 2ψβ̄m+k+1 + β̄∞, 0 ≤ ψ ≤ 1

2

β̄m+k+1 + β̄∞, 1
2
≤ ψ ≤ 1

, (136)

where the limit β̄∞ = limk→∞ β̄k is assumed to be finite in accordance with the considera-
tion of the next section.

7.4. Impossibility of unbounded growth of βk

For an unbounded sequence βk the convex envelope β̃k is strictly increasing and the
hierarchy (120) continues to infinity. By virtue of Eq. (132), this means that δdk diverges
as n → ∞. To clarify the reasons for the divergence, we note that the off-diagonal part
of the matrix Q in Eq. (125) under the conditions (120) and (121) can be regarded as a
perturbation. Its eigenvalues in leading order are equal to I2k and they bunch up near zero
in the limit k → ∞. In the proof of Fredholm’s theorem it is shown [46] that when the
expansions (122) are truncated at the nth term, the (n + 1) maximum eigenvalues of the
operator Q̂ are reproduced; in the limit n →∞, arbitrary small eigenvalues are reproduced
and the response of the system to a small perturbation diverges. This situation occurs not
only at the transition point but also in a neighborhood of the transition point (as long as
ξ À Λ−1); it is unphysical, since the system is unstable with respect to an infinitely small
perturbation of a general form.

This result has important qualitative consequences, since it excludes the cases corre-
sponding to Fig. 3b and proves the validity of the results D(ω, 0) ∼ (−iω)ξ2 and ε(0, 0) ∼ ξ2

in the localized phase.
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7.5. Change in d(q) as the transition is approached

Expanding the numerator in Eq. (92) in powers of q̃2, we obtain integrals that can be

calculated by the method of supporting points and which are of order ξ−β̃(x0), ξ−β̃(x1), and
so on. We set

L̂sing(ξ) =
L̂1(ξ)

(−iω)ξβ̃(x0)
=

ˆ̄L1 + ξ−y1 l̂1 + ξ−y2 l̂2 + ...

(−iω)ξβ̃(x0)
, (137)

where the terms ξ−yk l̂k arise from the higher order terms in the expansion in q̃2 and from
corrections to the main scaling in the method of supporting points. We have changed the
definition of L̂1 in comparison with (77), in order to make it possible to separate the main

singularity as τ → 0 and introduce the operator ˆ̄L1, corresponding to the limit ω, τ → 0.
In Eq. (137) it was assumed that βk are constant. Now, let the change δτ in the

parameter τ generate the changes δξ and δβk in the quantities ξ and βk. Then

L̂sing(ξ + δξ) =
L̂1(ξ + δξ)

(−iω)(ξ + δξ)β̃(x0)
=

=
ˆ̄L1 + (ξ + δξ)β̃(x0)(−i)δL̂1 + (ξ + δξ)−y1 l̂1

(−iω)(ξ + δξ)β̃(x0)
, (138)

where only the term with the minimum index y1 is retained, and δL̂1 is determined by the
expression (93) with δd(q) of the form

δd(q) =
∞∑

k=0

q2kξβk+1 lnξδβk+1. (139)

Using as δL̂1 in Eq. (97) the quantity L̂1(ξ + δξ)− L̂1(ξ) we obtain instead of Eq. (99)

δD(ω, q) = δτf(q) + ξ−y1−1δξR(q) + ξβ̃(x0)Q̂δd(q), (140)

where δD(ω, q) → 0 as ω → 0. In the case of exact scaling, when δd(q) ≡ 0, the first two
terms on the right-hand side cancel one another, whence y1 = 1/ν. In the general case,
they are of the same order of magnitude. Inverting the operator Q̂ according to Sec. 7.3
and comparing with Eq. (139), we have

δdk ∼ δτξ−β̃(x0)+S(k) ∼ ξβk+1 lnξδβk+1, (141)

and, consequently

δβk ∼ δτ

lnξ
ξγk , (142)
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where it is convenient to write γk in the form

γk =





(β̄k − βk) + (β̄∞ − β̃(x0)) + (β̄m+k − β̄k) (1
2
≤ ψ ≤ 1)

(β̄k − βk) + (β̄∞ − β̃(x0)) + (1− 2ψ)(β̄m+k−1 − β̄k)+ (0 ≤ ψ ≤ 1
2
,

+2ψ(β̄m+k − β̄k) m ≥ 1)

(β̄k − βk) + (β̄∞ − β̄k) + (1− 2ψ)(β̄k−1 − β̄0)+ (0 ≤ ψ ≤ 1
2
,

+2ψ(β̄k − β̄1) m = 0)

. (143)

All combinations in parentheses are non-negative and γk ≥ 0. For fixed ξ the definition
of the exponents βk in Eq. (64) is not unique: the coefficient of q2k can be written as
Ckξ

βk and a change in βk is equivalent to a change in Ck. The specific configuration of
the exponents βk make sense only if it remains unchanged when τ changes. According to
Eq. (142), for γk > 0 a large change in the exponents occurs. Only if γk ≡ 0, the changes
δβk ∼ δτ/lnξ can be included in the changes of Ck. The condition γk ≡ 0 requires that
all combinations in parentheses of Eq. (142) vanish and it fixes the only configuration of
exponents, which is different for d > 2 and d < 2:

β1 = β2 = β3 = ... , d > 2,

β0 = β1 = β2 = ... , d < 2. (144)

By definition, β0 = 0 and for d < 2 all exponents are equal to zero. This means that d(q)
does not diverge and the localized phase remains for all τ [21]. For d > 2, all indices can
be made equal to 2, in accordance with the requirement β1 = 2 (Fig. 3a), by redefining ξ.
All eigenvalues of Q̂ vary according to the same law and we return to be case (b) of Sec. 6.1.

8. CHANGE IN SYMMETRY AT THE ANDERSON TRANSITION

A change in L̂reg gives rise to a rotation of the subspace M∞ of the operator L̂sing. This
is analogous to a rotation of the magnetization vector M accompanying a change in the
magnetic field H in a ferromagnet. This analogy is formalized in the form of Table 1. We
shall give some explanations6.

The operators L̂reg and L̂sing have many degrees of freedom, many of which do not
appear in the self-consistency equation. The important degrees of freedom are determined
by the functions f(q) and d̄(q) [see Eq. (116a)], whose expansion coefficients

f(q) = 1 + f1q
2 + ... + fnq

2n + ...,

d̄(q) = 1 + d1q
2 + ... + dnq2n + ... (145)

6A similar, but not identical, analogy was discussed in Ref. [41].
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can be regarded as components of the unit vectors Ĥ and M̂. In the localized phase, small
changes in them are related with each other by the operator Q̂, whose inverse is analogous
to the magnetic susceptibility tensor χij.

The finiteness of the frequency ω smears the transition, similarly to the finiteness of
the magnetic field in a ferromagnet. In the localized phase D0 ∼ ω and in the metallic
phase D0 = const(ω), which is analogous to the appearance of spontaneous magnetization,
i.e., the quantities D0 and ω are analogous to |M| and |H|. In view of the qualitative
character of the analogy, this identification is not unique. For example, any monotonic
function F (|M|), equal to zero for |M| = 0, can be taken as the analog of D0; as a function
of the magnetization itself, it has the form F (M2), since a scalar must be formed from a
vector. Finally, for small M2, it can be expanded in a series, and we obtain an analogy of
D0 to M2. Similarly, H2 is the natural analog for ω.

TABLE 1. Analogy between a ferromagnet and a disordered system.
Ferromagnet Disordered system

Orientation of the magnetic field H: Operator L̂reg:
Components of the unit vector Coefficients fn

Orientation of the magnetization M: Space M∞ of the operator L̂sing

Components of the unit vector Coefficients dn

Squared modulus of the field H2 Frequency ω
Squared modulus of the Diffusion coefficient D0

magnetization M2

Magnetic susceptibility tensor χij Operator Q̂−1

Paramagnetic phase Localized phase
Ferromagnetic phase Metallic phase

Curie point Point of the Anderson transition
T − Tc Distance to the transition τ

In the analogy found, it is important that (a) the number of components of the vector
M is infinite, since the number of expansion coefficients dn is infinite, and (b) the ferro-
magnet is isotropic. The latter property is obvious from the fact that all eigenvalues of the
”susceptibility tensor” Q̂−1 diverge at the transition point according to the same law and
for small changes in dn and fn they can be made equal by a τ -independent linear trans-
formation. The analog of collinearity of M and H in an isotropic ferromagnet exists with
the following stipulation. In the case of the Anderson transition the ”vector H” and the
”vector M” lie in different subspaces and there is no natural method for establishing the
mutual orientation of these subspaces. For this reason, for a fixed function f(q) the choice
of d(q) is arbitrary (Sec. 6.3), in accordance with the arbitrariness in the choice of bases
in the two subspaces. For the special choice BM

i ≡ 0 in Eq. (115) we have f(q) ≡ d̄(q),
which corresponds to the choice of the ”correct” mutual orientation of the bases.

The model of an isotropic ferromagnet with the number of components n →∞ is well
known in the theory of phase transitions and is the basis for the 1/n expansion [1]. Its
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critical exponents are known exactly. Specifically, for the exponents of the magnetization
M ∼ τβ and of the correlation length ξ ∼ τ−ν we have

β = 1/2 , d > 2 ; ν =





1

d− 2
, 2 < d < 4

1

2
, d > 4

. (146)

which, since s = 2β, corresponds exactly to Eq. (18).

9. CONCLUSIONS

The approach to the theory of localization based on the formalism of σ-models [22, 47,
48] is currently considered to be the most rigorous approach. However, its rigor should not
be overestimated. First, the degree to which the approximations employed in the derivation
of the σ-models retain exact time-reversal invariance of the initial disordered system and the
satisfaction of the Ward identity (13), was never studied. But these properties are vitally
important for reproducing the pole structure of Ukk′(q). Second, to take into account
the spatial dispersion of D(ω,q), it is necessary to introduce into the Lagrangian of the
σ-model additional gradient vertices, which grow anomalously at the initial stage of the
renormalization group transformations [49]. The analog of such growth can be obtained
from Eqs. (142) and (143), assuming for the initial configuration of exponents β1 = 2, βk =
0 (k ≥ 2):

∂βk

∂τ
∼ 1

lnξ
ξ2−βk , k = 1, 2, .... (147)

Growth of βk with k ≥ 2 indicates intensification of spatial dispersion of D(ω,q) as the
transition is approached. In the language of the magnetic analogy (Sec. 8), it corresponds
to a transformation of a uniaxial ferromagnet into an isotropic ferromagnet7. One can
speculate, that the renormalization group transformations can transfer analogously the
zero-component σ-model into an infinite component model. These difficulties apparently
are not important in low orders in ε = d−2, since for small ε the Anderson transition falls in
the region of weak disorder, for which the derivation of the σ-model is indeed substantiated.

We now discuss the possible reasons for the disagreement of Eq. (18) with the result of
Ref. 28 for the exponent s. The result of Ref. 28 for the permittivity ε(0, 0) ∼ ξ corresponds
to the case ζ = 1 of the Sec. 4. This is also indicated by the expression given in Ref. 28 for
the function A(r) from Eq. (66). For ζ = 1 the exponents βk increase linearly with k, and
in accordance with Sec. 7.4, the instability with respect to an infinitesimal perturbation
of a general form arises. If the results of Ref. 28 correspond to the exact solution of some
idealized model, then this model is unphysical. More likely, the approximations employed

7A detailed investigation of the evolution of βk requires a knowledge of the proportionality coefficients
in Eq. (64) and (142).
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in the derivation of the σ-model and the selection of diagrams in Ref. 28 destroy the pole
structure of Ukk′(q). The fact, that results are the same for models with and without the
time-reversal invariance, looks suspicious in this sense. Finally, in the derivation of the σ-
model for a large d it is necessary to introduce an artificial construction of weakly coupled
granules. For this construction, because of the presence of artificial small parameters, the
critical region can narrow anomalously and, as a result of the approximations, contract
into a point. The results of Ref. 28 could correspond to some intermediate asymptotic
behavior.

There are some objections to the arguments of Efetov [43] that the diagrammatic ap-
proach in principle does not ”feel” the noncompactness, which in his opinion determines
the main difference between the theory of disordered systems and the theory of phase tran-
sitions. One can agree with the last assertion: Noncompactness is a consequence of the
infinitesmall additions ±iδ, determining the type of Green’s function, which lead to non-
perturbative contributions giving rise to the difference between the two indicated theories
[17]. However, the nonperturbative contributions can be obtained from the diagrammatic
technique [16]. The additions ±iδ play an important role in the separation of the diffusion
poles, since as a result of these additions, the integration contour in Eq. (58) is confined
between the poles of two Green’s functions.

I thank A. F. Andreev, A. I. Larkin, M. V. Sadovskii, and M. V. Feigelman for a
discussion. I am grateful to the participants of the seminars at P.L.Kapitza Institute for
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APPENDIX
Expansion of the self-consistency equation in powers of q

If we have for the operator L̂

L̂(q)ψk ≡ 1

N

∑

k′
Lkk′(q)ψk′ ,

Lkk′(q) = Lk′k(q) = L−k,−k′(−q) (A1)

then it is easy to prove that: (a) the eigenvalues of L̂ are even as a function of q, λs(q) =

λs(−q); (b) the eigenfunctions e
(s)
k (q) can be chosen so that e

(s)
k (q) = e

(s)
−k(−q); and, (c) if

there are several operators of the type (A1), then the matrix elements of one operator with
respect to the eigenfunctions of the other operator are even functions of q. The operators
L̂, L̂reg, and L̂1 are of the form (A1) and, by virtue of (–c), the right-hand side of Eq. (97)
is even in q and can be expanded in powers of q2.
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Since the operator L̂1 in Sec. 5.1 is independent of ω, we obtain that in Eq. (86)
O(ω) ≡ 0 and the definitions (75) and (76) are equivalent to the following definitions:

L̂regψk = (εk+q/2 − εk−q/2)ψk +
1

N

∑

k′
U reg

kk′ (q)[∆Gk′(q)ψk −
√

∆Gk(q)∆Gk′(q)ψk′ ], (A2)

L̂singψk =
1

N

∑

k′
U sing

kk′ (q)[∆Gk′(q)ψk −
√

∆Gk(q)∆Gk′(q)ψk′ ]. (A3)

For the definition (A2) we have, on account of Eq. (39),

L̂reg|e0〉 = L̂reg{const
√

∆Gk(q) + O(q)} =

= const(εk+q/2 − εk−q/2)
√

∆Gk(q) + O(q) = O(q)

and the contribution O(q0) is absent in each term on the right-hand side of Eq. (97).
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