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Abstract

Quantum oscillations of T, in layered superconducting structures should be interpreted in terms of two different
mechanisms: (a) interference of de Broglie waves on two planar defects and (b) one defect interference confined by the jump
of the order parameter on the other defect. The first mechanism leads to nondecaying oscillations, the second to decaying

ones.

In Refs. [1-3] the following interesting phe-
nomenon was described: if the superconducting film
prepared from material A with the width L < &, is
covered by material B then the transition temperature
T, oscillates with the change of the width 4 of the
covering material (Fig. 1). The first theoretical con-
sideration of this effect belongs to Kagan and
Dubovskii [4]. It was based on the assumption that
material B is a normal metal > whose electrons do
not take part in superconductivity at all, while there
is a strong relation between wavefunctions of materi-
als A and B. One can imagine that there is a
semipermeable membrane between A and B materi-
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2 Authors of Ref. [4] called the covering material ‘nonmetal’
(assuming that it is a semimetal or a semiconductor metallized
near the surface due to band bending) stressing the fact that the
electron wavelength must be greater then the size of the roughness
of the boundary; one does not have to take this limitation into
account for an ideally plane boundary.

als and it transmits normal electrons without trans-
mitting superconducting ones. Then the problem is
reduced to calculation of the T, of the film with
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Fig. 1. If superconducting film A is covered by material B then T,
of the system oscillates with changing the width 4 of the covering
material.
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varying boundary conditions: the phase of the wave-
function has a fixed value on the outer surface of
material B and oscillates with the change of d on the
boundary between A and B. The critical temperature
up to a parameter a/L (a is the interatomic space)
depends on the boundary conditions and conse-
quently appears to be an oscillating function of d. It
is shown below that Kagan and Dubovskii’s consid-
eration requires radical revision and one should in-
terpret the experiments [1-3] in terms of two differ-
ent mechanisms.

It is easy to see that the concept of a semiperme-
able boundary * is completely unsatisfactory because
of the proximity effect: the transverse size of the
system L +d < £, and one of the partners of the
Cooper’s pair may penetrate into material B with a
probability of the same order as a normal electron
may do. Moreover, we are interested only in the
transition temperature at which the coupling energy
is negligibly small and it is just impossible (without
help of Maxwell’s demon) to distinguish ‘supercon-
ducting’ and ‘normal’ electrons. It is obvious that we
should consider the A-B sandwich as a unified
superconducting system and the concept of varying
boundary conditions becomes doubtful. One can try
to keep the arguments of Ref. [4] as a reasonable
qualitative explanation of the effect, noting that there
is a jump of the order parameter on the A-B bound-
ary and the latter can ‘work’ as an edge of the
superconductivity area in Kagan—-Dubovskii’s pic-
ture. But it turns out that this interpretation is also
unsatisfactory.

The first argument in this direction follows from
Ref. [5]: there are quantum oscillations of T, even if
we remove the difference between materials A and B
(and as a consequence the order parameter jump)
simultaneously substituting the A—B boundary with
a planar defect. The most transparent experimental
geometry is presented in Fig. 2(a): in the film of
material A two planar defects are inserted, and we
can observe the oscillations of T, with a change of
distance d between them. One can give the interpre-
tation of this effect in two limiting cases. In the case
of small transparency of the defects we have two

3 There is no such image in Ref. [4] but the given interpretation
exactly corresponds to the performed calculations.
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Fig. 2. By changing distance d between two scattering defects
(solid lines) one can get nondecaying oscillations of 7, (a); in the
case of two unscattering defects (dotted lines) there are no oscilla-
tions of 7, (b); in the case of scattering and unscattering defects
oscillations of T, decay (c), Below: local density of states N(z).
for the case (c).

weakly coupled systems: a three-dimensional super-
conductor in the region |z|>d/2 (z axis perpen-
dicular to the planar defects and the point z=0
located in the middle between them) and a quasi-
two-dimensional system in the region |z|<d/2.
The spectrum of the last system is the set of 2D
bands, the size quantization levels depending on the
longtitudinal momentum; with the increase of d, the
spacing between the levels decreases and, when the
bottom of the next 2D band intersects the Fermi
level, there is a jump of 7, due to the jump of the
density of states: oscillations of T, have a saw-like
form [5]. In the case of high transparent defects, it is
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convenient to consider the electron wavefunctions as
a result of repeated reflections of plane waves from
defects. The most important is the interference of the
incident wave A exp(ikgz) (where k is the Fermi
momentum), and the twice reflected wave A,
exp(ikpz + 2ikpd) (two reflections are necessary to
get the information of the existence of two defects,
and we can neglect reflections of higher order be-
cause the reflection coefficient is small); the result of
the interference depends periodically on d which
leads to oscillations of T.

We can apply this consideration to the system in
Fig. 1: the boundary of material B with the vacuum
and the interface between A and B materials play the
role of planar defects. Thus the existence of the jump
of the order parameter is not a necessary condition
for the effect of quantum oscillations to take place,
but the question of its sufficiency remains: are there
oscillations due to the difference of the supercon-
ducting properties of A and B only? In order to
understand it, let us introduce the concept of an
unscattering planar defect: it can be the boundary
between two metals M; and M, with identical spec-
tra and with no surface potential on the interface. If
the 7, of M, and M, are different, then there is a
jump of the order parameter on the plane of the
defect but there is no scattering of electrons (we can
neglect the Andreev reflection because only the
vicinity of T, is considered). The simplest way to
create such a defect is to use M; metal doping with
the impurities damping 7. as M,. In some approxi-
mation, as a defect of this kind, the boundary be-
tween the two simple (nontransition) metals may be
considered, if they have the same valency, close
lattice constants, and work functions. Their spectra
are close to p?/2m with ‘bare’ electron mass and
due to the above conditions they have close Fermi
momenta and a small surface potential.

Are there T, oscillations when we are changing
distance d (Fig. 2(b)) between two unscattering de-
fects (denoted by the dotted line)? According to
Kagan-Dubovskii’s picture, the answer to this ques-
tion is positive: the phase of the wavefunctions is
fixed in the plane z =0 due to the symmetry, and
oscillates on the planes of defects when d is changed.
As for the mechanism described in Ref. [5], it is
artificially ‘turned off’ — there is no interference
because of the absence of scattering. The answer to

this question may be given on the basis of the
formula for T_:

8, T.—Ty
TcO 7::0

1
=_A3Lfdz VoN(2)[V(2)N(z) = VN, ],
(1)

which follows from Gorkov’s equation in the case of
local space inhomogeneity [6]. This formula was also
used in Ref. [S]*; here V(z) and N(z) are, respec-
tively, the coordinate dependent BCS interaction
constant and the local density of states; they are
equal to V,, and N, outside the region of integration
lz1<d/2; Ag=V,N, is a dimensionless coupling
constant, and T, is the value of T corresponding to
Ag. Setting V(z) equal to V; in the region | z| < d/2
and equal to V, in | z|>d/2 and taking into ac-
count that N(z) = const = N, for | z| < d/2 because
of absence of scattering, we get

87, 1(V, \d
= 1= (2)
Ty Ao L

So we have only one contribution ~ d/L related
to the proximity effect, and there are no oscillations
of any kind. Thus oscilations cannot be caused by
the order parameter jurnp only.

Now let us assume that one defect scatters elec-
trons and the other one does not (Fig. 2(c)). As in the
previous case, the mechanism of Ref. [5] is not
present but full-body oscillations are expected on the
basis of Kagan—-Dubovskii’s picture. In the simplest
case of an infinitely strong scattering defect (when
zero boundary conditions take place on the plane
z=d/2) we get [6]):

sin 2k 2’
2kp?

N(z)=No(1— ), 2=z-d/2, (3)

* Eqs. (4.3), (4.4) of Ref. [4] are in agreement with (1) within
the assumed model, differing from it only in considering the
chemical potential shift (which in reality is absent [6]) and lack of
integration over the volume of material B, The latter is a conse-
quence of ignoring the proximity effect and leads to loss of the
contribution of order d /L (when effects ~ a/L are under con-
sideration) and the nondecaying component of quantum oscilla-
tions (nondecaying oscillations were obtained in Ref. [4] as a
result of crude approximations in Eqs. (4.3), (4.4)).
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Fig. 3. Function f(x) describes the form of T oscillations (Eq.
(4)) in the geometry of Fig. 2(c).

and substitution into (1) yields

oL, i 1T ked + F(2ked 4
_— —_ _I_ R
WAL [kpd +f(2ked)] (4)
where

f(x) = —Si(x) —sin’x/(2x) + Si(2x) /2

and Si(x) is the sine integral. It is clear from Fig. 3,
that there are oscillations but, contrary to Ref. [4],
they are decaying. The mechanism of their appear-
ance is as follows. Far from the scattering defect
electrons move freely, i.e. there is a superposition of
plane waves exp(ikr) with different k. At an arbi-
trary point r, their phases are random and there is no
interference:

I ZAkeikri?, = Z [ Aklz‘
k k

The value on the right-hand side is independent of r,
and is related to the equilibrium electron density. In
plane z =d /2, we cannot neglect the interference —
the phases of the plane waves must be correlated,
because we should get zero electron density in accor-
dance with the zero boundary condition. This corre-
lation is decreased while we are remoting from plane
z=d/2. Thus the presence of a scattering defect
leads to the existence of local phase coherency, and
there arises an interference picture of decaying inten-

sity. These arguments explain the shape of N(z)
(Fig. 2). As the unscattering defect is moved, the
shape of N(z) does not change but either the maxi-
mum or the minimum of N(z) comes into a ‘good’
superconductor and oscillations of T, arises: they
decay in accordance with the decay of N(z) oscilla-
tions.

Thus we have two different mechanisms of quan-
tum oscillations: the first is due to interference of de
Broglie waves on two planar defects, the second is
due to interference on one defect which is ‘captured’
by the jump of the order parameter on the second
defect. Correspondingly, it is possible to perform
three ‘pure’ experiments (Fig. 2), in one of them (a)
there are oscillations due to the first mechanism, in
another (c) — due to the second mechanism; in the
third (b) there is no effect because of the absence of
the mechanism. It should be stressed that Kagan and
Dubovskii’s concept of varying boundary conditions
leads to wrong results in all three cases. In case (a) it
does not predict the existing effect, in case (b) it
predicts a non-existing effect, in case (c) it predicts
nondecaying oscillations instead of decaying ones.
The experiment in geometry of Fig. 2(a) was per-
formed recently [7].

Interestingly, the two described mechanisms are
distinctly displayed in the general case, when both
scattering and the jump of the order parameter are
present. In our extensive investigation of sandwiches
A-B-A [8], the following regularity was discovered.
If the amplitude of scattering on the interface is
proportional to a small parameter e, then the result
for T, has the following form:

oT,

?:5:5(/\1_/\0)f1(de) +€°f,(ked), (5)
where fi(x) is an oscillatory decaying function, and
f»(x) is a oscillatory nondecaying function; their
behavior depends on the origin of e (the difference
in longtitudinal or transverse masses of A and B, the
difference in the position of the band bottom etc.),
while the structure of the result (5) is universal.
From the above considerations, it is clear that term
~ €2 is related to the interference on two defects
while term ~ (A, — Ay) is due to the interference
on one defect, that is confined by the order parame-
ter jump on the second (within the limits of applica-
bility of Ref. [1], the order parameter is proportional
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to V(z)N(z) [6], and its jump is determined by the
value of (A, — A)).
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