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The density of states for the Schro¨dinger equation with a Gaussian
random potential is calculated in a space of dimensiond542e in the
entire energy range, including the vicinity of an Anderson transition.
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The construction of thee-expansion for the density of states of a disordered syst
near an Anderson transition was begun by the present author in Refs. 1 and 2 . The results
of this construction are reported below.

The density of states for the Schro¨dinger equation with a Gaussian random potent
is determined by the averaged Green’s function, whose calculation reduces to the
lem of a second-order phase transition with an-component order parameterw(w1 , w2 ,
. . . ,wn) in the limit n→0.3,4 Then the coefficients in the Ginzburg–Landau Hamiltonia
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are related with the parameters of the disordered system by the relations

c51/2m, k0
252E, u52a0

dW2/2, ~2!

whered is the dimension of the space,m andE are the particle mass and energy,a0 is
the lattice constant, andW is the amplitude of the random potential~in what follows, we
setc51 anda051). The ‘‘wrong’’ sign of the coefficient ofuwu4 leads to the ‘‘spuri-
ous’’ pole problem,5 and for a long time it was doubted that ane-expansion could be
constructed.

In a four-dimensional space the structure of the perturbation series for the
energyS(p,k) at p50 has the form2

S~0,k!2S~0,0!5k2(
N51

`

uN(
K50

N

AN
KS ln L

k D K, ~3!

wherek is the renormalized value ofk0 andL is the large-momentum cutoff paramete
The analogous expansion ford542e has the form
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whereAN
K(e) are regular functions ofe,

AN
K~e!5 (

L50

`

AN
K,LeL ~5!

and A0
0(e)[1. The expansion~4! takes account of the fact thatY is a homogeneous

polynomial of degreeN in L2e andk2e, as follows from dimensional analysis, and tha
in expression~3! it is necessary to take the limite→0.

The quantityY satisfies the Callan–Symanzik equation,6 which follows from its
relation7 with the vertexG (1,2)

S ]
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1V~g0 ,e! DY50, ~6!

where g05uL2e, V(g0 ,e)[h2(g0 ,e), and the functionsG (1,2), W(g0 ,e), and
h2(g0 ,e) are defined in Ref. 6. Introducing the expansions
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and substituting expression~4! into Eq. ~6!, we obtain a system of equations for th
functionsAN

K(e):

~K11!AN
K11~e!5~N2K !eAN

K~e!2 (
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N2K
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K ~e! ~8!

and for the coefficientsAN
K,L
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K11,L5~N2K !AN
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1VM ,M8#AN2M
K,L2M8. ~9!

In the lowest orders of perturbation theory it is sufficient to retain in expansion~4!
only the leading order in 1/e; for largeN the lowest powers ofe must be taken into
account, since the corresponding terms grow rapidly asN→`. Information about the
expansion coefficients for largeN can be obtained by the Lipatov method:8,9 The Nth
order contribution toS(p,k) has the form
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wherea is a numerical constant of order 1,
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16

3
S4 ,
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, ^fc&p
358321/2p2pK1~p!,

C is Euler’s constant, andK1(x) is a modified Bessel function. Representing the res
~10! in the form of the expansion~4!, we have
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where ã5a^fc
3&0

2 Formula ~12! is valid for all K if Ne@1 and forK!N if Ne&1;
under these conditions the coefficients~12! satisfy Eq.~8!, where only the term with
M51 is retained in the sum, which is possible for large values ofN in view of the
factorial growth ofAN

K(e). For Ne&1 the Lipatov method reproduces the coefficien
AN
K(e) well only for K!N, since they decrease rapidly with increasingK and the accu-

racy;1/N of the leading asymptotic term is limited. Since the system of equations~8!
determinesAN

K(e) for K.0 according the givenAN
0 (e) and the Lipatov asymptotic ex-

pression can be used as a boundary condition for it, one can determineAN
K(e) in the

region 1!N&1/e for all K. Investigation shows that two contributions are important
the sum~4!: a! the nonperturbative contribution arising from the region of largeN and
obtained by summing~10! from an arbitrary finiteN0 to infinity1,2
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where the limitL→` is taken; b! the quasiparquet contribution arising from terms wi
coefficientsAN

N2K,L with K;L;1,N&1/e: These coefficients can be obtained from E
~9!, if one notes that the equations forAN

N2K,L with K andL less than some numberM
are independent of the remaining equations; by separating out the leading asym
term inN, it is easily proved by induction that

AN
N2K,L5CK1L

K AN
N2K2L ,
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whereb52V1,0/W2,0, and the value of the first few coefficients in the expansion~7!
equal

W1~e!52e, W2,05K4~n18!, W3,0523K4
2~3n114!, V1,052K4~n12!.

~15!

For the parquet coefficientsAN
N,0 the result~14! is exact; the quasiparquet contribution t

the sum~4! has the form

@Y~k!#quasiparq5FD1
W3,0

W2,0
uk2e ln D Gb

, D[11W2,0 u
k2e2L2e

e
. ~16!

To logarithmic accuracy, the quantityD in the logarithm can be replaced by its minimum
value D̄;e ln e ~determined by Eqs.~18!–~22! presented below!, and in the limit
L→` the result~16! can be written in the form

@Y~k!#quasiparq5@11W2,0ũk2e/e#b, ũ[uF11
W3,0

W2,0
2 e ln D̄G , ~17!

which differs from the parquet result7 only in thatu is replaced byũ. It can be proved
that this replacement occurs in all parquet formulas employed in calculating the de
of states.2

The rest of the calculations are similar to those described in Ref. 2. The dam
G, the renormalized energyE, and the density of statesn are determined in parametric
form as functions of the initial energyEB by the equations

G5GcS 11
ex

2 D 2/esin w, E52GcS 11
ex

2 D 2/ecosw, ~18!

2EB1Ec5GcS ex

2 D 1/4S 11
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w
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2
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3w

4x D D , ~20!

Gc5S 8K4uũu
e D 2/e, Ec.2uE ddk

~2p!d
1

k2
, ~21!

wherex(w) is a single-valued function in the interval 0,w,p, similar to the function
shown in Fig. 2 of Ref. 2 and determined by the equation

sinS w1
w

4xD5B
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x1/4 S 11
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where

B5p ã•21/4~8/3!3e213/4 expF 83e S 12
K4Ī 4ũ

KdI 4u
D G;e23/2S ln 1

e D 7/4. ~23!

We call attention to the presence of scaling: When the energy is measured in uni
Gc and the density of states in units ofGc /uũu, all the dependences are determined b
universal functions which do not depend on the degree of disorder. For large pos
E the functionn(E) goes over to the density of states of an ideal system, and for la
negativeE the following result is obtained for the fluctuational tail

n~E!5ãK4S 2p

3
ln

1

b0
D 1/2b023uEu12e/2F I 4

4uuub0
e UEUe/2G ~d11!/2

3expS 2KdI 4
e

2
I 4

4uuub0
e UEUe/2D , ~24!

the energy dependence of which is identical to that obtained in Refs. 10 and 11
corresponds to Lifshitz’s law;12 the divergence in the limite→0 is removed for a finite
cutoff parameterL. For smalluEu and ex!1, formulas~18!–~22! have the same func-
tional form as the four-dimensional formulas; however, as a result of the renormaliza
ity of the model, they differ somewhat from those obtained in Ref. 2. As in Ref. 2, t
phase transition point shifts into the complex plane, and the density of states ha
singularities for realE in accordance with the widely accepted~but not proved! ideas.
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1I. M. Suslov, Zh. Éksp. Teor. Fiz.102, 1951~1992! @Sov. Phys. JETP75, 1049~1992!#.
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