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The phenomenon of upper critical dimensionalitydc2 has been studied from the viewpoint of the
scaling concepts. The Thouless numberg(L) is not the only essential variable in scale
transformations, because there is the second essential parameter connected with the off-diagonal
disorder. The investigation of the resulting two-parameter scaling has revealed two
scenarios, and switching from one to another scenario determines the upper critical dimensionality.
The first scenario corresponds to the conventional one-parameter scaling and is characterized
by the parameterg(L) invariant under scale transformations when the system is at the
critical point. In the second scenario, the Thouless numberg(L) grows at the critical point as
Ld2dc2, which leads to a violation of the Wegner relations5n(d22) between the critical
exponents for conductivitys and localization radiusn, which takes the forms5n(dc222). The
resulting formulas forg(L) are in agreement with the symmetry theory suggested in a
previous publication, I. M. Suslov, Zh. E´ ksp. Teor. Fiz.108, 1686~1995! @JETP81, 925 ~1995!#.
A more rigorous version of Mott’s argument concerning localization due to topological
disorder has been proposed. ©1998 American Institute of Physics.@S1063-7761~98!02404-4#
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1. INTRODUCTION

The one-parameter scaling hypothesis1 has played an im-
portant role in development of the contemporary localizat
theory2–8 and stimulated creation of the theory of quantu
corrections9 unambiguously supported by an experime
The criticism of the one-parameter scaling10–13 in fact refers
not to underlying physical ideas, but rather to its justificati
in the formalism ofs-models.14–16The justification problem
remains a pressing one, and may require more accurate
nitions of the basic notions as well as lead to a restriction
the range of applicability. Here we discuss modifications
scaling concepts that we believe are inevitable in hi
dimensional spaces.

Experience with phase-transition theory17,18 indicates
that scaling is applicable only to spaces with dimension
tiesd within an interval between the upper and lower critic
dimensionalities,dc1 anddc2. For d,dc1, there is no phase
transition, and ford.dc2, the mean-field theory is valid
There is no doubt thatdc152 in the localization theory,1

whereas the issue of the upper critical dimensionality
remained a subject for discussions for many years.19–25 As
concerns the problem of the density of states~determined by
the averaged Green’s function^G&), a comprehensive solu
tion was recently found26–29 by the author of this paper. I
was demonstrated thatdc254 and how the conditiond.4
simplifies the problem. The singularity atd54 was also in-
vestigated, and the (42e)-dimensional theory was deve
oped. As concerns conductivity, which is determined by c
relator ^GRGA&, the upper critical dimensionality could be
in principle, different for this quantity. The latter stateme
was made in Ref. 21, but there are some serious errors.26 In
fact, this conjecture is not true: the special role of dimensi
ality d54 is a fundamental fact manifesting itself in th
7981063-7761/98/86(4)/7/$15.00
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renormalizability of the theory,26–29 and the renormalization
properties of both density-of-states and conductivity pro
lems are similar. This clearly follows from the fact that th
same diagrammatic technique is used in both problems. N
renormalizability of the theory atd.4 indicates the impor-
tance of the Hamiltonian structure on the atomic scale, wh
is the reason why the scaling invariance is broken. This r
soning is supported by the previously developed ‘‘symme
theory,’’30 which yields the results that are in agreement w
those of a one-parameter scaling only ford,4.

The present paper was motivated by two factors. On
hand, the opinion thatdc25` has recently become quit
popular.10,24,25 This opinion is not absolutely groundles
since the one-parameter scaling theorygives no indicationof
the existence of an upper critical dimensionality. So there
certain drawbacks in the existing physical picture of loc
ization, although it remains unchanged after many years
discussions.

On the other hand, the Wegner relation

s5~d22!n ~1!

between the critical exponents for conductivity (s) to those
of localization radius (n), which derives from the scaling
theory, can be obtained under less demanding condition31

Namely, it suffices to postulate the symmetry of correlati
length on both sides of the transition and independence
the Thouless number at the critical point of the length sca
These two assumptions are taken for granted, so the me
nism responsible for a violation of the Wegner relation
d.423,30,32deserves a consideration on the physical leve

The aim of the reported work was to fill these gaps a
investigate the phenomenon of the upper critical dimensi
ality from the standpoint of the scaling concepts.
© 1998 American Institute of Physics
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2. PROBLEM OF THE SECOND PARAMETER

The scaling theory1 is based on the Thouless scalin
consideration,4,33 which is similar to the well-known
Kadanov scheme in the theory of critical phenomena.17,18

The disordered system in question, which is described by
Anderson model on ad-dimensional cubic lattice with the
coupling integralsJ between nearest neighbors and t
spread of the energy levelsW, is divided into blocks of size
L. In the absence of interaction between the blocks, the
tem has random energy levels with a characteristic spa
D(L);J(a0 /L)d, wherea0 is the lattice constant. If the in
teraction is ‘‘switched on,’’ the matrix elements between t
states of the neighboring blocks appear and result in hyb
ization of ‘‘block’’ functions. The hybridization is the stron
gest between the states with close energies, and on a q
tative level we can consider only such states. By selectin
each block a level closest to a given energyE, we obtain the
effective Anderson model with the spread of levelsW(L)
;D(L) and coupling integralsJ(L) determined by the cor
responding matrix elements. The effective Anderson mo
provides a reduced description of the system on scales la
than L, and its properties are controlled by the Thoule
number

g~L !5
J~L !

W~L !
, ~2!

related to the conductanceG(L) of a block with dimension
L:

g~L !;
\

e2
G~L !, G~L !5s~L !Ld22. ~3!

Repeating the Thouless consideration for the effec
Anderson model, we obtain an algorithm for calculati
g(bL) with integerb, giveng(L):

g~bL!5F~b,g~L !!. ~4!

Abrahamset al.1 considered the limitb→1 for this
equation, when it can be rewritten in the form suggested
Gell-Mann and Low:

d ln g

d ln L
5b~g!. ~5!

The transition pointgc is determined by a conditionb(gc)
50, and the conductivitys5 limL→`s(L) and localization
radiusj behave in the vicinity of the transition as

s}~g02gc!
s, j}~gc2g0!2n, ~6!

whereg0 is the value ofg(L) at L;a0, 1/n5gcb8(gc), and
the critical exponents is determined by Eq.~1!.

The theory developed by Abrahamset al.1 corresponds
to the simplest scenario of one-parameter scaling. In p
ciple, one can imagine alternative situations. For example
two parameters, g(L) andh(L), are important, we have, b
analogy with Eq.~4!,

g~bL!5F~b,g~L !,h~L !!, h~bL!5G~b,g~L !,h~L !!,
~7!

which in the limit b→1 yields
e
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d ln g

d ln L
5b~g,h!, ~8a!

d ln h

d ln L
5g~g,h!, ~8b!

and the results are determined by the properties of two fu
tions,b(g,h) andg(g,h).

The arguments presented in Ref. 1 in favor ofone pa-
rameter g(L) scaling in spite of their peculiarity1! were well
grounded. If the basic physical concept proposed in that
per is correct, the parameterg(L) changes over a distance o
the order of the correlation radiusj, which can be arbitrarily
large near the transition point, and Eq.~8b! can be analyzed
at a constantg. If parameterh(L) varies between the finite
limits and is a monotonic function, it should on a certa
scaleL0!j tend to a limiting valueh`(g), and after substi-
tuting this value into Eq.~8a! we return to a one-paramete
scaling. An oscillating behavior of parameterh(L) would
only indicate its inadequate definition, since averaging
the oscillations34 would lead to an equation system like~8!

with a smoothed parameterh̄(L), which varies monotoni-
cally. The parameterh(L) can only be important if it tends to
zero or infinity, but then can be detected on the level
order-of-magnitude estimates, and it would have had a c
physical sense. The entire scientific community has failed
suggest such a parameter throughout the period starting
the year 1979.

There are two candidates to the role of the second
rameter which appear as a matter of course, but are reje
after a closer scrutiny.

a! While the Thouless scheme is constructed without
proximations, the effective Anderson model contains a la
numbern(L) of levels at each lattice site, which increas
with L and can be considered as the second parameter.
hybridization of states in neighboring blocks with energiesE
andE8 is determined by the parameterJ(L)/uE2E8u and is
inessential foruE2E8u@J(L). Therefore one can take int
account onlyn(L);J(L)/D(L) levels around energyE, and
the parametern(L) does not generate a new scale since i
of the same order as the Thouless numberg(L). Nonethe-
less, this modification of the Thouless scheme reveals n
opportunities and will be considered in future work.

b! The overlap integrals in the Thouless construction
random values, and the ratiow(L)5dJ(L)/J(L) between
their fluctuationdJ(L) and their typical valueJ(L) can be
treated as the second parameter. But fluctuations can be
glected if dJ(L)!J(L), and the opposite cas
dJ(L)@J(L) is impossible since the extreme limit of off
diagonal disorder corresponds to a symmetric distribution
coupling integrals around zero whendJ(L);J(L). Hence,
the parameterw(L) can only play some role when it is of th
order of unity and does not generate a new scale. None
less, the off-diagonal disorder is significant, although a m
appropriate definition of the corresponding parameter is
quired.

Estimates based on the optimal fluctuation technique35,36

show that a typical wave function of localized states ha
behavior
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uC~r !u}H r 2z, r !j

exp~2r /j!, r @j,
~9!

wherez5d22 increases with the space dimensionality. T
result is valid outside the close neighborhood of the tran
tion point, i.e., in the region similar to that where the Land
theory7 can be used, but such results have a tendenc
become rigorous in spaces with a high dimensionality. In
critical region, a similar result is associated with investig
tions of multifractal properties of the wave functions37

^uC~r !u2uC~r 8!u2&}ur 2r 8u2h, ur 2r 8u!j, ~10!

where h;e for d521e and h;1 for d53, i.e., it also
increases with the space dimensionality. Therefore, let
assume that Eq.~10! holds in the critical region andz in-
creases without bound asd increases, and let us consid
whether this property can lead to a catastrophe. A large v
of z means that the block wave functions in the Thoule
scheme are strongly localized on a scale smaller thanj ~Fig.
1!, which leads to strong off-diagonal disorder. For examp
the overlap integral coupling states 1 and 2 is much sma
than that coupling states 3 and 4. The anticipated catastro
is a localization due to the pure off-diagonal disorder, wh
can occur even ifW(L)50, i.e., when the spread of energ
levels is neglected. The Thouless numberg(L) in this case is
infinite and cannot play any role, and the hybridization
block states is controlled by a different parameter related
off-diagonal disorder.

3. LOCALIZATION IN THE CASE OF OFF-DIAGONAL
DISORDER

A possibility of localization due to off-diagonal disorde
was discussed in connection with the problem of format
of an impurity band in a semiconductor, which in fact stim
lated the creation of the localization theory.38 An isolated
impurity in a semiconductor can generate a state with ene
E0 within the band gap. When the concentration of su
impurities is finite, they form an impurity band, which
described in the site representation by the Anderson m
with off-diagonal disorder~sometimes this is termed the Lif
shitz model5!:

(
n8

Jnn8Cn81E0Cn5ECn . ~11!

FIG. 1. At largez in Eq. ~10!, the block eigenfunctions are highly localize
on scalesL,j, which leads to strong off-diagonal disorder. For examp
the overlap between the states 1 and 2 is substantially smaller than be
3 and 4.
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If the coupling integral drops exponentially,

Jnn8}exp$2kurn2rn8u%, ~12!

wherern is the coordinate of thenth impurity, the impurity
band is completely localized in the limit of low concentr
tion. Intuitive arguments in favor of this conjecture we
suggested by Mott3 on the basis of Lifshitz’s classification o
states.35,36 Here we present a refined version of Mott’s arg
ment with the aim of attracting attention to physically si
nificant aspects ignored by both Mott and Lifshitz.

The density of statesn(E) of the impurity band is a
continuous function of energy and is formed by levels
which the overwhelming majority have energies differe
from that of an isolated impurityE0. In order to obtain such
levels, one should take into account the interaction betw
an arbitrary impurity atom 1 and its environment, no mat
how weak it is. According to Lifshitz, the main factor i
‘‘collisions’’ between impurity atoms, i.e., random encou
ters among the latter. If the unit distance is the average
tance between impurities, the limit of zero concentration c
responds tok→` in Eq. ~12!. Since the overlap integra
decays exponentially with the distance, only interaction
tween the nearest neighbors should be taken into acco
Nevertheless, the analysis cannot be limited to pairw
‘‘collisions.’’

Indeed, suppose that the nearest neighbor of atom
atom 2. If the nearest neighbor of atom 2 is atom 1, the 1
pair can be treated in isolation from its environment~Fig.
2a!. If the nearest neighbor of atom 2 is atom 3, we m
consider the1–2–3cluster~Fig. 2b!: first the hybridization
of states of atoms 2 and 3 should be taken into account,
their interaction with atom 1. If the nearest neighbor of ato
3 is not atom 2 but atom 4, we must consider the1–2–3–4
cluster~Fig. 2c!, etc. If this construction process starts wi
atom 1 and ends with atomi , we consider by definition tha
atom 1 belongs toi th cluster. It is evident that atoms 2, 3
. . . specified in this process belong to the samei th cluster.

,
een

FIG. 2. Decomposition of an arbitrary configuration of impurities into clu
ters.
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Taking each impurity atom in turn as atom 1, we obtain
decomposition of an arbitrary configuration into cluste
~Fig. 2d!. The decomposition is unique since each atom
this scheme belongs to a certain cluster, and no atom
belong to two clusters at once~neglecting an infinitesima
probability of detecting an exact equality between two int
atomic distances!. Formally we should take into account a
bitrarily large clusters, but in fact all clusters contain with
overwhelming probability a number of atoms on the order
unity ~the existence of an infinite cluster would mean co
centration of an infinite number of impurities in a finite vo
ume!.

Let us introduce parameterR1, which is the characteris
tic interatomic distance inside a cluster, and parameterR2,
which is the characteristic separation between clusters
thorough investigation is needed to give rigorous definitio
of these parameters, but for any reasonable definition
have

R1,R2 , ~13!

since clusters are formed from the nearest atoms.
By neglecting interaction between clusters and diagon

izing Hamiltonians of isolated clusters, we obtain the ze
approximation for the density of statesn(E) of the impurity
band, whose width is determined by the parame
exp(2kR1). This approximation is asymptotically exact
the limit of zero concentration, since the nearest neighbo
each atom is in the same cluster, and the shift of its le
with respect toE0 is calculated correctly in the lowest ap
proximation.

Regarding each cluster as a site of a new lattice
taking into account interaction between clusters, we ob
the effective Anderson model with the spread of lev
W}exp(2kR1) and overlap integralsJ}exp(2kR2). By vir-
tue of Eq.~13!, we haveJ/W→0 ask→`, and in the zero-
concentration limit, all states are localized inside the clust
The latter clarifies the physical sense of these clusters.

Thus, we have proved the basic feasibility of localizati
of all states due to the pure off-diagonal disorder. Note t
the pattern of hybridization between the eigenstates of s
rate blocks~Fig. 1!, neglecting the spread of energy leve
and in the limitz→`, is similar to the case of topologica
disorder in a system of impurities with exponential overla

4. TWO-PARAMETER SCALING

In the presence of off-diagonal disorder, a disorde
system can be characterized by two parameters:

g~L !5
J~L !

W~L !
, w~L !5

dJ~L !

J~L !
, ~14!

the latter having as an upper bound a certain valuewmax ~Sec.
2!. A phase diagram in coordinates (g,w) is shown in Fig. 3.
At w50, the boundary between localized and delocaliz
states is located atg;1. An increase inw leads to greater
disorder in the system, and the boundaryAB between the two
phases displaces to higherg and tends to infinity at somewc

~a curve likeAB8 precludes localization due to the pure o
diagonal disorder, when the Thouless number is infini!.
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The existence of the critical pointwc solves the problem of
the second parameter in the renormalization group: the
nontrivial scale is associated not withw, but with w2wc .

If the parametersg andw uniquely determine the state o
a disordered system, then in the course of the Thouless s
transformation one point of plane (g,w) turns into another
point of this plane. If the system is at a critical point, it ca
move only along the criticalAB surface, which is the locus
of such points.

In order to return to the conventional scheme of on
parameter scaling, we should postulate, in accordance
the conventional concepts of the theory of critical pheno
ena~Ref. 17, Ch. 6!, the existence of a fixed pointF ~Fig.
4a!, which is stable for states on the critical surface but u
stable for states off the critical surface. In the theory of d
ferential equations,39 such a property is associated with
saddle point characterized by two asymptotes,AB and CD,
and hyperbolic trajectories in the vicinity of this point~Fig.
4a!. Changes in the Thouless numberg(L) with scaleL for
this case are shown in Fig. 5a. It has a constant valuegc at
point F ~curve 1!, relaxes togc at a finite scaleL0 for the
points on the critical surface different from F~curves2 and
3!, approachesgc at the scaleL0 and departs from this value
at the scalej for the points close to the critical surfac
~curves4 and5!. Roughly speaking, evolution in the (g,w)
plane consists of two stages, namely the fast relaxation to
curve CD and slow motion along this curve. At scalesL
@L0 the (g,w) plane is in fact compressed to the lineCD,
and positions on this line are determined by the Thoul
number.2! Thus, we have returned to the convention
scheme, and we assume it to be valid for low dimension

Suppose that there is no stationary point on the criti
surface at larged. Then a system at a critical point move
upward along curveAB asL increases~Fig. 4b!. The down-
ward motion is impossible because this means that
diagonal disorder disappears asymptotically at largeL and
contradicts the physical arguments of Sec. 2. The Thou
numberg(L) increases withL at the transition point~curve1
in Fig. 5b!, in the metallic phase it increases faster,1 g(L)

FIG. 3. Phase diagram in coordinates (g,w). The hatched area correspond
to localized states, the cross-hatched area to delocalized states.
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FIG. 4. Flow diagram for Thouless’ scale
transformations~a! in the presence of a sta
tionary point F on the critical surface AB and
~b! in the absence of such a point.
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;sLd22 ~curve2!, and in the localized phase the curve e
hibits reentrant behavior~curve3!.

At first sight, such reentrant behavior is absurd from
physical standpoint. This means1 that the degree of hybrid
ization between block states increases at smallerL, but then
drops for an unclear reason. In reality, this is not so, since
hybridization is not determined entirely by the Thoule
number, but is also a function ofw(L). At the transition
point, the effective disorder~hence the hybridization degree!
remains at the same level but is transferred from the diag
type to off-diagonal one. In the localized phase, the effec
disorder increases monotonically, but in the first stage
Thouless number grows, and the diagonal disorder chara
ized by this parameter decreases owing to transformatio
the off-diagonal disorder. Only whenL.j and the total dis-
order has increased considerably does diagonal disorder
begin to grow.

As the space dimensionality increases, the first scen
~Fig. 4a! should gradually transfer to the second one~Fig.
4b!, so the stationary point should move upwards along
curveAB and go to infinity at a certain dimensionalitydc2.
We identify this value with the upper critical dimensionalit
The aim of subsequent analysis is to develop a phenom
logical theory of this bifurcation.
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The phenomenological description is possible beca
the functionsb(g,h) andg(g,h) in the two-parameter scal
ing equations~8! admit regular expansions. By virtue of Eq
~7!, they describe a relation between two finite system
whereas all singularities emerge in the thermodynam
limit.17 This argument assumes, however, an adequate ch
of scaling variables, which do not have their built-in sing
larities. In this sense, the variablew is not appropriate be-
cause it has a singular pointwc . Therefore we introduce a
new variableh5F(g,w) such that in the (g,h) plane the
curves of Fig. 4a take the form shown in Fig. 6, i.e., cur
AB has an asymptoteg;h as g,h→` and curveCD be-
comes a vertical line. The first condition is adopted so t
the critical surface, which is associated with no singulariti
should have regular projections on both coordinate axes,
the second is assumed to simplify the equations~see below!.

In investigating the bifurcation, it is sufficient to analyz
Eq. ~8! in the region of largeg andh, where it can be trans
formed to

d ln g

d ln L
5~d22!1

Ah

g
1

Bh2

g2
1

Ch3

g3

1 . . . [~d22!1b̃S g

hD , ~15a!
r
FIG. 5. Evolution of the Thouless paramete
in scenarios illustrated by Figs. 4a and 4b.
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d ln h

d ln L
5m1

b

h
, ~15b!

where parameterm changes sign atd5dc2,

m5a~d2dc2!, d→dc2 , ~16!

anda.0, b.0, andA,0. Indeed, ath5const all conclu-
sions from Ref. 1 apply to functionb(g,h), i.e., it has as-
ymptotesd22 and lng for large and smallg, and atd.2
has a rootgc , which is a function ofh in this specific case
By expandingb(g,h) in powers of 1/g,

b~g,h!5~d22!1
A1~h!

g
1

A2~h!

g2
1 . . . , ~17!

we find that the expansionAn(h) in powers of 1/h should
begin with hn in order to yield a rootgc;h ~Fig. 6!. By
retaining the leading terms of the expansion inh, we obtain
Eq. ~15a!.

As follows from the foregoing, atd.dc2 the function
g(g,h) should lead to unbounded growth inh, which, how-
ever, should not be faster than that ing, so that the rootgc

;h should retain its physical sense. Given thatg(L) in-
creases no faster thanLd22,1 we have at largeh the condi-
tion 0,g(g,h),d22, which indicates that the expansion
g(g,h) in powers of 1/g and 1/h begins with a zero-orde
term:

g~g,h!5m1
a

g
1

b

h
1 . . . ~18!

If the variables are defined so that curve CD is a vertical li
the coordinatehc of the stationary point is independent ofg
and the coefficienta in Eq. ~18! is zero. The stationary poin
should be stable ford,dc2, and absent ford.dc2, which
means thatb is positive andm changes sign atd5dc2, as can
be seen in Eqs.~15! and ~16!.

Equation system~15! is easy to analyze. Ford,dc2, Eq.
~15b! has a stationary pointhc5b/umu, and the variable
changeg→ghc in Eq. ~15a! returns us to the one-paramet
scaling with the critical exponents given by equations

1/n5gcb̃8~gc!, s5n~d22!, ~d22!1b̃~gc!50.
~19!

FIG. 6. Diagram of Fig. 4a after the variable changeh5F(g,w).
,

For d.dc2 and largeh, we haveh(L)}Lm, and after the
changeg→gLm, Eq. ~15b! is reduced to a one-paramet
form, but with d222m instead ofd22. For L&j, the
Thouless number follows the law

g~L !5gcS L

a0
D m

1~g02gc!S L

a0
D m11/n

, ~20!

and the critical exponents are determined by the equatio

1/n5gcb̃8~gc!, ~21a!

s5n~d222m!, ~21b!

~d222m!1b̃~gc!50. ~21c!

The localization radius is defined as the distance
which the parameterg(L) begins to drop forg0,gc ~i.e., in
the localized phase! and the exponents is determined by
matching the function defined by Eq.~20! and g(L)
;sLd22 at L;j. At the transition point, the Thouless num
ber increases according to the law

g~L !}Lm, ~22!

which is the reason why the Wegner relation fails~see Eq.
~21b!!. The comparison between Eqs.~19! and ~21! demon-
strates that critical exponents as functions ofd have cusps at
d5dc2

.
Usually, one feature of the upper critical dimensional

is that the critical exponents are independent ofd abovedc2.
As follows from Eq.~21b!, this is possible ifm5d1const,
which yields in combination with Eq.~16!

m5d2dc2 . ~23!

Given this relation, we obtain the Thouless number a
function of the length scale forL&j:

g~L !5gc1~g02gc!~L/a0!1/n, d,dc2 , ~24a!

g~L !5gc~L/a0!d2dc21~g02gc!~L/a0!d2dc211/n,

d.dc2 . ~24b!

Equation~24b! is the main result of our phenomenologic
approach. Equation~24a! is a well-known consequence o
one-parameter scaling, but its range of applicability is li
ited.

5. COMPARISON TO THE SYMMETRY THEORY

The symmetry theory30 yields the same values of critica
exponents as the Vollhardt and Wo¨lfle self-consistent
theory32:

n51/~d22!, s51 for 2,d,4,
~25!

n51/2, s51 for d.4.

For d,4 they are compatible with the one-parameter scal
because the Wegner relations5n(d22) holds. Its failure at
d.4 means thatdc254.
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In order to compare the results given by Eq.~24! to the
symmetry theory, let us derive from the latter30 the diffusion
coefficient DL for a finite block of sizeL. It is calculated
using the diffusion coefficientD(v,q) for an infinite system
using the formula3!

DL;DS i
DL

L2
,L21D . ~26!

It was shown in Ref. 30 that

D~v,q!5D0~v!q0, q!a0
21 , ~27!

andD0(v) is given by the equation

D0~v!5At1BS 2
iv

D0~v! D
1/2n

, ~28!

where t is the distance to the transition point. Given th
g(L)}DLLd22 and parametert is proportional tog02gc ,
we can easily derive from Eqs.~26!–~28!

g~L !5gc~L/a0!d2221/n1~g02gc!~L/a0!d22. ~29!

This result is similar to Eq.~24! but not identical in the
general case. The results expressed by Eqs.~24! and~29! are
identical only for specific values of critical exponents giv
by Eq. ~25!:

g~L !5gc1~g02gc!~L/a0!d22, d,4,
~30!

g~L !5gc~L/a0!d241~g02gc!~L/a0!d22, d.4.

Thus, the phenomenological model developed in the
ported work is in full agreement with the symmetry theory30

This correspondence between the two theories is far f
trivial because the symmetry theory is based on differ
principles and does not use in any way the scaling conce
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1!‘‘We cannot see how any statistical feature of the energy levels other

this . . . ratio can be relevant’’~Ref. 1!.
2!The assumption that only two parameters,g andw, are essential means i

reality that all other parameters relax rapidly to a surface which can
mapped one-to-one onto the (g,w) plane.

3!Equation ~26! fails in the localized phase forL*j due to a nonlocal
response.32
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