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It is possible to approach the problem of computing T for complex compounds by starting with
spatially inhomogeneous systems: first, consider a structure made up of macroscopic blocks

of size L>a (where a is the interatomic spacing), and then make the extrapolation L —a. A
general theorem for the Gor’kov equation implies that when T, is computed for such a

block structure, neglect of transitional behavior of all physical quantities at boundaries results in
a value of T, which cannot exceed the largest value of T. for the constituent materials of

the structure. However, this bound is removed when we take into account surface effects, a fact
that makes them important for problems of high-temperature superconductivity. In this

paper, we use general expressions obtained in Refs. 6 and 7 to investigate surface contributions
to T, for a periodic structure consisting of alternating layers of two metals 0 and 1 with
quadratic spectra. We discuss three possible differences between the spectra of metals 0 and 1:
(a) different energies for the bottoms of the conduction band, (b) different longitudinal

masses, and (¢) different transverse masses. All these differences lead to nontrivial oscillatory
behavior of T, as we vary the thickness d of the layers of material 1. Based on this

dependence T (d), we predict the maximum value of T, discuss its dependence on the parameters
of metals 0 and 1, and identify factors that favor or hinder increasing this value. At the

same time, the contents of this paper may be regarded as a systematic theory of the effect of
quantum oscillations in T, first discussed by Kagan and Dubovskii.'* © 1995 American
Institute of Physics.

1. INTRODUCTION require a systematic analysis of surface effects. The point is

that when the transitional behavior of all physical quantities

is neglected at the boundaries for any block structare of type
Fig. 1b (independent of the number of materials or the shape
of the blocks that make up the structure), the value of T,
= T obtained will lie in the interval

-~ An ideal theory of superconductivity should make it pos--
sible to calculate the transition temperature T for an arbi-
trary material. In principle, there is a well-known algorithm
for performing this calculation “from first principles,” i.e.,
starting only from knowledge of the atoms eatering into the
compound and their positions in space {see, e.g., Ref. 1);
however, it requires tedious numericai calculations for each
specific material. Therefore, the search for compounds with
high T is reduced to systematic trials, as in an experimental

Tmills Tzds Tmaxs i 1)

i.e., between the minimum and maximum bulk transition
temperatures of the materials that make up the structure. In

investigation. For this reason, a need has arisen for a cruder
method whose use could yield some sort of qualitative pat-
tern.

It is possible to approach the problem of calculating 7',
for complex compounds by starting with spatially inhomoge-
neous systems. For example, we replace a lattice made of
alternating A and B atoms (Fig. 1a) with a system made up of
macroscopic blocks of bulk materials A and B (Fig. 1b),
assuming that the size L of a block is large compared to the
interatomic spacing a. We then extrapolate down to L ~a at
the end of the calculation, which marks the limit of the re-
gion of applicability of the latter. For L>a we may use
information about the bulk properties of materials A and B,
which leads to a great saving in computation (it is known
that in first-principles calculations most of the computer time
is expended not in calculating T but in “constructing” the
solid out of atoms).

In order to obtain nontrivial results in this approach, we
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particular, T may not exceed T, . This result clearly fol-
lows from the intuitive picture of superconductivity in a spa-
tially inhomogeneous system in which the effective interac-
tion constant A that enters into the BCS formula
T .~ wg exp{—1/A) arises from some type of volume averag-
ing. Specific recipes for averaging have been obtained in
special cases by Cooper’ De Gennes,” Kirzhnits and
Maksimov,* and one of the authors;’ in fact, the inequality
(1) is a consequence of a general theorem for the Gor'kov
equation" (see Sec. 2).

Surface effects may be taken into account heuristicaily
by assuming that there is a layer of thickness ~a at the
boundary between materials A and B (Fig. 1b), made of a
third material. Then averaging of \ over the system volume™
gives the following expression for T :

a

T.= TZOI+ TsL .

2
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FIG. 1. We may replace a lattice made up of atoms A and B (a) by a system
made up of macroscopic blocks of materials A and B (b), taking at the end
of the calculation the extrapolation L —a.

Taking the limit L —a gives T, — Ti¥ ~ T, so that once
we know the value of T,, we can decide how good our
chances are of increasing T, for the system above T'p,, . Of
course, it is impossible to predict T, with any serious degree
of accuracy in this approach; however, we can separate out
the promising situations (large positive 7,) from the non-
promising ones, and thereby determine a direction to search
in.

In what follows, we will discuss systems with spatial
variation mogeneity in one direction, which are simpler to
investigate both theoretically and experimentally. That is, we
introduce thin layers of material 1 into a bulk superconductor
0, layers with thickness 4 and a distance L between them; we

assume d<L <£,, where § is the coherence length. Let su-
perconductor & be -a high-temperature material -in- which -

T =T the question we will pose is whether it is possible to
increase T, by introducing layers of a very “bad” material 1,
i.e., under the conditions

VN <V N,, (3

where V,,V, and Ny, are constants for the four-fermion
interaction and density of states of materiais 0 and 1. For
d<€L we can investigate surface effects by using the expres-
sions obtained in Refs. 6 and 7 for T, which follow from the
Gor’kov equations without any assumptions except small-
ness of the parameter d/L. These expressions have been used
previously to investigate localization of the order
parameter,> coherent interaction between planar defects,®
and enhancement of the singularities in T over and above
the singularities in the density of states.’

As to investigating how T_ for a compound depends
functionally on the characteristics of the elements that make
it up, this problem has not been posed seriously in the litera-
ture due to its obvious complexity and the absence of con-
structive concepts. The approach we propose here allows sig-
nificant progress to be made in this direction, which we will
demonstrate below for the example of a model in which the
spectra of materials 0 and 1 are quadratic:

ki k? i
otk k)= s+ = ey (ky k)= U+ =
ORI T oM T 2me PP 2M,
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(we distinguish the longitudinal (M ,M,) and transverse
(m ,m,) masses because they enter into the equations in dif-
ferent ways); the boundary conditions for the wave function
¢(z) of the transverse motion that arises after separation of
variables [W(r)=expl(ikjry)e(z), ry=(x,y)] has the form

¢’(+0)—¢'(-0)$—1=x¢(0), o(+0)=p(~0)

5
(if materials 0 and 1 are in the regions z>>0 and z <O respec-
tively); the parameter x describes the surface potential at the
boundary, which is approximated by a J function.

If material 1 is a metal, then T, of the system will be an
oscillatory function of d; this quantum-oscillations effect,
which is observed on films with coatings,'%"!? sandwiches, '’
and superlattices,'® was discussed theoretically by Kagan and
Dubovskii.'* We recently showed'® that the qualitative pic-
ture that follows from Ref. 14 requires a radical reexamina-
tion, and that the experiments of Refs. 1012 shouid be in-
terpreted based on two physical mechanisms—interfereace
between de Broglie waves reflected from the two surfaces of
the defect” (Ref. 8), and interference at one defect deter-
mined by the jump in the order parameter at the other. A
critique of the quantitative aspects of Ref. 14 was given pre-
viously in Ref. 7; here we note only that when the proximity
effect is ignored in an uncontrolled way, terms ~d/L are lost
when we are investigating effects that are ~a/L. In this pa-
per we will attempt 2 systematic description of the quantum-
oscillation effect. In particular, we will show that these os-
cillations may arise from any difference in the spectra of
materials 0 and 1, viz., differences in (a) positions of the
bottom of the bands (U #0), (b) transverse mass {m# m,) or
(c) longitudinal mass (M # M), just like the presence of a
Jfunction-like potential (d) at the boundary {(«#0)}. For sim-
plicity and clarity we will discuss the role of ¢ach of these
factors individually: cases {a)—(c) are treated in Secs. 4-6.
Case (d) was already discussed previously in Ref. 8. Interest
in the effect of quantum oscillations for this problem stems
from the fact that the position of the first maximum in the
oscillations and the value of T, at this maximum are coave-
nient measures of the surface contribution to T, and as such

can indicate whether or not it is possible to increase T {Sec.
7.

2. AN INEQUALITY FOR T

If we incorporate into our description of spatially inho-
mogeneous superconductors assumptions that are character-
istic of the BCS theory (e.g., a pointlike interaction with a
high-frequency cutoff), then T, is determined by the condi-
tions for the occurrence of a nontrivial solution to the
Gor’kov equation:'’

A(r)=V(r)] K(r,r')A(r' )dr', (6
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where A(r) is the superconducting order parameter, V(r) is
the coordinate~-dependent constant of the four-fermion inter-
action, and K(r,r’) is the superconducting kernel, which in
the absence of magnetic effects is positive and symmetric,
and also satisfies the sum rule:>’

—, )

1
f dr’K(x,r’)=N(r)ln
where N{r) is the local density of states:

N(e,r)=2, |¥ (D|*&e—e,) (8)

at the Fermi level; ¥,{(r) and ¢, are the single-particle eigen- -

states and eigenvalues. if a dimensionless interaction con-
stant is introduced through the relation A(r)=V{(r)N(r), then
for T, the BCS expression T.=1.14wy exp(—1/Ag) is valid
with a constant A4 that satisfies the inequality

min A{r) s\ g<max A(r). 9

In order to prove (9) we make the system discrete, di-
viding it into small blocks with volume {) and assigning to
the indices i and j values that refer to the ith and jth blocks.
Setting

L lnl 140}0 1 -1 1.14(1)0 10
Ky T > X T (10)
we rewrite (6) in the form

i
It is not difficult to see that A4 equals the maximum eigen-
value of the Eq. (11). Let us consider two cases individually.
{a) If V(r)=0 for all r, then A is the maximum eigen-
value of a positive matrix and lies in the interval between the
minimum and maximum of the row-by-row sums:!?

min QV, 2, L, <\ g<max QV,2, L. (12)
i i
Returning to the continuous variables and taking (7) into
account, we obtain (9).

{b) Let V(r) be an indefinite function. We make use of a
theorem for generalized eigenvalue problems A y= ABy (see
Ref. 19, pp. 439, 442): if A and B are hermitian operators,
and B is positive definite, then addition to A of a positive
definite hermitian operator cannot decrease even one of the
eigenvalues. Using the replacement y; =% ,L;A;, we reduce
(11) to this form; then the operators A and B are determined
by the matrices |2V, 8, ]| and [IL;*]|. We set V,=max(V,,0);
then for the problem (11) with V; in place of V,, the maxi-
mum eigenvalue lies in the interval from 0 to
max V,N,=max \;; however, _this eigenvalue cannot de-
crease in passing from V; to V;, so A g<max \;. A lower-
bound estimate for A g is not of interest in this case, because
the minimum possible value T .=0 is admissible in view of
the admissibility of A g=0

For the block structure of Sec. 1, when we neglect tran-
sitional behavior near the boundaries the function A(r) takes
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on only discrete values \;, which equal the bulk values for
the materials that make up the structure; therefore, A 4 hies
between the minimum and maximum values of \; and in-
equality (1) for T, is valid.

3. EXPRESSIONS FOR THE SURFACE CONTRIBUTION TO
Te

By treating the layers of material 1 as planar defects, we
can use the results of Refs. 6 and 7. In the absence of bound

states near a planar defect, the following expression for 7. is
valid:

1
- f A2V N V2N () - VoNo]s(
13)

where \y=V N, and V(z) and N(z) are the functions V{r)
and N(r) introduced above, which depend only on z due to
the one-dimensional geometry; the integration is carried out
over the regioa that contains one planar defect.’

When m bound states are present near the planar defect
(for fixed k), T is determined by the condition for solvabil-
ity of the system of m +1 equations (see Egs. (4) and (5} of
Ref. 8). If all the bound states are extended along material 1,
i.e., they belong to the quasidiscrete spectrum, then we can
obtain the following explicit expression for T.:’

o (x +V0A )
@t g Mot

1{x+)‘
To aL |

(x =X )2Vo
L YSR NV £ “a}
where the parameters Ay, Agg, Moo, and Ay (see Eq. (29) of

Ref. 7) are defined by the functions N (z) and N (z) that
eater into the decomposition

N(z)=NJz)+Nyz2), {15)

which in tura is defined by Eq. (8), which contains oaly
states of the continuous or quasidiscrete spectrum respec-
tively. The functions N(z) and N(z) have the values ¥,
and 0 in material 0, while in material 1 they have the vaes
N** and N* (bere N;=N*+N**) and change at the bound-
ary on scales a_ and a respectively: A=V N, A*=V N*.
Equation (14) becomes incorrect for Ag=~\*, due to the
“Anderson transition” mentioned in Ref. 5, in which local-
ization of the order parameter takes place in layers of mate-
rial 1, so that for A* >\, we have (Ref. 7)

Agg?
TC—T‘(I'FW), {16)

where T*=1.14ay exp(—1/A*). Analysis shows that Eq. (16)
remains valid for A* <\ if the expression on the right side
exceeds T by an amount ~ Vd/L; L; Eq. (14) holds if we have
d>a_,ay and the right side of (16) is smaller than T, by an
amount ~ Vd/L. For the case a >ay, in order to describe
the region a y<d<a_ we must replace (14) by a more gen-
eral expression
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which we obtain by analogy with (14}, and which is valid for
d>a . The quantity

Ac=hp(A*)7! f dzV\Ky(0,2)V(z)N(2)

is not solely a function of Ny(z) and N(z) (Ky(z,z") is a
kernel constructed from states of the quasidiscrete
spectrum’), although usually the following result is suffi-
cient:

Ky(0,2)=Ny(z) /d In(1.14wy/T) + Olay/d),

which follows from the sum rule (7).

In Egs. (13) and (14) we can identify the general term
that is linear in d/L, which corresponds to the quantity TZ"‘
introduced above and which coincides with the results of
Ref. 5; the remaining contribution ~a/L is a surface effect,
and is the subject of investigation of the present paper.

The functions N (z) and Ny(z) need only be known in
the vicinity of the planar defects; therefore, it is sufficient to
consider a sandwich containing material 1 for |z|<d/2 and
material 0 for d/2<|z|<L/2, with zero boundary conditions
at the points“ z=*L/2, and boundary conditions of type (5)
at the points z= *£4/2, after which the computations are

piece-wise-constant, taking on the value V| for |z|<d/2 and
V, for |z} >d/2, assuming that V, satisfies the inequality (3);
since an increase in V, for fixed distribution of electronic
states leads to an increase” in T, the maximum T, is at-
tained for NV, =N,V,, i.e,, A{=X\g, for which the bulk ef-
fect is absent and 8T, is determined purely by the surface
contribution. Therefore, in illustrating the results graphically
we will pay special attention to the case A{=Aq.

In the usual formulations, T, is determined by the redis-
tribution of electron density: this is quite natural since just
such a redistribution takes place when chemical bonds are
formed. In fact, our approach in this paper is a peculiar way
to describe chemical bonding.

4. SURFACE EFFECTS ASSOCIATED WITH DIFFERENT
POSITIONS OF THE BOTTOM OF THE BAND (U #0, m=m,,
M=M,, x=0)

In this paper we limit ourselves to discussing metailic
layers. In what follows, &; is understood to mean the Fermi
energy measured from the bottom of the band of material 0,
while kg and gy are the transverse Fermi wave vectors of
materials 0 and 1.

4.1. The case ¢p—-U<e;

For U>0 the single-particle wave functions either ex-
tend throughout the system (A ), or extend into material 0 but
decay toward the interior of material 1 (8); in accordance
with this, it is convenient to decompose N(z) as follows:

analogous to Ref. 8. We will consider the quantity V(z)tobe  _ _N(2)=Na(2)+Ng(z), . (18
2r -
. T {
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where N, (z) and N(z) are determined by the expressions

_ M ¢ q
NA(Z)-W o dq ;H(k9q’z)lk=\/;%_+7! (19)

M [k g y
NB(Z)= (?‘;;)—2' fo dq ;C- H(k,lq,Z)hz /koz_q.’., (20)
here

ko=\2mU, qe=Vki—ks, ke=\2mep, (#3))
while the function H{k,q,z) has the form

H{k.q,z)

sin” (qz)
TP ) lz|<ar2,

u~(k,q) v‘(k,q)i
u(k,q) vT(k,q)

+kq sin (2kz’) sin (qd)[—
Lz’ =|z| -d/2>0,

cos’ (gz)
ut(k,q)

2+ cos (2kz’)(

{
21(2(

1
g v*(k,q)}’

u(k,q)=k* cos*(qd/2) = ¢* sin’(qd/2),

v (k,q)=k* sin’(qd/2) + q* cos*(qd/2). 22)

In the case eg— U <eg, the parameter gg/k, is small and
the expression for N,(z) in the integrand is localized near
the point ¢,=ms/d [in these computations it is convenient to
combine the fractions in (22)] and can be approximated by a

to zero over a scale kg '), and in the range |z|>d/2 it reduces
to zero by virtue of (23). The integrals involving Np(z) =ad
N3(z)* can be made dimensionless and computed numeri-
cally. As a result we obtain for T,

ST, 1{(x )
E—m —1 qu+f(qu/1r)+——P1(kod$

+P2<kod>}, 2

where the term linear in d agrees with Ref. 5, and

2{1}-

A {1
f)=m{x}+m — (—— 2x}+ {x }) (25)
o |2
(here {...} is the fractional part of a number); the functions
P(x) and P,(x), which are shown in the inset to Fig. 2a,
have the asymptotic forms
Py(x)= { 1
(26)

X, x<1
P‘(x)"{znns, x>1
Thus, the dependence of T, on 4 contains: (a) a contribution
that is linear in d; (b} oscillations with period gy that have
a sawtooth shape due to the smaliness of the transmission
coefficient of the boundary {see Ref. 8); and (c) transitional
behavior over a scale kg '=~k;'. For \;=\; we have
Vo/V,=kg/qp>1; hence, the transitional behavior is deter-
mined by the function P;(x), and the amplitude of the oscil-
lations is small compared to the constant contribution (Fig.

—-3x/2,
—-7u/15,

x<]

set of & functions; to lowest order in gpk, we obtain

d 2 <df?

Na(z)= OdeE“ (=1 cos (2¢,2)], 2l ,
0. |z|>d/2

23)

where Q =[qed/w], and [...] is the integer part of a number.
Substituting the decomposition (18} into Eq. (13), we obtain
integrals that are linear and bilinear combinations of N A(z)
and Ng(z). The integrals involving only N,(z) and N3(z)
are computed by using (23): the integral involving

2a). To leading order, the maximum vale of T, equals
8T, 1 2=w £
(——f) =— \/—L 27
TCO;M RGkFL 15 EF—U
and is attained over the entire region d=kz'.
4.2. The case O<U <&

As in the previous section, the local density of states is
determined by Egs. (18)-(22), only now we have
ko<€kp<qg. Let us decompose N ,(z) as follows:

(29:M/(2m)*+F(2)+G <d/2
N,(z)Ng(z) is small over the range [z|<d/2 (because N, (z)= { qeM/(27) (2)+Gl2), 12 ;s
N ,(2) reduces to zero at z= +4/2 and increases toward the (2ke=2ko)M/(2m)* + F(2)+G(2), |z|>d/2
interior of material 1 to a value ~Nyged/k, over a scale 128)
qr ', while Np(z) decreases from a value ~Ng at z=*d/2  where
i
d H k.q.z)— z|<d/2
Fi=y Vo ’ (29)
q
(‘2—‘"—)2‘ [0 dgq ;[ H(k,q,z)—2],(=\l/;(2)1? ’Zl>d/2
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and G(z) is defined by analogous expressions with opposite
signs and integration from gy to %. By the methods of con-
tour integration we can show (sce the Appendix) that

- —Ng(2), lz}<d/r2
F(Z)- ZkﬂM/(z‘ﬂ')z"'NB(Z)’ 'z‘)d/z’ (30)
so that
N, +G(z), |z|<df2
(Z)z{MﬁG(z), lz|>d/2 (31

In the expression for G(z) we can aiso expand with respect
to ky/q over the entire range of integration g kg; substitut-
ing (42) into (21) (in this case. G*(z) is written in the form of
a double integral) and integrating over z, we obtain for T,

oT. 1 x, x, U
2
1662 fz(ZlIrd)l , (32)

where the functions f,(y) and f,(y) are defined by the ex-
pressions

» o}

) x
Hi)=y"| —dx,
y X
2x 4 cosy 3
f29)= —‘—1 smy+3+ —(12y
+ Tj dr+2 J’==suu:}n,\:---y‘:z
ny’) ‘—T oA B e
(33)
and have asymptotic forms
¥, y<1
fily)=§ cosy y>1
{(2X;/Ag+ 1)y, y<1
={ 7 (2A ‘ . 34
£ —*(——‘-~1)siny, y>1 (34)
3 )

The dependence of T, on d contains a linear term in accor-
dance with Ref. 5, decaying oscillations ~U/eg, and nonde-
caying oscillations ~(U/sg)”. When \, and A, differ signifi-
cantly, the fuaction f,(y) can be replaced by its asymptotic
form for y>1, while for Ay=A; we may set ;=\, in the
latter.%) The dependence of T, on d for \; =\, determined by
the functions f,(y), and the function f,(y), are shown in
Fig. 2b; in the case N\;=Ay, the first maximum occurs for
d=1.1¢gf", and the value of T, in this case is

8T, 1 [U\?
(7)o )
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4.3. The case U<0, |U|<e¢

For U<O0 the spectrum contains both continuum and
quasi-discrete states; therefore, decomposition (15) of N(2)
is correct, where

{36)

M " q
N(Z)=—=— dq + H(k,q,z)
(211’) <o k i= \j_——’qhx
(]

with ko= v2m|U] and qg=Vki+ «2; for Ny(z) we have

k,
Ny(2)= 2 Mo td+2

[1-(—1)* cos (2q,2)],
x{ 2q:

-_— 4 L - >0’
WCXP( 2kz'), z'=|z|-d/2>0

lz}<dr2

37

where q, is a root of the equation

{q,d N w{s+1) _ k,

> 3 . BTVkas (33
) - s

lying in the interval from zero to x,, and N3, is the density
of states at the Fermi level of the sth two-dimensional band,

which in the present case equals M /2. As in the previous
case, we set

_[Ni=N*+F@)+G(2), |z<di2
ND=\ N+ F(y+G(2), lz|>dr2’

where the function F(z) is defined by expressions of type

(29) with integration from i to »-and k= i - ;9, and

G(z) is defined by analogous expressions with the oppasite
sign and integration from g to =. By the methods of coatour

integration we can prove (sec the Appendix) that

£ )_{N*—qu(z), lzl<d/2
TNy, lalmarz

and the result (31) for N(z) is correct as before.

The computation of T, is carried out using Eqs. (4) and
(5) of Ref. 8, in which Agg~Ag;~ N1, and A,,-~a/r; for
s,s" #0, because the eigenfunctions ¢,(z) are localized on a
scale 7o~max(d,x; ). By expanding with respect to T.— T,
and neglecting A, for 5,5’ #0, we obtain

39)

(40)

ST, 1] 1
T=Z{ [ azvvavive - vin
c0

A,
+z VoN2p )\4 } (41)

s=1

The function G(z) in (31) is the same as in the case U>{,
and the first term in the curly brackets of (41) gives the result
(32). For A, we obtain to leading order in xy/kg

d/2
R,o=()\1—ko)f dzle,(2)|? (42)
-di2
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FIG. 3. The region e>k{/2M above curve [ (crosshatched) corresponds to
the continucus spectrum of material 0. The spectrum of material 1 lies in the
region e>U+k{/2M, above curve 2, and cousists of two-dimensional
bands, ie., size-quantized levels that depend on ky; these levels are true
bound states below curve I, and are broadened levels above it. The twoe
periods of oscillation comrespond to passage of the point A through A, and
the point B through B, for successive two-dimensional bands.

(we can neglect the function G(z) in view of its localization
pear z= +d/2 over a scale k5 ). Substituting the expressions
for ¢,(z), after isolating the term linear in d we obtain for
the surface contribution to T

(8T _ 1 {{"* 1) 2 f2am)

(Tco) Nokel ') 25, et
[N ~U~z ] o A’___V 2 - Kg)d
+mfz<2qu>+(;;*l) ”“(’z‘)}’

(43)
where the functions f,{y) and f,(y) are the same as in (32);

the function u{p) (see the inset to Fig. 2c) is defined as
follows:

2 pystyi\?
“(p)=-_7'rp‘+2 ( N s) ,

1+py,
where y, =1 ~xE, X;=q,/Ky, and has the asympiotic form
—-2p/m+0(p*), p<l
“P =\ _2p/m), p>1

From (43) and Fig. 2c it is clear that, in contrast to the
previous case, in addition to the oscillations with period /gg
there is an oscillatory component with period @/«,. The ori-
gin of the two periods of oscillations is revealed in Fig. 3.
The crosshatched region s>kf/ 2M corresponds to the con-
tinuous spectrum of material 0. The spectrum of material 1
lies in the region e>U+ kﬁ/ 2M |, and for small 4 it consists
of two-dimensional bands, i.e., size-quantized levels that de-
pend on ky; these levels are truly bound below the region of
the continuous spectrum and are broadened within it. As d
increases, the size-quantized levels are “squeezed out™: the
period 7/qg corresponds to the passage of successive broad-

(44)

(45)
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ened levels through the Fermi energy (passage of point A
through Ay). The second period (which equals w/xy for
M =M ) corresponds to the conversion of successive broad-
ened {quasibound) levels into truly bound levels for e=¢p,
i.e., to the passage of point B through B,

For A ;=M\, the dependence of T, on 4 is found to be the
same as in the previous case; accordingly, the result (35) for
the maximum value of T, remains valid.

4.4. The case U<, [Ul> ¢

In this case we have N* —~ N, <N, so that T* =~T_,. Be-
cause Ay is positive (see below), for small 4 there is a region
where Eq. (16) is applicable when T, <T 4. In this case, an
interesting situation arises: the order parameter “exits”™ the
high-temperature superconductor 0 and passes into the
“bad™ superconductor 1. The reason for this is that states
localized in material 1 behave like a sheet in a dielectric
medium. Because of the large demsity of states
N*=Nokp/kg>N, and the small constant V,, electrons can
tunnel into material 0, where the high V,, increases the effec-
tive transition temperature of the “film” above T 4. This, in
turn, is the condition for localization of the order parameter,
which occurs for d=d_~k; '(\g—\*)"". Equation (16) ap-
plies wher d=<d, while for d>d_ Eq. (14) must be used; in
the range d~d., the osciilatory behavior of A,  causes alter-
nating localization and delocalization of the order parameter
as d varies.

It follows from Egs. (15), (36), (37) that the scale on
wlnch Ny(z) changes near the boundary from 0 to N* is
&5 '. The behavior of the function N(z) is more comph—
cated: as |z| decreases, it changes from N to N{d/2) on a

_ scale k¢!, and then from N{d/2) to N**~Nke/2x, 08 2

scale xy/kZ. The quantity N(d/2) is of order N** for
d=xy/k%, and oscillates from 0 to min{Ny,N*/igd} for
d<xg/ki. We will consider the case A;~Ag, ie,
VO/ V! -~ K()/ k F-

In order to compute )\m we substitute (37) into Eq. (29)
of Ref. 7, writing ¥ q,(z) in the form of a double sum. The
contribution that is ~n (where n is the number of quasilocal
levels) must be separated out exactly, as it gives the oscilla-
tory sawtooth dependence. In order to calculate the remain-
ing part of (37), which is O(n°) for d>ay~x;"', we may
convert the summation to an integration. Then

2 V112 Vi) xod
Vo 15 Vo w

Keeping in mind the properties of N (z) and N (z), we
can determine the parameters )\cq, )\qc, and A for kpd>1
from the integral

Ngqga=mA* g (46)

f dz[N{z)-N**]=N,mk; 'Q(d),
lzl<di2

oo (2] 2]

(47
™

In order to calculate this integral, we note that for x>k the
limits of integration in (36) are found to be close to one
another, and we can expand all the functions except the trigo-
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nometric ones with respect to ¢ —x,. The localization of the
expression under the integral sign near the point q,=ws/d
allows us to approximate it by a set of J functions. When T,
lies in the region d=<d_, we obtain (16) with Ay, given by
(46), while in the region d>d_. we obtain the result

(&rc’) _om (x,—x*)z( 2 k9 A | Kod )
To), Aokel [\No=X¥/ \15 k¢ Xo| o
2N o

2 XO-X*.‘ )Q( ) -

From A,—A*~k¥j it follows that the complete formula

(48) must be used only for Ay=A; for Ag—A,~1 it simplifies

to the form

oT, c) 2

7o) X ak 7 [~ 7o),

For Ag=\,~kg/ky we have d Sa_~xyk%, and we must dis-

cuss the region d <d<a_, where Eq. {14) does not apply.

Use of the more general formula (17) leads to the same result

(49), because A ~(xed) ~! implies that we need save only the
term with Ny in (17).

(48)

d>d. . (49)

1

In Fig. 2d we show the dependence of T, on d for
A1=Ay. The inset shows the function Q(d), which deter-
mines T.(d) when Ay—A;~1. For large d and A #Xy, the
oscillations of T, consist of a sum of two periodic functions
with periods w/gg and 7/ky, in accordance with the qualita-
tive considerations of the previous section. Because these
periods are so close together, a characteristic beating behav-
ior is observed. For A=A, the oscillatory component with
period m/«, disappears [see (48)]. When d<k;', we find
from (16), (46) that T .~T 4=T, implying that the expres-
sions we have introduced are inapplicable. Physical consid-
erations dictate that T increase over a scale d~x; .

5. SURFACE EFFECTS CONNECTED WITH A DIFFERENCE
IN THE TRANSVERSE MASSES (U=0,m+m, M=M,,
&=0)

In this case all the single-particle states extend through-
out the entire system, and the following expression holds for
N(z):

(B+1)+(B—1)cos (qd) cos (2qz)

2M B
N(z)=‘—2‘(2 vA qu

(B+ 1)’ —(B—1)? cos’ qd
L= BY)sin? (gd) cos (2g2)— VBB~ l)sm(qu) sm(Zq-

, lzl<d/2
(50)

(B+1)*—(B~1)? cos” (gd)

where g¢ = V2m, e, and the notation S=m/m, is used.
5.1. The case m>m,

For #>1 the expression in the integrand of (50) is local-
ized near the point g, = ws/d; by approximating it with a set
of & functions and substituting into (13), we obtain for T,

ST 1

A
T Mok {(~‘l)qu+g(qsd/w)} (51)

in which the linear term agrees with Ref. 5, while the func-
tion g(x) equals

b ostzey

A 5
g(x)“ﬂ'{x}+‘n'-—( 2{x}+ + .

Ao

For 0<x <1 the we have g(x)x1/x, which diverges as x—0.
In order to eliminate the divergence we need a more accurate
treatment of the region gpd <€1. For this we expand the inte-
grand in gd without using the &-function approximation; as a
result we obtain

B e

A 41 T
glx)y= -——;; arctan 3

(53)
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2= B(|z|-d/2)

r
The dependence of T, on 4 for A=\, is shown in Fig 4a: it
is sawtooth-shaped because of the smailness of the transmis-
sion coefficient of the boundaries.® The maximum value of
T, is reached for d=2.84;", and equals

(5Tc‘ _ m
\Tco)mx‘ V G4

1
5.2. The case |m—-m,|<m

0.4
Mokl

Expanding (50) with respect to B8—1 and substituting
into (13), we obtain

ST, 1 A,
e [Eali

-1
(2t siccgm
B-1)?
+(T 8i1(2qed) ¢, (55)
where the function g,(x) is defined as
) . sin x
gi{x)=m+(2A{/Ag—1)sin x+—x-[~‘n'+25i4?.x)]
cos X )
R 285:(2x) (56)
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(with $;(x)=In x+ Ci(x); Si(x) and Ci(x) are the sine and
cosine integrals, and C is Euler’s constant; see Ref. 19, pp.
732, 733). This function has the asymptotic form

(2N /Ag+ L)x,
w+ (2N /Ng—1)sin x,

Besides the usual linear term, the dependence of 7, on d
contains decaying oscillations that are ~(8—1) and nonde-
caying oscillations that are ~(8~1)°. When A, and \, differ
significantly, we may replace the function g {x) by its as-
ymptotic form for x>1, while for A\;~\,; we evaluate it for
A;=Ag- When A=A, the behavior of T as a function of 4 is
determined by the function g,(x) and is shown in Fig. 4b;
the maximum value of T, is reached for d=1.2k;' and
equals

(72 el 9

5.3. The case m<m,

x<1

glx= x>1

(57)

For B<1 the expression under the integral sign is local-
ized near the point g, = ws/d; after approximating it with a
set of J functions and substituting into (13}, we obtain

ETC 1 A

Eab W {( ——x)qwgv(qu)} (59)
where

2:{x)= ﬂ{)\o(w{x} 2{x }+1!2)+{x}+1

{60)
Expression (60) cannot be used in the region of small x (i.e.,

when gpd<<1). This region must be discussed separately, by .

expanding the expression in (50) with respect to g4 and not
using the J-function approximation; as a result, we obtain

T x —~¢ arctan{x/s)
ga{x)=arctan(x/e)+ =

2 x ?
2VB
1r *

£=

x<€l. {61)

For A=A, the dependence of T, on 4 is determined by the
function g,(x) and is shown in Fig. 4c; the maximum value
of T equals

(0T, 1 3w
(Td)) T Aokel 2

which is valid at the points d=ms/qr (s=1,2,...).

(62)

max

6. SURFACE EFFECTS CONNECTED WITH DIFFERENT
PARALLEL MASSES (U=0, m=m,, M#¥M,, x=0)

6.1. The case M>M,

For M > M the longitudinal Fermi momentum in mate-
rial O is larger than it is in material 1, and some of the states
do not extend from material O into material 1 due to the

impossibility of conserving longitudinal momentum; there-
fore, the decomposition (18) is valid for N(z), where
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M q
N (2)= T q ¢ Hkq.2)

1
Y

k= ‘/(k07+q7-)/7

(63a)

Ng(z)=

[dq - H(k,iq,z)
k= \JiI=q%/y

(63b)

and the following notation is used:

‘Y=M/M1, kezk}-\/)’—l, kF=qF: \j2MSF.

For M>M,, ie, y>1, little simplication of (63) s

possible—we can only set k=~ kg in {(63a). Therefore, we im-

mediately substitute (18}, (63) into Eq. (13), representing the
bi-linear combinations of N,(z) and Ng(z) in the form of
doubie integrals. These integrals are computed in the follow-
ing way:

1) In the integrals that involve Ny(z) and N3(z), we
discuss in order of occurrence the three terms that resuit from
integrating with respect to z. For kd>1 the leading term in
the integral (63b) arises from the region g—~ kg, which allows
us to take the limit gd—c in the hyperbolic functions
entering into H(k, ig,2)- When sﬁk,dﬁ-l—ﬂ)&i&dﬂg
term m “the integral (63b) comes from the region
g~d ™'y 2, and the hyperbolic functions can be expanded
as series in which we keep only the leading order in qd.
When kpd<<y"! the entire region of integration in the inte-
gral (63b) is important; after expanding the hyperbolic func-
tions in series, we must carefully distinguish the contribu-
tions from the neighborbood of the upper limit of integration.

2) The integral involving N ,(2)N 3(2) is small compared
to the integrals that involve Ng(z), Ng(z)? in the region
ked=<1; in the region ked=1 it determines the oscillatory
part of T.. After integrating with respect to z we calculate
this quantity to logarithmic accuracy, including the contribe-
tion ~In y/y that arises from the region |z|>d/2, but dis-
carding terms ~1/7.

3) The surface portion of the integrals involving ¥ {z)
and N3(z) are estimated from above by a quantity ~1/7, and
so we may neglect them. This becomes obvious for the ipte-
gral involving N ,(z)—N,(x) after the integration with re-
spect to z over the region |z|>d/2. The remaining integrals
are estimated by taking into account the behavior of the
function N ,(z), which far from the boundary enters in with a
value N,(%)=Ny/yover a scale ;' in material 0 and with
a value N,(0)=Ny/y over a scale k7' in material 1.

As a result, we obtain for the surface contribution to T,
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0
[ (vked)P?
2vked
Iny sin (2kgd)

=3 {” 8(ked)? }

The dependence of T, on d for A;=\, is shown in Fig. 5a;
the maximum value of T is reached for d~k; ' and is of the
same order as the quantity

(57}) 1 lmy
Teo) pay Mokl 7
8.2. The case O<M - M, <M

As before, the expressions (18), (63) are valid for N(z).
In complete analogy with Sec. 4.2 we can establish the result
(31), with the function G(z) defined by integrals from g to
w, For y—1<1 we have kg<$kg and k— g <<q over the entire
range of integration; expanding with respect to (k—g)/g and
substituting (31) into Eq. (13), we obtain” for the surface
contribution to T :

7 =iz 1)
Tw s—m ;;“1 (y—1)h(2g¢d)

{65)

[ k} ” )\l 5 _1
(x—‘l)’rkrd""z-(—n‘*g)(ﬁpd)z, ked€y™’,

y l<ked<1, (64)
ked>1.
I
and have the asymptotic forms
P p<1
h ={n
ul <1
) 3—8—’ P
) N (68)
24 4 COSP/P b p -

When A; and A, differ significantly, the depeadence of T, on
d is determined by the function h,(p), while for A;=Ag it is
determined by h,(p); the behavior of these functions is
shown in Fig. 5b. For A; =\, the quantity 87 is negative for
all d; the first maximum of the oscillations occwrs for
d=3.6g5", and the value of T at this point is

e o e Kl . £SFN— ;;—;‘,;,-.&,2,‘5#; M-MY2 T
+{y—1)*hy(2 )}, (66) __e) =..___(.___1} .
Y 2(2qpd Tol = "XAL\ M 69
where k,(p) and h,(p) are defined as follows:
T 1 = 1 1) 6.3. The case O<M,— M <M
me)=3+3 [ x| 5= 1)sim 0 | e
4 2 xr x For M <M, the decomposition (15) is valid in view of
. T 7l J,wd sin (px) the presence of the guasidiscrete spectrum for N(z), where
PR LY M 1 (% gq
. 2 NC(Z)=(2—11’_F - j dq ;H(k,q,z) 3
+§_J’°°sm(px)x—1 x+1 . Y In = @Dy
8 I x* x* x—1
1 -1 x+1 Ko=kevl=y, (70)
-z sin (px} —5— In — dx 67
8 .[ 0 (P x x—1 7) while N (2) is defined by Eq. (37) with N3, of the form
%/l.tFL c% %T‘/‘.";L
a b c FIG. 4. The dependence of T_ce d for
3z materials 0 and 1 that differ m their
, \ \ x /\ /\ N N 2 ]\ transverse mas‘»sa folr N=hg (@)
X B 2 A x mm,;, b) [m-mj<m; =d (¢
2:: \ \\ \\\\ {v UV e ~ \ \ m>m:.Wehavcu;edthcmtion
£ \ \ 2 C=16(8-1)"\k.
OZ.UkF g, Z;QF 3;‘(; * d 0 ‘;qs ZIAiqF l;qu * d o—v‘ﬁ/kpﬂqr 14q, 3ag, P
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kd+2) kd+2+ —
2= pPe - ( ) Yy gl

X 0("0“43)9(%), (71)

where k= \j(xg—qz)/ ¥ and g is a root of Eq. (38). By
analogy to Sec. 4.3, we establish the result (31) with the
same function G(z) as we used in Sec. 6.2. For 1 —y<1, Eq.
(41) is valid for T with A\, taken from (42), which leads to
the following result for the surface contribution to T_:

el o
v |Fvall CARUC

\ 2
+(~,~1)2h2(zqu)+(;:i—1) nu(%’f)};
[}

1—7 zqs )-l

(72)

the functions h;(p) and k,(p) are defined in (84), and the
function u(p) is the same as in (43) to lowest order in 1—y.
The dependence of T, on 4 for A\ #X, is shown in Fig. Sc;
for A{=MAq it is determined by the function A,(p) and is
found to be the same as in the previous case.

6.4. The case M<M,

From (70) it is not difficult to sort out the behavior of the
functions N(z) and N(z) for y<I1: the function N(z)
changes near the boundary from 0 to N*=Ny/y over a scale
k!, reaching a value ~N, at the boundary, whereas the
function N (z) changes from Ng to N(d/2)~N, as |z| de-
creases on a scale k; !, and then from Nc(d/Z) to N*=Ny/2
on a scale k5 '/y. Thus, we have ay~k; ', a.~ks '/ in the

region kyd>1/y we make use of Eq (14), while in the region
" 1<kpd=<1/y we use the more general formula (17); because
we have A, <O (see below), there is no quasi-phase transi-
tion (see Ref. 5). Taking into account that for A;~\, we have
Vo/Vi~1/y, we find that the parameters Ay, Ayg, A are
determined by the integral

f dz[N{z)-N**]
lef<d/2

1
5 Nodw(ged/2), ykpd <1
- xod) m sin (2ked) '
ykp[ { w} P 8(7de>’}’ vhed 1

{73)

which can be computed in two limiting cases: for yked<1
we set g=xq in (70), while for ykd>1 we can expand in a
Fourier series with respect to gd by analogy with (A2}, and
use the asymptotic form of the integrals with rapidly oscil-
lating exponentials.”’ The terms in (73) with periods m/x,
and 7/qy are computed to lowest order in 1/d, and the func-
tion w(p) equals (see the inset to Fig. 5d):

w(p)=w(p)+Ww(p+m/2)—1,

o) cos p— *n’p(l/2 {p/w})sm (74)

cos’ p

In calculating A,q, we have identified the contribution
~n, as we did in Sec. 4.4. The remaining part O(a”) is
computed in two limiting cases: for ykgd>1, by passing
from a summation to an integration, and for ykgd<1, by
using the asymptotic form of ¢q, as y—0 (g,=ws/d,
s=1,.,n—1, g,=x5) and the fact that the leading terms
come from g, and ¢, _;. As a result we have

x _ ﬂk;)\* {"‘{Kod/ﬂ'}, yk;ﬁi»l
w?= ke o(xedim), ykpd<l’
£ 2N yked
= iyl = . }
olx) Ix} m, € j(—z-;)—g'-f (75

Calculating T, based on (14), (17) gives

Y RO—X*

Fd {x A*)2

For large d the oscillatory contribution comes from the sum
of two periodic functions with periods 7/g and 7/xg, analo-
gous to the previous case. For A; =\, the gquantity 8T is
negative for all 4 (Fig. 5d): its value at the first maxima of
the quantum oscillations (kgd~1) is of order

(%‘ e o | 77
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[N =A%\ kod —\* in (2
-fr{ ! ) :59—}-#(1 2 il ;*){w-l-sm( qed)
P

—_\* :
+w )\1_)\,) [(w(qed/2)+ 1 Poixed/m), vhked<l
Ao '

|
e UL

{

7. DISCUSSION OF RESULTS

In order that the bulk contribution to 7, be smail. we
must use the smallest possible 4. If we examine the curves
shown in Figs. 2, 4 and 5 with this in mind, it is not difficult
to verify that in all cases the first maximum of the quaatum
oscillations is a measure of whether or not it is feasible to
increase T, . The value of T at this maximum gives a con-
venient estimate of the surface contribution to T : its depen-
dence on the parameters of the model for A=A\, is shown in
Fig. 6 (Fig. 6d was plotted using the results of Ref. 8. It is
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not difficult to see that a difference in the positions of the
band bottoms (U#0) and a difference in the transverse
masses (m#*m,) will always favor an increase in T,
whereas a difference in the parallel masses (M # M) will
hinder it in most cases. The presence of a &function-like
potential at the boundary (x#0) acts to prevent T from in-
creasing when 0<«x=kg, but aids it in the other cases. A
qualitative representation of the combined action of all the
factors can be obtained by superposing the curves in Fig.
Sa—-6d.

Physically, the increase in T, for «=kg (Fig. 6) is asso-
ciated with interference of plane waves reflected from the
two boundaries,® and takes place only when d is commensu-
rate with some multiple of the wavelength (for which the
variation of T_ averaged over the oscillations is close to
zero). For x<<0 the reason for an increase in T is an increase
in the local density of states at the boundary, which is caused
by the surface potential having the form of a potential well;
for «<x_ this leads to localization of the order parameter at
the boundary.®’ These effects are partially present in the
other cases as well (Figs. 6a-6c); now, however, it is the
transfer of electrons from the material with high density of
states and low value of V to the material with high V that
plays the primary role. The qualitative manifestation of this
effect depends on the specific situation: for a<a_ it causes
localization of the order parameter in the layers of material 1,
whereas for y<1 it is not “triggered” in general.

The picture we have presented may require some correc-
tion, because in a real experiment factors may be present that
are not included in the model we have discussed here. There-
fore, it is desirable to carry out a systematic experimental
investigation of the dependence of T, on d in layered sys-
tems. Contemporary technology allows us to create seperlat-
tices with thicknesses of a few angstroms (see, e.g., Ref. 21);
however, most experiments are carried out on long-period
systems, in which these surface effects are unimportant.”>>

The authors are grateful to A. ¥ Andreev, N. V. Zavar-
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APPENDIX
The Transformation of F(2)

For U >0 we rewrite F(z) in the form

Flo—= i rd I )—21i
REEREET L B b e

— X

(AD

for |z} <d/2, and analogously for |z]>d/2. Let us expand
the functions u *,v " entering into H(k,q;z) in Fourier series
with respect to qd:

i e ( ‘qg—k)meinqd’

u (k P klql \lgl+k

n=—x
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(A2)

2 - (E:—lg—l) '"'e‘"q".

. kgl \k+1ql

By making the replacement n— —n, g— —q where neces-
sary, we can write the result in the form of a sum that con-
tains the exponents exp(icq) with positive ¢ only; for |z}
>d/2 we also expand the functions cos(2kz’') and
sin (2kz’) in power series. The integrand is analytic in the
complex q plane except for the combination

+(k,q)

lglk= g7+ 2 Vg + k3, (A3)

which we regularize by making the cuts (ie,iky) and
(—iky,—ic). Shifting the contour of integration upward, we
obtain an integral over the cut (ig,ik,) (the contribution of
the pole {5 disappears as —x), leading to the expression
(30).

For U <0 the cut is made from £ to &, and from —«, to
—¢. The integrand has no singularities in the upper half-
plane, and F(z) reduces to an integral over the upper side of
the cut (— xy,&,). On this cut there are poles that correspond
to levels of the quasidiscrete spectrum. We write the integral
in the form of a principal value and the sum of half-residues .
from the poles: then the principal value gives the constant
N* for |z|<d/2 and O for |z]>d/2, and the sum is found to
be —N ql(Z ).

-0,

"We are neglecting the spatial dependence of the cutoff frequency wy,
which is valid in the weak-coupling approximation.

“Note that the surface contribution to T, may not contain any portion ~a/L
if localization of the superconducting order parameter occurs at the
boundaries;” when this happens, regions that are far from the boundary
enier into the average of the quaniity X with 2eto weight.

VRecently, the existence of this mechanism has been confirmed
experimentally.'s

The form of the boundary conditions at the points z=* /2 is important
only for the behavior of N(z) in the vicinity of these points.

$The formal proof that T increases when V{r) is replaced by V(rj+AV(r)
with AVi{r)=0 is clear from Sec. 2.

*'fn connection with this, the difference between A, and A, appears in {33)
only in the unattenuated portion of f,(y); in what follows we set X, =44 in
terms that are important only for A >\, without mentioning explicitly that
we have done so.

7Due to the conditionai convergence of the integrals, the expressions for
G{(z) are inapplicable within an infinitesimally small neighborhood of the
points z=*d/2  where unphysical &function-like singularities arise
whose contribution should not be included in the integration over z.
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