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The density of states for the Schlinger equation with a Gaussian
random potential is calculated in a space of dimensierd— € in the
entire energy range, including the vicinity of an Anderson transition.
© 1996 American Institute of Physids$0021-364(06)00611-1

PACS numbers: 03.65w, 11.10.Hi, 71.23.An

The construction of the-expansion for the density of states of a disordered system
near an Anderson transition was begun by the present author in Refd 2L dite results
of this construction are reported below.

The density of states for the Schiinger equation with a Gaussian random potential
is determined by the averaged Green'’s function, whose calculation reduces to the prob-
lem of a second-order phase transition with-aomponent order paramete(¢,, ¢,,
.,¢n) in the limit n— 0.2 Then the coefficients in the Ginzburg—Landau Hamiltonian

a1 .21 ,.2 1 .4
H{GD}ZJ d| 5¢[Ve| +35xolel +Zulel Gh)
are related with the parameters of the disordered system by the relations
c=1/2m, «i=—E, u=-ajw?/2, )

whered is the dimension of the spacey andE are the particle mass and energy,is
the lattice constant, and/ is the amplitude of the random potent{a what follows, we
setc=1 anday=1). The “wrong” sign of the coefficient of¢|* leads to the “spuri-
ous” pole problent, and for a long time it was doubted that arexpansion could be
constructed.

In a four-dimensional space the structure of the perturbation series for the self-
energy>(p,«) atp=0 has the forrh

B N A K
3(0,6)—3(0,0=x2> uN>, AKlIn —) : 3
N=1 K=0 K

wherek is the renormalized value af; and A is the large-momentum cutoff parameter.
The analogous expansion fde=4— € has the form
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k?+3(0,k)—2(0,0

=K2Y(k)= 22 (UA N 2 Al(e [%r @
WhereAﬁ(e) are regular functions of,

AK<e>—2 ANte 5

and AY o(€)=1. The expansiori4) takes account of the fact that is a homogeneous
polynomial of degred\ in A~ € and« ™ ¢, as follows from dimensional analysis, and that
in expression(3) it is necessary to take the limét—0.

The quantityY satisfies the Callan—Symanzik equatfowhich follows from its
relatiorf with the vertexl"(*?

J J
A " Wo.€) 7o+ V(do.€) |Y=0, (6)

where go=UA"¢, V(do,€)=7,(go.€), and the functionsT*?, W(g,,€), and
172(dg,€) are defined in Ref. 6. Introducing the expansions

W<go,e>=ME_ Wy (e)gy = 2 2 Wy gy e,
= 1m= 0

[

V(go,e>=M21 vM(e>ga”=MEl E VywayeM, @
- =l wm’'=0

and substituting expressio@) into Eq. (6), we obtain a system of equations for the
functionsA(e):

N—K
(K+1)AL (€)= (N—K)eAg (e)—Z [(N=M)Wy1(€)+Vyu(e)JAR_u(e)  (8)

and for the coefficientén -

N—-K L
<K+1)AE“’L=<N—K>A§'L‘1<1—5L,o>—M21 > [IN=M)Wy 1/
=l M’'=0

+Viur JAREM 9

In the lowest orders of perturbation theory it is sufficient to retain in expar(gion
only the leading order in & for large N the lowest powers o€ must be taken into
account, since the corresponding terms grow rapidlfNas«. Information about the
expansion coefficients for large can be obtained by the Lipatov meth®8The Nth
order contribution t&(p, ) has the form
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d+2 4\N (e
[E(D!K)]N:aUNF( N+ T)(— —) fo d In b2b™ X d)pel D) —bp

I4
1-(Ab)~ ¢
x exp —Nf(kb)+ne In b+2Kdl4f : (10
wherea is a numerical constant of order 1,

€
f(x)=— E(C+2+'” ) —3x°

1 X — — 16
C+§+In§ . =14 exp(f(bg)), |4:§S4,

Sq=27Y2IT(dI2), Kgq=Sy(2m) 9, (11)
1/2
. (Bo)5=8%2"2m%pK(p),

~( €
bo= 3In(1/e)

C is Euler's constant, anll;(x) is a modified Bessel function. Representing the result
(10) in the form of the expansiofd), we have

d+2\( 4\N(= 2Kdl
AX(€)=aT| N+ —— (——) f d In b2b~2CK| e+ “4b-f)
2 la) Jo N
><ex;<—Nf(b)+Neln b+2K4l, _6 ) (12

wherea=a(2)5 Formula(12) is valid for all K if Ne>1 and forK<N if Ne<1;
under these conditions the coefficieri®) satisfy Eq.(8), where only the term with
M=1 is retained in the sum, which is possible for large valuedNah view of the
factorial growth ofAﬁ(e). For Ne<1 the Lipatov method reproduces the coefficients
AX(e) well only for K<N, since they decrease rapidly with increaskignd the accu-
racy ~1/N of the leading asymptotic term is limited. Since the system of equat®ns
determine%ﬁ(e) for K>0 according the givemﬂ,(e) and the Lipatov asymptotic ex-
pression can be used as a boundary condition for it, one can deteAfi$ in the
region I<N=1/e for all K. Investigation shows that two contributions are important in
the sum(4): & the nonperturbative contribution arising from the region of laxgand
obtained by summingl10) from an arbitrary finiteN, to infinity2

(d+2)/2
l4

4ul

€

[E(O!K)]nonpert: i max?

><J' din b2b2exp( Kala I—4KE(1+f(b)_E Inb)|, (13)
0 € 4u|

where the limitA —« is taken; B the quasiparquet contribution arising from terms with
coefficientsAy 't with K~L~1, N<1/e: These coefficients can be obtained from Eq.
(9), if one notes that the equations faf <" with K andL less than some numbét

are independent of the remaining equations; by separating out the leading asymptotic
term inN, it is easily proved by induction that

N-K.L_ ~K AN-K-L
AN =Ci+ AN :
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T(N-B)  (=W39" (NInN)*

N—K_ ,
A=W DB (Wog X KT

(14

where B=—V, o/W, ,, and the value of the first few coefficients in the expansion
equal

Wi(e)=—€, Woo=Kun+8), Wsze=—3K33n+14), Vio=—Kun+2).
(15

For the parquet coe1‘ficiemts,'j'0 the result(14) is exact; the quasiparquet contribution to
the sum(4) has the form
B TE_ A€

Wao K
L A=1 W u———. (16)

[Y(K)]quasiparq: A+ W O Kk €InA

To logarithmic accuracy, the quantity in the logarithm can be replaced by its minimum
value A~ € In € (determined by Eqs(18)—(22) presented beloyy and in the limit
A —coo the result(16) can be written in the form

1+W | j (17)
eln
WZO

which differs from the parquet resfilonly in thatu is replaced byu. It can be proved
that this replacement occurs in all parquet formulas employed in calculating the density
of states’

[Y(K)]quasiparq:[1+W2,0’JK75/6]'8a u=u

The rest of the calculations are similar to those described in Ref. 2. The damping
I', the renormalized enerdy, and the density of statasare determined in parametric
form as functions of the initial enerdgyg by the equations

ex 2le ex 2/e
r=r. 1+? sing, E=-T.1+ 7) cos ¢, (18
ex\ 4 ex\ 214 @ o(1+2ex) . @
—EB—FEC:FC(?) (1+ ?) (CO{(]J"‘& —tanT SiN QD—F& ),
(19
v= Le 1+6—X - l+E 71/4sin +i l—b—g
4[] 2 x 7 ax 2(1+ ex/2)
-1+ — _3/4sin +3—(P (20
ex P ax] )
8K, U]\ e di 1
Ie= c jﬁ—z- (21

wherex(¢) is a single-valued function in the intervakOp <<, similar to the function
shown in Fig. 2 of Ref. 2 and determined by the equation

. @ e—4x/3 €x d/2+5/4 (p(l+2€X) o o 5
sinf o+ —|=B—q7| 1+ = cos———— | diInbb
4x X 2 3 0
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F< 8( ex) f(b)—e€ In b)
X ex —§ l+7 f , (22)

where

Kl 0
Kyl au

1\74
" e

~6—3/2( In =
€

B=m d.2148/3)3¢ 134 exp[i( 1
3e
We call attention to the presence of scaling: When the energy is measured in units of
I'. and the density of states in units Bf/[U|, all the dependences are determined by
universal functions which do not depend on the degree of disorder. For large positive
E the functionv(E) goes over to the density of states of an ideal system, and for large
negativek the following result is obtained for the fluctuational tail

2 1 1/2 I (d+1)/2
R~ Bl T -3||1-€/2 4 el2
v(E)=aK, 3 In bo> by °|E| a[ulbe E
2Kgla 1y
X - E|<?|, 24
ex"( e aup; ) 24

the energy dependence of which is identical to that obtained in Refs. 10 and 11 and
corresponds to Lifshitz’s la#? the divergence in the limie— 0 is removed for a finite
cutoff parameterA. For small|E| and ex<1, formulas(18)—(22) have the same func-
tional form as the four-dimensional formulas; however, as a result of the renormalizabil-
ity of the model, they differ somewhat from those obtained in Ref. 2. As in Ref. 2, the
phase transition point shifts into the complex plane, and the density of states has no
singularities for reaE in accordance with the widely acceptéalit not provedl ideas.
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