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The phenomenon of upper critical dimensionatify has been studied from the viewpoint of the
scaling concepts. The Thouless numbét) is not the only essential variable in scale
transformations, because there is the second essential parameter connected with the off-diagonal
disorder. The investigation of the resulting two-parameter scaling has revealed two

scenarios, and switching from one to another scenario determines the upper critical dimensionality.
The first scenario corresponds to the conventional one-parameter scaling and is characterized

by the parameteg(L) invariant under scale transformations when the system is at the

critical point. In the second scenario, the Thouless nurglfe) grows at the critical point as

L9~ 92, which leads to a violation of the Wegner relation v(d—2) between the critical

exponents for conductivitg and localization radiug, which takes the forns=v(d.,—2). The
resulting formulas fog(L) are in agreement with the symmetry theory suggested in a

previous publication, I. M. Suslov, Zh.k8p. Teor. Fiz108 1686(1995 [JETP81, 925(1995].

A more rigorous version of Mott’s argument concerning localization due to topological

disorder has been proposed. 1®98 American Institute of Physids$1063-776(98)02404-4

1. INTRODUCTION renormalizability of the theor§$~2°and the renormalization
properties of both density-of-states and conductivity prob-
The one-parameter scaling hypothésias played an im- lems are similar. This clearly follows from the fact that the
portant role in development of the contemporary localizatiorsame diagrammatic technique is used in both problems. Non-
theory’~8 and stimulated creation of the theory of quantumrenormalizability of the theory ai>4 indicates the impor-
correctiond unambiguously supported by an experiment.tance of the Hamiltonian structure on the atomic scale, which
The criticism of the one-parameter scafitigin fact refers  is the reason why the scaling invariance is broken. This rea-
not to underlying physical ideas, but rather to its justificationsoning is supported by the previously developed “symmetry
in the formalism ofo-modelst*~®The justification problem  theory,”*° which yields the results that are in agreement with
remains a pressing one, and may require more accurate defirose of a one-parameter scaling only ¢bx4.
nitions of the basic notions as well as lead to a restriction of  The present paper was motivated by two factors. On one
the range of applicability. Here we discuss modifications ofhand, the opinion thatl.,=% has recently become quite
scaling concepts that we believe are inevitable in highpopulari®?*2?® This opinion is not absolutely groundless
dimensional spaces. since the one-parameter scaling thegiyes no indicatiorof
Experience with phase-transition thebi}? indicates the existence of an upper critical dimensionality. So there are
that scaling is applicable only to spaces with dimensionalicertain drawbacks in the existing physical picture of local-
tiesd within an interval between the upper and lower critical ization, although it remains unchanged after many years of
dimensionalitiesd.; andd,. Ford<d,, there is no phase discussions.

transition, and ford>d,,, the mean-field theory is valid. On the other hand, the Wegner relation
There is no doubt thatl,;=2 in the localization theory,
whereas the issue of the upper critical dimensionality has s=(d—2)v @

remained a subject for discussions for many yéars As

concerns the problem of the density of stai@stermined by between the critical exponents for conductivit) (o those

the averaged Green'’s functid®)), a comprehensive solu- of localization radius ¢), which derives from the scaling
tion was recently fourfi~2° by the author of this paper. It theory, can be obtained under less demanding conditfons.
was demonstrated thalt,,=4 and how the conditioni>4 Namely, it suffices to postulate the symmetry of correlation
simplifies the problem. The singularity d&=4 was also in- length on both sides of the transition and independence of
vestigated, and the (4¢)-dimensional theory was devel- the Thouless number at the critical point of the length scale.
oped. As concerns conductivity, which is determined by cor-These two assumptions are taken for granted, so the mecha-
relator (GRG”), the upper critical dimensionality could be, nism responsible for a violation of the Wegner relation at
in principle, different for this quantity. The latter statementd>4%>3%32deserves a consideration on the physical level.
was made in Ref. 21, but there are some serious eftdrs. The aim of the reported work was to fill these gaps and
fact, this conjecture is not true: the special role of dimensioninvestigate the phenomenon of the upper critical dimension-
ality d=4 is a fundamental fact manifesting itself in the ality from the standpoint of the scaling concepts.
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2. PROBLEM OF THE SECOND PARAMETER ding
T = A, (8a

The scaling theoryis based on the Thouless scaling
consideratiot;*®> which is similar to the well-known
Kadanov scheme in the theory of critical phenom&n4.
The disordered system in question, which is described by the

Anderson model on a-dimensional cubic lattice with the 44 the results are determined by the properties of two func-
coupling integralsJ between nearest neighbors and theygns B(g,h) and y(g,h).

spread of the energy leveW, is divided into blocks of size The arguments presented in Ref. 1 in favorook pa-
L. In the absence of interaction b_etween the bIO(_:k_s, the SYSameter gL) scaling in spite of their peculiariﬂ/were well
tem has random energy levels with a characteristic spacingrounded. If the basic physical concept proposed in that pa-

d . B .
A(L)~J(ap/L)", wherea, is the lattice constant. If the in- per is correct, the parametg(L) changes over a distance of
teraction is “switched on,” the matrix elements between theie grder of the correlation radiugs which can be arbitrarily

states of the neighboring blocks appear and result in hybridrarge near the transition point, and E8b) can be analyzed
ization of “block” functions. The hybridization is the stron- 4 54 constang. If parameterh(L) varies between the finite
gest between the states with close energies, and on a qualimits and is a monotonic function, it should on a certain
tative level we can consider only such states. By sglectmg IRcalel ,<¢ tend to a limiting valueh..(g), and after substi-
each block a level closest to a given enekgywe obtain the  y,ing this value into Eq(8a) we return to a one-parameter
effective Anderson model with the spread of lev#l§L)  scaling. An oscillating behavior of parameteL) would
~A(L) and coupling integrald(L) determined by the cor- oy indicate its inadequate definition, since averaging out

responding matrix elements. The effective Anderson modeﬂhe oscillation3* would lead to an equation system like)

provides a reduced description of the system on scales Iargt\?vrith a smoothed parameté_r(L) which varies monotoni-
than L, and its properties are controlled by the Thoulessca"y. The parametd(L) can only be important if it tends to

), (8b)

number zero or infinity, but then can be detected on the level of
J(L) order-of-magnitude estimates, and it would have had a clear
9(L)= wW(L)’ 2 physical sense. The entire scientific community has failed to

o _ suggest such a parameter throughout the period starting with
related to the conductaneg(L) of a block with dimension the year 1979.

L: There are two candidates to the role of the second pa-

4 rameter which appear as a matter of course, but are rejected
g(L)~—ZG(L), G(L)=o(L)L92 3 after a closer scrutiny.
e a) While the Thouless scheme is constructed without ap-
Repeating the Thouless consideration for the effectivdProximations, the effective Anderson model contains a large
Anderson model, we obtain an a|gorithm for Ca|cu|atingnumbern(|_) of levels at each lattice site, which increases

g(bL) with integerb, giveng(L): with L and can be considered as the second parameter. But
hybridization of states in neighboring blocks with enerdtes
g9(bL)=F(b,g(L)). @ andE’ is determined by the paramet#flL)/|E—E’'| and is

Abrahamset al! considered the limitb—1 for this inessential fofE—E’[>J(L). Therefore one can take into
equation, when it can be rewritten in the form suggested byccount onlyn(L)~J(L)/A(L) levels around energl, and

Gell-Mann and Low: the parameten(L) does not generate a new scale since it is
of the same order as the Thouless numip@r). Nonethe-
M:B(g). (5) less, this modification of the Thouless scheme reveals new
dinL opportunities and will be considered in future work.
The transition poing, is determined by a conditioB(g.) b) The overlap integrals in the Thouless construction are
=0, and the conductivityr=lim, _..o(L) and localization ~random values, and the ratip(L)=25J(L)/J(L) between
radius¢ behave in the vicinity of the transition as their fluctuationsJ(L) and their typical valuel(L) can be
treated as the second parameter. But fluctuations can be ne-
0%(go=9e)%  £%(9c— o) " 6)  glected if SJ(L)<J(L), and the opposite case
wheregy is the value ofg(L) atL~a,, 1/v=g.8'(g.), and 8I(L)>J(L) is impossible since the extreme limit of off-
the critical exponens is determined by Eq(1). diagonal disorder corresponds to a symmetric distribution of

The theory developed by Abraharesal® corresponds ~coupling integrals around zero whefd(L)~J(L). Hence,
to the simplest scenario of one-parameter scaling. In printhe parametep(L) can only play some role when it is of the
ciple, one can imagine alternative situations. For example, iPrder of unity and does not generate a new scale. Nonethe-
two parametersg(L) andh(L), are important, we have, by less, the off-diagonal disorder is significant, although a more

analogy with Eq.(4), appropriate definition of the corresponding parameter is re-
quired.
g(bL)=F(b,g(L),h(L)), h(bL)=G(b,g(L),h(L)()7,) Estimates based on the optimal fluctuation technitjtfe

show that a typical wave function of localized states has a
which in the limitb—1 yields behavior
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FIG. 1. At large{ in Eq. (10), the block eigenfunctions are highly localized
on scaled < ¢, which leads to strong off-diagonal disorder. For example,
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wherel=d— 2 increases with the space dimensionality. This
result is valid outside the close neighborhood of the transigi. 2. pecomposition of an arbitrary configuration of impurities into clus-
tion point, i.e., in the region similar to that where the Landauters.

theory can be used, but such results have a tendency to

become rigorous in spaces with a high dimensionality. In the

critical region, a similar result is associated with investiga-If the coupling integral drops exponentially,

tions of multifractal properties of the wave functidhs
() 2w )2 er=r' |77, |r—r'|<&, (10
where n~e¢€ for d=2+¢€ and »~1 for d=3, i.e., it also

Jnrcexp— k|r,—rul}, (12

wherer , is the coordinate of thath impurity, the impurity
band is completely localized in the limit of low concentra-

increases with the space dimensionality. Therefore, let ution. Intuitive arguments in favor of this conjecture were

assume that Eq10) holds in the critical region and in-

suggested by Motton the basis of Lifshitz’s classification of

creases without bound as increases, and let us consider states>>® Here we present a refined version of Mott's argu-
whether this property can lead to a catastrophe. A large valument with the aim of attracting attention to physically sig-
of ¢ means that the block wave functions in the Thoulesaificant aspects ignored by both Mott and Lifshitz.

scheme are strongly localized on a scale smaller théfig.

The density of states(E) of the impurity band is a

1), which leads to strong off-diagonal disorder. For examplecontinuous function of energy and is formed by levels of
the overlap integral coupling states 1 and 2 is much smallewhich the overwhelming majority have energies different
than that coupling states 3 and 4. The anticipated catastropliem that of an isolated impuritf,. In order to obtain such

is a localization due to the pure off-diagonal disorder, whichlevels, one should take into account the interaction between
can occur even iW(L)=0, i.e., when the spread of energy an arbitrary impurity atom 1 and its environment, no matter

levels is neglected. The Thouless numbél) in this case is

how weak it is. According to Lifshitz, the main factor is

infinite and cannot play any role, and the hybridization of“collisions” between impurity atoms, i.e., random encoun-
block states is controlled by a different parameter related téers among the latter. If the unit distance is the average dis-

off-diagonal disorder.

3. LOCALIZATION IN THE CASE OF OFF-DIAGONAL
DISORDER

A possibility of localization due to off-diagonal disorder

was discussed in connection with the problem of formation
of an impurity band in a semiconductor, which in fact stimu-

lated the creation of the localization thedfyAn isolated

tance between impurities, the limit of zero concentration cor-
responds tok— in Eq. (12). Since the overlap integral
decays exponentially with the distance, only interaction be-
tween the nearest neighbors should be taken into account.
Nevertheless, the analysis cannot be limited to pairwise
“collisions.”

Indeed, suppose that the nearest neighbor of atom 1 is
atom 2. If the nearest neighbor of atom 2 is atom 1, the 1-2
pair can be treated in isolation from its environméhig.

impurity in a semiconductor can generate a state with energa. If the nearest neighbor of atom 2 is atom 3, we must
E, within the band gap. When the concentration of suchconsider thel—2—3cluster(Fig. 2b: first the hybridization

impurities is finite, they form an impurity band, which is

of states of atoms 2 and 3 should be taken into account, then

described in the site representation by the Anderson modéheir interaction with atom 1. If the nearest neighbor of atom

with off-diagonal disordefsometimes this is termed the Lif-
shitz model):

> IV +EqV,=EV,,. (11)
n/

3 is not atom 2 but atom 4, we must consider 1he2—3—4

cluster(Fig. 20, etc. If this construction process starts with

atom 1 and ends with atoim we consider by definition that

atom 1 belongs tath cluster. It is evident that atoms 2, 3,
. specified in this process belong to the sathecluster.



JETP 86 (4), April 1998 I. M. Suslov 801

Taking each impurity atom in turn as atom 1, we obtain a
decomposition of an arbitrary configuration into clusters
(Fig. 20. The decomposition is unique since each atom in
this scheme belongs to a certain cluster, and no atom can
belong to two clusters at ondmeglecting an infinitesimal
probability of detecting an exact equality between two inter-
atomic distances Formally we should take into account ar-
bitrarily large clusters, but in fact all clusters contain with an
overwhelming probability a number of atoms on the order of
unity (the existence of an infinite cluster would mean con-
centration of an infinite number of impurities in a finite vol-
ume.

Let us introduce paramet&;, which is the characteris-
tic interatomic distance inside a cluster, and paramBter
which is the characteristic separation between clusters. A
thorough investigation is needed to give rigorous definitions
of these parameters, but for any reasonable definition weIG. 3. Phase diagram in coordinates ¢). The hatched area corresponds

have to localized states, the cross-hatched area to delocalized states.
Rl< RZ ’ (13)
since clusters are formed from the nearest atoms. The existence of the critical point, solves the problem of

By neglecting interaction between clusters and diagonalthe second parameter in the renormalization group: the new
izing Hamiltonians of isolated clusters, we obtain the zerogntrivial scale is associated not wih but with ¢ — ¢ .
approximation for.the dgnsity of st.ate$E) of the impurity If the parameterg and¢ uniquely determine the state of
band, whose width is determined by the parameteq gisordered system, then in the course of the Thouless scale
exp(-«Ry). This approximation is asymptotically exact in transformation one point of plane(p) turns into another
the limit of zero concentration, since the nearest neighbor Oﬁ.‘omt of this plane. If the system is at a critical point, it can
each atom is in the same cluster, and the shift of its levelgye only along the criticalB surface, which is the locus
with respect tok, is calculated correctly in the lowest ap- of such points.
proximation. _ . In order to return to the conventional scheme of one-

Regarding each cluster as a site of a new lattice angharameter scaling, we should postulate, in accordance with
taking into account interaction between clusters, we obtaifhe conventional concepts of the theory of critical phenom-
the effective Anderson model with the spread of levelsena (Ref. 17, Ch. 6, the existence of a fixed poifit (Fig.
Wecexp(-«Ry) and overlap integrald>=exp(-«Rp). By vir- 44 which is stable for states on the critical surface but un-
tue of Eq.(13), we havel/W—0 asx—c, and in the zero-  staple for states off the critical surface. In the theory of dif-
concentration limit, all states are localized inside the clusterserential equation®® such a property is associated with a
The latter clarifies the physical sense of these clusters.  gaqdle point characterized by two asymptot®B,and CD,

Thus, we have proved the basic feasibility of localizationang hyperbolic trajectories in the vicinity of this poitfig.
of all states due to the pure off-diagonal disorder. Note thalig) Changes in the Thouless numiggiL) with scaleL for
the pattern of hybridization between the eigenstates of sepgnis case are shown in Fig. 5a. It has a constant vgluat
rate blocks(Fig. 1), neglecting the spread of energy levels point F (curve 1), relaxes tog, at a finite scaleL, for the
and in the limit{—ce, is similar to the case of topological points on the critical surface different from (Eurves2 and
disorder in a system of impurities with exponential overlap.3) approaches, at the scaléd., and departs from this value

at the scale¢ for the points close to the critical surface
4. TWO-PARAMETER SCALING (curves4 and5). Roughly speaking, evolution in the (¢)
plane consists of two stages, namely the fast relaxation to the

In the presence of off-diagonal disorder, a disorderecturve CD and slow motion along this curve. At scales

system can be characterized by two parameters: >L, the (g,¢) plane is in fact compressed to the liG®,
(L) 8J(L) and positions on this line are determined by the Thouless
g(L)= m o(L)= m (14 number? Thus, we have returned to the conventional
scheme, and we assume it to be valid for low dimensions.
the latter having as an upper bound a certain valys, (Sec. Suppose that there is no stationary point on the critical

2). A phase diagram in coordinateg, ) is shown in Fig. 3.  surface at largel. Then a system at a critical point moves
At ¢=0, the boundary between localized and delocalizedipward along curvé\B asL increasegFig. 4b. The down-
states is located aj~1. An increase inp leads to greater ward motion is impossible because this means that off-
disorder in the system, and the boundagbetween the two diagonal disorder disappears asymptotically at ldrgand
phases displaces to highgrand tends to infinity at some, contradicts the physical arguments of Sec. 2. The Thouless
(a curve likeAB' precludes localization due to the pure off- numberg(L) increases with. at the transition pointcurvel
diagonal disorder, when the Thouless number is infinite in Fig. 5b), in the metallic phase it increases fastay(L)



802 JETP 86 (4), April 1998 I. M. Suslov

g
B
b
FIG. 4. Flow diagram for Thouless’ scale
transformationsa@) in the presence of a sta-
tionary point F on the critical surface AB and
/\‘ (b) in the absence of such a point.
A
4 L4

~oL972 (curve 2), and in the localized phase the curve ex- The phenomenological description is possible because
hibits reentrant behavidcurve 3). the functionsB(g,h) andy(g,h) in the two-parameter scal-

At first sight, such reentrant behavior is absurd from the"g eguations8) admit regular expansions. By virtue of Eq.
physical standpoint. This mednthat the degree of hybrid- (7), they describe a relation between two finite systems,
ization between block states increases at smaljdsut then ~ Whereas all singularities emerge in the thermodynamic
drops for an unclear reason. In reality, this is not so, since thAmit 17.Thi5 argument assumes, however, an adequate choice
hybridization is not determined entirely by the ThoulessOf scaling variables, which do not have their built-in singu-
number, but is also a function af(L). At the transition Iarltles._ In this sense, the yanab{e is not appropriate be-
point, the effective disordehence the hybridization degpee Cause it has a singular point; . Therefore we introduce a
remains at the same level but is transferred from the diagon&€W variableh=F(g,¢) such that in the ¢,h) plane the
type to off-diagonal one. In the localized phase, the effectivéurves of Fig. 4a take the form shown in Fig. 6, i.e., curve
disorder increases monotonically, but in the first stage thé\B has an asymptotg~h asg,h— and curveCD be-
Thouless number grows, and the diagonal disorder charactefomes a vertical line. The first condition is adopted so that
ized by this parameter decreases owing to transformation ithe critical surface, which is associated with no singularities,
the off-diagonal disorder. Only whedn> ¢ and the total dis- should have regular projections on both coordinate axes, and
order has increased considerably does diagonal disorder alf¢ second is assumed to simplify the equatice below.
begin to grow. In investigating the bifurcation, it is suff_icient to analyze

As the space dimensionality increases, the first scenarigd- (8) in the region of largey andh, where it can be trans-
(Fig. 43 should gradually transfer to the second aiigg.  formed to

4b), so the stationary point should move upwards along the ding Ah Bh? cCh®

curve AB and go to infinity at a certain dimensionalitl,. qnL_d-2+ ?“L ?Jr 5

We identify this value with the upper critical dimensionality.

The aim of subsequent analysis is to develop a phenomeno- ~(9g

logical theory of this bifurcation. t...=(d=2)+8 ﬁ)’ (153

FIG. 5. Evolution of the Thouless parameter
in scenarios illustrated by Figs. 4a and 4b.
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FIG. 6. Diagram of Fig. 4a after the variable chargeF(g,¢).
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dinL “Th (15D
where parameter changes sign al=d,,

pw=a(d—dg), d—dg, (16)

and a>0, b>0, andA<O0. Indeed, ah=const all conclu-
sions from Ref. 1 apply to functio@(g,h), i.e., it has as-
ymptotesd—2 and Ing for large and smalf, and atd>2
has a roog., which is a function oh in this specific case.
By expandingB(g,h) in powers of 1g,
Aq(h) Az(h)+ a7
g2

we find that the expansioA,(h) in powers of 1 should
begin with h" in order to yield a rootg.~h (Fig. 6). By
retaining the leading terms of the expansiorhinve obtain
Eq. (15a.

As follows from the foregoing, ati>d., the function
v(g,h) should lead to unbounded growth ip which, how-
ever, should not be faster than thatgnso that the roog,
~h should retain its physical sense. Given thgt.) in-
creases no faster tharf ~2* we have at largé the condi-
tion 0< y(g,h)<d—2, which indicates that the expansion of
v(g,h) in powers of 1¢ and 1h begins with a zero-order
term:

+

B(g,h)=(d-2)+

b
=+ ...

h (18

a
Y(Q,h)=M+a+

If the variables are defined so that curve CD is a vertical line

the coordinatén,. of the stationary point is independent gf
and the coefficiend in Eq. (18) is zero. The stationary point
should be stable fod<d.,, and absent fod>d.,, which
means thab is positive andu changes sign at=d.,, as can
be seen in Eq915) and(16).

Equation systen(l5) is easy to analyze. Far<d.,, Eq.
(15b has a stationary poinh.=b/|u|, and the variable

changeg—gh. in Eq. (153 returns us to the one-parameter

scaling with the critical exponents given by equations

1v=9g.B'(9e), (d—2)+B(ge)=0.
(19

s=v(d—2),

I. M. Suslov 803

Ford>d,, and largeh, we haveh(L)«L#, and after the
changeg—glL*, Eq. (15b) is reduced to a one-parameter
form, but with d—2—pu instead ofd—2. For L<¢, the
Thouless number follows the law

L
ao

pt 1y

: (20)

o

+(90—9¢)

g(L)=gc a_o

and the critical exponents are determined by the equations

1v=9.8"(9.), (21a
s=v(d—2—pu), (21b)
(d—2—p)+B(gc) =0. (219

The localization radius is defined as the distance at
which the parameteg(L) begins to drop fogy<g. (i.e., in
the localized phageand the exponens is determined by
matching the function defined by Eg20) and g(L)
~ogL972 atL~¢&. At the transition point, the Thouless num-
ber increases according to the law

g(L)ecL”, (22

which is the reason why the Wegner relation fagee Eq.
(21b)). The comparison between Eq49) and(21) demon-
strates that critical exponents as functiongldfave cusps at
d=dc,.

Usually, one feature of the upper critical dimensionality
is that the critical exponents are independend a@boved..
As follows from Eq.(21b), this is possible ifu=d+ const,

which yields in combination with Eq.16)
w=d—dg,. (23

Given this relation, we obtain the Thouless number as a
function of the length scale fdr=<¢:

9(L)=gc+(go—9o)(L/ag)”, d<dcy, (24a
9(L)=0gc(L/ag)? %2+ (go—gc) (L/ag) 4 dea ™1,
d>do,. (24b)

Equation(24b) is the main result of our phenomenological
approach. Equatiori24g is a well-known consequence of

one-parameter scaling, but its range of applicability is lim-
ited.

5. COMPARISON TO THE SYMMETRY THEORY

The symmetry theorY yields the same values of critical
exponents as the Vollhardt and We self-consistent
theory'%

v=1/(d—-2), s=1 for 2<d<4,

(29

v=1/2, s=1 for d>4.

Ford<4 they are compatible with the one-parameter scaling
because the Wegner relatise v(d—2) holds. Its failure at
d>4 means thatl.,=4.
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In order to compare the results given by E24) to the
symmetry theory, let us derive from the laffthe diffusion
coefficientD, for a finite block of sizel. It is calculated
using the diffusion coefficierd (w,q) for an infinite system
using the formul3

DL
D ~D |I5J_1>. (26)
It was shown in Ref. 30 that
D((U'Q):Do(w)qov q<a611 (27)
andDy(w) is given by the equation
i 1/2v
Do(w)=A7T+B| — Do(w)> , (28)

where 7 is the distance to the transition point. Given that

g(L)=D L9 2 and parameter is proportional togo—g_,
we can easily derive from Eq§26)—(28)

9(L)=gc(L/ag)* * "+ (go—gc)(L/ag) 2. (29

This result is similar to Eq(24) but not identical in the
general case. The results expressed by Eg.and(29) are
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