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According to Lipatov, high orders of perturbation theory are determined
by the saddle-point configurations (instantons) of the corresponding func-
tional integrals. According to ’t Hooft, some individual large diagrams,
renormalons, are also significant and they are not contained in the Lipatov
contribution. The history of the conception of renormalons is presented, and
the arguments in favor of and against their significance are discussed. The
analytic properties of the Borel transforms of functional integrals, Green
functions, vertex parts, and scaling functions are investigated in the case of
ϕ4 theory. Their analyticity in a complex plane with a cut from the first
instanton singularity to infinity (the Le Guillou – Zinn-Justin hypothesis) is
proved. It rules out the existence of the renormalon singularities pointed
out by ’t Hooft and demonstrates the nonconstructiveness of the conception
of renormalons as a whole. The results can be interpreted as an indication
of the internal consistency of ϕ4 theory.
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1. INTRODUCTION

Many problems in theoretical physics can be reduced to a calculation of functional
integrals of the type

I =
∫

Dϕ exp(−S0{ϕ} − gSint{ϕ}), (1)

whose expansion in the coupling constant g gives an ordinary perturbation theory. In 1977
Lipatov [1] proposed a method for calculating the high-order expansion coefficients of the
integrals (1) on the basis of the following simple idea. If the function F (g) is expanded into
a series

F (g) =
∞∑

N=0

FNgN ,

the Nth expansion coefficient can be calculated from the formula

FN =
∮

C

dg

2πi

F (g)

gN+1
, (2)

where the contour C encloses the point g = 0 in the complex plane. Taking the integral
(1) as F (g), we obtain

IN−1 =
1

2πi

∫
dg

∫
Dϕ exp(−S0{ϕ} − gSint{ϕ} −N ln g), (3)

and the appearance of an exponential with a large exponent indicates that the saddle-point
method can be applicable at large N . Lipatov’s idea is to seek the saddle point in (3) with
respect to g and ϕ simultaneously: such saddle-point exists for all the cases of interest and
is realized on a spatially localized function, which has been termed an instanton. Moreover,
the conditions for applicability of the saddle-point method are satisfied at large N .

The Lipatov technique, which was originally applied to scalar theories, such as ϕ4 theory

S0{ϕ}+ gSint{ϕ} =
∫

ddx
{

1

2
(∇ϕ)2 +

1

2
m2ϕ2 +

1

4
gϕ4

}
, (4)

was subsequently generalized to vector fields [2], scalar electrodynamics [3, 4], Yang–Mills
fields [5], fermion fields [6], etc. (see the collection of articles in Ref. [7]). The ultimate goal
was to apply it to theories of practical interest, viz., quantum electrodynamics [8, 9] and
quantum chromodynamics (QCD) [10, 11]. As was pointed out already in Lipatov’s first
paper [1], the knowledge of the first few coefficients and their asymptotic behavior permits
approximate reconstruction of the Gell-Mann–Low function, opening up a direct route to
the solutions of the problem of confinement and electrodynamics at short distances.

However, a conception which raised some doubts regarding the Lipatov technique was
conceived already in 1977. It was initiated by a paper by Lautrup [12], which contained
the following curious observation. The typical result of calculations based on the Lipatov
technique has a functional form

IN = caNΓ(N + b) ≈ caNN b−1N ! (5)
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Figure 1: Example of a diagram for quantum electrodynamics, which makes a contribution
∼N ! to the Nth order of perturbation theory [12].

and the natural interpretation of it is that there is a factorially large number of diagrams
of the same order (ag)N . However, in the general case such an interpretation is incorrect,
since there are examples of individual Nth-order diagrams having a value ∼N !. The latter
are diagrams (Fig. 1) which contain long chains of “bubbles”. Such factorial contributions
of individual diagrams were termed renormalons, since they appear only in renormalizable
theories. 1 Lautrup’s example (Fig. 1) was related to quantum electrodynamics, but similar
diagrams exist in QCD and four-dimensional ϕ4 theory.

Strictly speaking, nothing followed from Lautrup’s observation: the Lipatov technique is
based on a formal calculation of the functional integral (3) and does not rely in any way on
a statistical analysis of diagrams. It is natural to expect that the renormalon contributions

1 In a broader sense, a renormalizable theory is one in which the divergences are eliminated by renor-
malizing a finite number of parameters. According to more precise terminology, such theories are subdi-
vided into super-renormalizable (renormalizable “with a surplus”) and renormalizable in the narrow sense
(marginally renormalizable); the latter, which gave their name to renormalons, are characterized by the
logarithmic situation, which is needed for the appearance of factorial contributions (see below).
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have already been taken into account in the instanton result (5). In fact, no far-reaching
claims were made in Ref. [12] or in the relevant publications appearing shortly thereafter
[13, 14].

However, the tone of the publications subsequently changed dramatically. The reason
was ’t Hooft’s lecture [15], which was delivered in the same year, 1977. The term ”renor-
malon” was used in it for the first time, and it was asserted that renormalons are not
contained in the instanton contribution (5). The authors of the subsequent publications
[16]–[30] considered ’t Hooft’s opinion to be self-evident and did not trouble themselves
with argumentation.

A convenient language for discussion, viz., the analytic properties of Borel transforms,
was introduced in ’t Hooft’s lecture. The Borel transformation

F (g) =
∞∑

N=0

FNgN =
∞∑

N=0

FN

N !

∞∫

0

dx xNe−xg =

∞∫

0

dx e−x
∞∑

N=0

FN

N !
(gx)N ,

which factorially improves the convergence, is widely used in the theory of divergent series
[30]. It is convenient to rewrite it in the form

F (g) =

∞∫

0

dx e−xB(gx), (6)

B(z) =
∞∑

N=0

FN

N !
zN (7)

by introducing the Borel transform B(z) of the function F (g). The Borel transform for a
function with the expansion coefficients (5)

BI(z) =
∑

N

caNN b−1zN ∼ (1− az)−b, za → 1 (8)

has a singularity at the point z = 1/a.
’t Hooft arrived at this result in a different way, without reference to the Lipatov

technique. Rewriting the integral (1) and the definition of the Borel transform (6) in the
form

I =
∫

Dϕ exp(−S{ϕ}/g), (9)

F (g) =

∞∫

0

dx e−x/gB(x), (10)

which can be accomplished by means of the replacements ϕ → ϕ/
√

g and x → x/g in (4)
and (6), 2 yields the Borel transform of the integral (9):

BI(z) =
∫

Dϕδ(z − S{ϕ}) =
∮

z=S{ϕ}

dσ

|∇S{ϕ}| , (11)

2 ’t Hooft omitted the factors of the form gn, since integrals of the type (1) usually appear in the form
of a ratio and such factors cancel out.
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Figure 2: More general class of renormalon diagrams

where the latter integration is carried out over the hypersurface z = S{ϕ}. If an instanton
ϕc(x), i.e., a classical solution with a finite action, exists for the integral (9), then δS{ϕc} =
0 and the partial derivatives ∂S/∂ϕi with respect to all the variables ϕi comprising Dϕ
vanish; therefore, ∇S{ϕc} = 0 and the Borel transform (11) has a singularity at the point

z = S{ϕc}, (12)

which coincides with 1/a. In addition, there are singularities at the points mS{ϕc}, which
correspond to solutions containing m infinitely distant instantons. If it is assumed that
the singularity (12) is closest to the origin of coordinates, the result (5) of the Lipatov
technique is reproduced. However, ’t Hooft allowed the existence of singularities differing
from those of the instanton type: in this case the asymptotics of the expansion coefficients
can be specified by the singularity which is closest to the origin of coordinates.

’t Hooft regarded renormalons as a possible mechanism for the appearance of the new
singularities. Let us take an arbitrary diagram for quantum electrodynamics and single out
the line of a virtual photon with the momentum k (or an interaction line in ϕ4 theory) in
it (Fig. 2,a): it corresponds to integration over a region of large momenta of the type

∫

k>k0

d4k k−2m,

where m is an integer. If we assume that all the renormalizations have been performed,
the integral converges and m ≥ 3. Inserting a chain of N “bubbles” into the photon line
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(Fig. 2,b), we obtain the integral 3

∫

k>k0

d4k k−2m(β0 ln k2)N ∼ βN
0 =

∞∫

0

dt tNe−(m−2)t ∼
(

β0

m− 2

)N

N !. (13)

Borel summation of a sequence of such diagrams gives singularities at the points

z =
m− 2

β0

, m = 3, 4, 5, . . . . (14)

The constant β0 is the first nonvanishing expansion coefficient of the Gell-Mann–Low func-
tion (Sec. 2), and with consideration of the sign relationships (S{ϕc} < 0, β0 > 0) ’t Hooft
arrived at the picture of singularities for ϕ4 theory shown in Fig. 3,a.

It is not difficult to see that ’t Hooft’s arguments regarding renormalons leave some
fundamental questions unanswered:

Why can significance be attached to individual sequences of diagrams, which make up
an infinitesimal fraction of their total number when N →∞?

How do we know that the renormalons have not already been taken into account in the
instanton contribution (5)?

However, the general setting the question on the possible contributions of a noninstanton
nature to the asymptotics of the expansion coefficients has a sense: it uncovers a gap in
the mathematical foundation of the Lipatov approach. Indeed, let the function f(x) have
a sharp maximum at the point x0 and a slow tail at large values of x (Fig. 4,), so that
the contributions to the integral

∫
f(x) dx from the vicinity of the maximum and from the

tail region are comparable. An investigation of the integral for a saddle point discloses a
maximum at x0 and (provided it is sufficiently sharp) the formal applicability of the saddle-
point method; however, a calculation of the integral in the saddle-point approximation will
be erroneous, since the contribution of the tail will be lost. If such tails are present in the
integral (3), the Lipatov technique can be incorrect. 4

The essential lack of nonsaddle-point methods for calculating functional integrals makes
it impossible to straightforwardly investigate the contribution of possible tails. But are
there constructive arguments pointing to their existence? In principle, such arguments ex-
ist, but they have a fairly intuitive and ambiguous character and do not hold up to criticism
when they are closely examined (Sec. 2). As a result, the conception of renormalons has
been in a dialectic equilibrium, i.e., it has not been proved or refuted. This uncertainty
has caused the interest in high orders of perturbation theory to drop sharply and Lipatov’s

3 In quantum electrodynamics and QCD a polarization loop gives the factor k2 ln k2, and a photon
(gluon) propagator gives 1/k2; in four-dimensional ϕ4 theory a closed loop corresponds to ln k2, and an
interaction line corresponds to a constant. In all cases a chain of N “bubbles” corresponds to (ln k2)N .

4 The validity of the saddle-point method can be substantiated for convergent finite-multiplicity integrals
of functions exp[λF (x)] in the limit λ → ∞ (Ref. [31]). The integral (3) can be brought into the form
indicated, but, generally speaking, it contains both ultraviolet divergences and divergences associated with
an infinite number of integrations. The ratio of two integrals of type (1) must be finite (after the appropriate
renormalizations), but each of them taken individually can be divergent.
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Figure 3: a) Picture of singularities for ϕ4 theory given by ’t Hooft [15]. b) Analyticity
region according to the results of the present work.
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Figure 4: Example of a function for which the saddle-point method is formally applicable,
but gives a wrong result.

program [1] to remain uncompleted. For example, a preliminary result for quantum elec-
trodynamics was obtained back in 1978 [9], but the parameters b and c in the asymptotics
IN = caNΓ(N/2 + b) have not yet been calculated. Moreover, the first result for QCD
appeared in 1991 (Ref. [10]) and was recently revised [11], but it is still unsatisfactory
(Sec. 4), although the foundation for such calculations was completely ready in 1980 [5, 6].
Finally, the attempts to reconstruct the Gell-Mann–Low function have been restricted to
ϕ4 theory [33, 34, 35].

A reawakening of interest in asymptotic estimates has recently been observed, but it
has been confined almost exclusively to the renormalon doctrine [21]–[30]. In particular,
it is generally accepted (see Zakharov’s review [21]) that renormalons determine the per-
turbation asymptotics in QCD. However, the work within the renormalon approach has
already raised some doubts: the summation of larger sequences of diagrams leads to dra-
matic renormalization of the renormalon contribution and renders the common coefficient
in front of them totally indefinite [30]; in fact, it is impossible to state that it does not van-
ish. On the other hand, the use of the Lipatov technique has provided significant progress
in the theory of disordered systems [36] and in the theory of turbulence [37].

This paper presents a detailed discussion of the existing arguments in favor of renor-
malons, which are shown to be unsound (Sec. 2). The analytic properties of Borel trans-
forms are investigated in the example of ϕ4 theory (Sec. 3), and their analyticity in a
complex plane with a cut from the first instanton singularity to infinity is demonstrated

8



(Fig. 3,b). It rules out the existence of the renormalon singularities indicated by ’t Hooft
(Fig. 3,a) and demonstrates the nonconstructiveness of the conception of renormalons as a
whole.

An hypothesis that Borel transforms have the analytic properties indicated was ad-
vanced by Le Guillou and Zinn-Justin [38] and underlies one of the most efficient methods
for summing perturbation series, which is based on the use of conformal transformation.
The results obtained below provide the mathematical foundation of this method.

2. PROS AND CONS

Let us discuss the arguments in the literature that point to the existence of noninstanton
contributions in the integral (3).

1. There have been numerous semi-intuitive assertions which reduce to the notion that
instantons do not exhaust all of physics. This thesis is correct as long as it is understood
correctly, but in the present case it is not relevant.

Historically, instantons first appeared when the saddle-point approximation was em-
ployed in the original integral (1). It was substantiated only in a narrow region of parame-
ters, and thus instantons did not, in fact, exhaust all of physics. In the Lipatov technique
the situation changed, because the saddle-point approximation is used not in the integral
(1), but in the expression (3) for the expansion coefficients. Since only large values of
N are considered, only a limited role is assigned to instantons from the onset; however,
the saddle-point method is now always applicable, 5 and there is a basis to assume that
everything is determined by instantons.

Let us illustrate the foregoing statements in the example of the Schrödinger equation
with a random potential V (x):

[p̂2/2m + V (x)]Ψ(x) = EΨ(x). (15)

At large negative values of E its eigenfunctions (Fig. 5) are localized on the infrequent
fluctuations of the random potential (a and b), at large positive values of E they are similar
to plane waves (d and e), and in the vicinity of the bare spectrum edge at E = 0 they
have a highly broken, fractal character (c). The problem of investigating Eq. (15) can be
reformulated in the language of an effective field theory, viz., ϕ4 theory with the “incorrect”
sign for g (Refs. [36] and [39]). In this case the typical wave functions of localized states
are described by instantons. The changes in the situation observed as E increases can be
described in the following manner in terms of instantons: at first instantons have a small
radius and a sparse distribution, i.e., they form an ideal gas (a); then the radius of the
instantons increases, and their density rises, i.e., interactions between them appear (b);

5 Of course, instantons exist only in a part of the region of parameters, but this is not a restriction in
the Lipatov technique: the values of a, b, and c in the asymptotics (5) are calculated exactly, and they
allow analytic continuation as functions of the physical parameters.
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Figure 5: On the left — density of states ν(E) in the presence (solid curve) and absence
(dashed curve) of a random potential. On the right — schematic representations of the
eigenfunctions of Eq. (15).
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then condensation of the instantons takes place (c), and an instanton crystal forms (d and
e). Only the case in Fig. 5,a corresponds to applicability of the saddle-point method in an
integral of the type (1), and thus the standard instanton approximation is very poor.

Let us examine this situation from the standpoint of perturbation theory with respect
to the random potential V (x). An ideal instanton crystal (e) corresponds to a plane wave,
i.e., the zeroth order of perturbation theory. In a nonideal crystal (d) the higher orders
have an increased role; in the vicinity of the bare spectrum edge (c) all the diagrams are of
the same order of magnitude, so that the high and low orders of perturbation theory are
equally significant. In the region of localized states (a and b) the dominant role shifts to
the high orders: these states are not manifested in any finite order of perturbation theory,
and discarding the low-order contributions does not influence their properties in any way.
We see that Lipatov’s conception (high orders are determined by instantons) fits excellently
into the existing physical picture.

Thus, the status of instantons in the integral (1) and the integral (3) differs significantly.
In our opinion, this accounts for the position taken by ’t Hooft, since he is a classic on
instantons [40] specifically in the original integral (1).

2. Relationship to the logarithmic situation [15]. Renormalons exist only in
renormalizable theories, but not in super-renormalizable theories. If a theory is super-
renormalizable, an upper bound of the type aNgN can be obtained for the contribution of
an individual diagram, and the appearance of the factor N ! in the asymptotics (5) can be
associated only with a factorially large number of diagrams. Renormalons and, thus, a new
mechanism for the appearance of factorial contributions appear in renormalizable theories.
It can be expected that this mechanism is associated with the formation of the tails in the
integral (3) and is not taken into account in the Lipatov technique.

In this argument everything except the last conclusion is correct. We can illustrate this
in the case of ϕ4 theory, which is renormalizable for d = 4 and super-renormalizable for
d < 4. Among the large set of integrations concealed in the symbol Dϕ in the integral (3),
we can single out one for which the limit d → 4 is associated with qualitative changes: it
is the integration over the instanton radius R (Fig. 6). For d significantly smaller than 4
(for example, d = 3), the integrand exp(−S{ϕ}) has a sharp maximum as a function of R
and allows saddle-point integration; when d = 4− ε the maximum becomes gently sloping,
and when d = 4 the instanton action S{ϕc} does not depend on R at all. In the latter
case the integral diverges, leading to the logarithmic situation. We see (see the curve for
d = 4− ε in Fig. 6) that the “activation” of renormalon contributions is, in fact, related to
the appearance of slow tails in the integral (3), but these tails are taken into account in
the Lipatov technique [36].

One can be puzzled by a following question. If the Lipatov technique is based on a
saddle-point method, then how can it cover the definitely nonsaddle-point situation for
d = 4 − ε? The fact is that the saddle point in a functional integral practically never
reduces to a simple maximum achieved at a single point: the maximum is degenerate
in a certain space of finite dimensionality. Accordingly, a finite number of integrations
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Figure 6: Dependence of the integrand (1) on the instanton radius in d-dimensional ϕ4

theory.
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should be performed exactly, rather than in the saddle-point approximation. However,
if the integration is performed exactly over a certain variable (for example, R), it is of
no significance whether the degeneracy is exact (d = 4) or approximate (d = 4 − ε).
Nevertheless, in the latter case technical difficulties arise, and the corresponding methods
(constrained instantons [41, 42]) have been poorly developed hitherto [36].

It is thus clear that even in cases where slow tails actually appear in the integral (3), the
Lipatov procedure is sufficiently flexible and contains broad possibilities for dealing with
them.

3. The limit n → ∞. There is an opinion that the significance of renormalon contri-
butions can easily be proved by treating the n-component ϕ4 theory in the limit n → ∞
(and the analogous models in QCD and electrodynamics) [16]: the factor n corresponds to
a closed loop, and renormalon graphs containing the maximum possible number of loops
are singled out by the large parameter n. Although diagrams of the same order, but with
a smaller number of loops, can make comparable contributions at large N due to the com-
binatorial factors, they have a slower dependence on n; therefore, the renormalons cannot
be cancelled identically.

This argument is valid in any finite order of 1/n. However, a detailed investigation of
the structure of the 1/n-expansion [18, 19] reveals the presence of numerous cancellations,
and although the situation cannot be totally elucidated, the question is not resolved on the
level of simple arguments of the type indicated.

It is not difficult to identify the crux of the problem here. As an example, let us consider
the self-energy Σ(p,m) of ϕ4 theory; it is clear from a diagrammatic analysis for m = 0 and
values of the momentum p close to the ultraviolet cutoff Λ that the (N + 1)th expansion
coefficient for Σ(p, 0)− Σ(0, 0) has the form of a polynomial in n

p2{AN(N)nN + AN−1(N)nN−1 + . . . + A1(N)n + A0(N)}, (16)

in which the coefficient AN(N) is specified by renormalon graphs:

AN(N) = const ·
(
− 1

16π2

)N

N !. (17)

If it is assumed that the renormalon graphs are contained in the instanton contribution, the
expression (16) should transform into the Lipatov asymptotics at large N [see Eq. (130)
in Ref. [43] for M = 1 and p ≈ Λ]:

p2αβnN (n+6)/2
(
− 1

8π2

)N

N !
[
Γ

(
n + 2

2

)]−1 ∞∫

0

dy y(n+5)/3K1(y)2, (18)

where α, β ∼ 1, and K1(x) is the McDonald function. It is easily seen that an equal-
ity between (16) and (18) is impossible when n → ∞. This is a manifestation of the
“noncancelability” of renormalons.
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However, the usual condition for applicability of the Lipatov technique, N À 1 at large
n is, generally speaking, replaced by a more rigid condition, for example, N À n, and n
then has a bound of the type

n <∼ n0(N), (19)

which precludes going to the limit n → ∞. If it is taken into account that the Lipatov
asymptotics has limited accuracy (∼1/N in relative units), the correct formulation of the
question is as follows. Can we construct an interpolation polynomial of type (16) with the
high-order coefficient (17) which would approximate the function (18) within an assigned
accuracy in the interval 0 ≤ n ≤ n0(N), where n0(N) → ∞ as N → ∞? The answer to
this question is positive (see the Appendix); therefore, the assumption that the renormalon
graphs are contained in the instanton contribution does not lead to contradictions.

4. Relationship to a Landau pole [16, 19]. It is easy to see (Fig. 2,c) that the
summation of a sequence of renormalon diagrams corresponds to “dressing” the interaction.
The relationship between the renormalized charge g and the bare charge g0 is then given
by the familiar expression [44, 45, 46]

g0 =
g

1− β0g ln(Λ2/m2)
, (20)

which contains a pole at the point

Λ2
c = m2e1/β0g. (21)

Under the literal understanding of this pole in the spirit of the early papers by Landau and
Pomeranchuk [17], a simple physical interpretation can be given to renormalon singularities
(Refs. [16] and [19]). 6

The dependence of the perturbation series on the cutoff parameter Λ has the structure

c−1Λ
2 + c0 ln Λ2 + c1Λ

−2 + c2Λ
−4 + . . . + cnΛ−2n + . . . . (22)

The first two terms are eliminated by a renormalization procedure, and the rest terms,
in principle, remain, but vanish in the limit Λ →∞. Because of the pole in (20), values of
Λ greater than Λc are inaccessible in principle, and unremovable uncertainties of the type

Λ−2n
c = m2e−n/β0g (23)

appear in the theory. Similar uncertainties are generated by renormalon singularities,
whose existence on the positive semiaxis leads to ambiguity in the choice of the integration
contour in the Borel integral (6). The contour can be drawn to the right or the left of the
nth singularity (Fig. 7), producing an uncertainty in reconstructing the function from its

6 It is assumed below that β0 > 0. For asymptotically free theories, in which β0 < 0, similar arguments
are valid in regard to so-called infrared renormalons. The latter are obtained from integrals of the type
(13) with m = 1, 0,−1,−2, . . . in the region of small momenta.
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Figure 7: Ambiguity of the choice of the integration path in the Borel integral (6) in the
presence of renormalon singularities.

Borel transform:
δF (g) ∼

∮

z≈zn

dz e−z/gB(z) ∼ e−zn/g, (24)

which, with consideration of the equality zn = n/β0 coincides with (23).
Of course, the literal interpretation of the Landau pole seems archaic, but after some

modification of the argument presented, a real meaning can be assigned to it. It is well
known [46], that the dependence of the charge g on the distance scale Λ−1 is given by the
equation

dg

d ln Λ2
= β(g) = β0g

2 + β1g
3 + . . . , (25)

whose solution depends drastically on the behavior of the Gell-Mann–Low function β(g).
The pole in (20) is eliminated, if β(g) changes sign or behaves as gα with α < 1 at large
g. If, on the other hand, β(g) is positive and increases as gα with α > 1 when g → ∞,
the pole is preserved, and the theory is internally inconsistent because it is impossible to
determine g(Λ) for all Λ (Ref. [46]). In the latter case the position of the pole is given by
the equation

ln
Λ2

c

m2
=

∞∫

g

dx

β(x)
, (26)

which, for small values of g, leads to the result

Λ2
c = const ·m2e1/β0g, (27)
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which differs from (21) only by an insignificant constant factor. Thus, the existence of
renormalon singularities seems fairly convincing for internally inconsistent theories. Con-
versely, there is no reason for them in “good” theories. 7

Since the behavior of the function β(g) at g >∼ 1 is unknown, the presence or absence
of renormalon singularities is a matter of belief. We stress, however, the following point.
Factorial contributions of individual diagrams exist in all field theories in which the ex-
pansion of the β function (25) begins from the quadratic term: then the interaction on
the k−1 scale is described by a formula of the type (20) with the replacement of Λ by k,
whose expansion gives (β0 ln k2)N in the Nth order [see (13)]. 8 To resolve the question
of the internal inconsistency of a theory, one should know all the coefficients in the expan-
sion (25). Therefore, it would be incorrect to consider the formal existence of renormalon
contributions as an indication of the internal inconsistency of a theory.

3. ANALYTIC PROPERTIES OF THE BOREL TRANSFORMS OF ϕ4

THEORY

3.1. Expansion of the class of Borel transformations

For the ensuing treatment it is convenient to expand the class of Borel transformations,
setting

F (g) =

∞∫

0

dx e−xxb0−1B(gx),

B(g) =
∞∑

N=0

FN

Γ(N + b0)
gN (28)

with the arbitrary parameter b0 > 0, instead of (6) and (7). If B(g) and B̃(g) are the Borel
transforms corresponding to the parameters b0 and b1 (for definiteness, we set b1 > b0), it
is not difficult to derive the conversion formula:

B̃(g) =
1

Γ(b1 − b0)

∞∫

0

dx
xb1−b0−1

(1 + x)b1
B

(
g

1 + x

)
. (29)

7 In particular, the result (27) is valid when the expansion (25) is truncated at a finite number of terms,
provided the polynomial obtained is positive. On these grounds it is easy to draw the erroneous conclusion
that the high-order terms of the expansion of the β function are insignificant. Parisi’s arguments [16, 17]
regarding the momentum dependence of Borel transforms exactly follow this line of reasoning. In fact, the
character of the solution of Parisi’s equations [17] depends significantly on the behavior of β(g) at infinity.
In particular, they are easily solved for the model function β(g) = β0g

2/(1 + λg) with λ À 1 and lead to
a result which differs qualitatively from its one-loop analog.

8 The concrete sequences of the renormalon diagrams can differ somewhat in different theories. For
example, in ϕ4 theory the significant diagrams do not reduce to chains of “bubbles” (Fig. 2,c), but form a
so-called parquet [48].
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We define the analyticity region of B(g) by constructing the so-called Mittag–Leffler star
[30], i.e., by drawing cuts from all singular points to infinity along rays drawn through
these points from the origin of coordinates. If g lies in the analyticity region of B(g), the
integration path in (29) does not pass through its singularities and B̃(g) is also analytic.
If gc is a singular point of B(g), the integration path in (29) for g = gc unavoidably
passes through gc, generating a singularity in B̃(g). For the interesting case of power-law
singularities we have the correspondence rules

B(g) = AΓ(−β)

(
gc − g

gc

)
→ B̃(g) = AΓ(−β − b1 + b0)

(
gc − g

gc

)β+b1−b0

(30)

for noninteger β + b1 − b0 and

B(g) = AΓ(−β)

(
gc − g

gc

)β

→ B̃(g) = A
(−1)n+1

n!

(
gc − g

gc

)n

ln

(
gc − g

gc

)
, (31)

if β + b1 − b0 = n is an integer.
We see that the analyticity region for all the Borel transforms is identical and that it is

sufficient to establish it for any fixed b0. The choice b0 = 1/2 is convenient for investigating
functional integrals, since a simple result is obtained in that case for the Borel transform
of an exponential function:

F (g) = g−g → B(g) =
cos(2

√
g)√

π
=

1

2
√

π
{exp(2i

√
g + c.c.}, (32)

which preserves its exponential form. This permits writing an explicit expression for the
Borel transform of the functional integral (1):

BI(g) =
1

2
√

π

∫
Dϕ exp(−S0{ϕ})

[
exp

(
2i

√
gSint{ϕ}

)
+ c.c.

]
. (33)

The integrand is a regular function, and the analyticity region of BI(g) is determined by
the condition for convergence of the integral.

3.2. Analyticity outside the negative semiaxis

For simplicity, let us consider scalar ϕ4 theory. Generalization to the n-component case
is trivial and reduces to only some complication of the notation. We assume that m2 > 0,
bearing in mind the subsequent analytic continuation to arbitrary complex m2.

The integral (33) for ϕ4 theory is defined well for positive values of g, since its conver-
gence is determined by an exponential function of −S0{ϕ} and is obvious after the Fourier
transformation of ϕ(x):

S0{ϕ} =
1

2

∫
ddx {(∇ϕ)2 + m2ϕ2} =

1

2

∑

k

(k2 + m2)|ϕk|2. (34)
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For the analytic continuation to complex g we turn the integration path in (33), setting

g = g̃eiΨ, ϕ = ϕ̃e−iΨ/4, (35)

where g̃ and ϕ̃ are real, and g̃ > 0. Then the integral in (33) takes the form

∫
Dϕ̃ exp

(
−S0{ϕ̃}e−iΨ/2

) [
exp

(
2i

√
g̃Sint{ϕ̃}

)
+ c.c.

]
(36)

and converges for −π < Ψ < π. Thus, the Borel transform is analytic outside the negative
semiaxis.

3.3. Analyticity within a circle

We utilize the formal technique used in Refs. [3] and [41] and introduce the function

R{ϕ}) =
S0{ϕ}2

4Sint{ϕ} . (37)

Then (33) is rewritten in the form

BI(g) =
1

2
√

π

∫
Dϕ exp


−


1− i

(
g

R{ϕ}

)1/2

 S0{ϕ}


 + c.c., (38)

and after the replacement of R{ϕ} by the constant R0, it is analytic within the circle
|g| < R0. Let us now suppose that

R{ϕ} ≥ R0 (39)

for all ϕ, i.e., R0 is the exact lower bound of R{ϕ}. Setting g = −|g|eiγ (−π ≤ γ ≤ π), we
have the inequality

|BI(g)| ≤ 1

2
√

π

∫
Dϕ



exp


−


1−

∣∣∣∣∣
g

R{ϕ}

∣∣∣∣∣
1/2

cos
γ

2


 S0{ϕ}


 + exp(−S0{ϕ})



 , (40)

which ensures convergence of the integral in (33) and, consequently, its analyticity within
the circle |g| < R0.

To find R0, we consider the variational problem of minimizing R{ϕ}. It yields the
equation

−∆ϕ(x) + m2ϕ(x)− Cϕ3(x) = 0. (41)

where

C =
S0{ϕ}

2Sint{ϕ} ,

which, after the replacement ϕ(x) → ϕ(x)/
√

C, transforms into the standard equation of
an instanton of ϕ4 theory. Using it, we can easily show that R0 = S{ϕc}, which establishes
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the required analyticity region (Fig. 3,b). Questions concerning the absence of instantons
in massive four-dimensional theory [47] are discussed in Sec. 3.5.

Apart from the integral (1), some other functional integrals containing products of the
type ϕ(x1)ϕ(x2) . . . ϕ(xM) in the preexponential factor are of interest. The presence of
such products does not influence the convergence, and all the proofs performed remain
unchanged.

3.4. Invariance relative to algebraic operations

As ’t Hooft pointed out [15], the singularities of Borel transforms are not shifted when
algebraic operations are performed on the original functions. This can easily be proved for
a modified definition of the Borel transform (10), which differs from (6) and (28), since

F (g) = F0 + F1g + F2g
2 + F3g

3 + . . . , B(z) = F0δ(z) +
F1

0!
+

F2

1!
z +

F3

2!
z2 + . . . (42)

and B(z) contains a δ-function singularity at zero. The transformation of (10) by means
of the replacement g → 1/z reduces to a Laplace transformation and allows inversion. It
can be used to express the Borel transform of the product F3(g) = F1(g)F2(g) in terms of
the known Borel transforms of the factors:

B3(z) =

z∫

0

dz′ B1(z
′)B2(z − z′). (43)

It can easily be seen that the δ-function singularity in B3(z) corresponds to the definition
(42) and that the singular points for finite z coincide with the singular points of B1(z) and
B2(z) (see the analogous reasoning in Sec. 3.1). In particular, the Borel transform gn is
the function zn−1/Γ(n), which is analytic for integer values of n, and multiplication of the
function by gn does not alter its analytic properties in the Borel plane.

If F2(z) = 1/F1(z), then

δ(z) =

z∫

0

dz′ B1(z
′)B2(z − z′) (44)

and the δ-function singularity on the left-hand side cancels out with the δ-function singu-
larities in B1(z) and B2(z). At finite values of z the right-hand side contains singularities
corresponding to singular points of B1(z) and B2(z), which are absent on the left-hand side
and, therefore, compensate one another. This is possible only if B2(z) has singularities at
the same points as B1(z).

The proof of the analogous statements for linear operations, viz., summation, differen-
tiation, integration, etc., is trivial.

The standard definition of the Borel transform (6) is obtained from (10) and (42) when
F0 = 0 after the replacement F (g) → gF (g). In this case the δ-function singularities
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disappear, and the remaining singularities are preserved at the same points due to the
insignificance of the multiplier g. The definition (6) corresponds to the definition (28) with
b0 = 1, and, by virtue of Sec. 3.1, the analysis performed can be extended to arbitrary b0.

Since all the quantities entering into the theory, viz. the Green’s functions, vertex parts,
etc., can be expressed in terms of functional integrals with identical analytic properties (see
the end of Sec. 3.3) using a finite number of algebraic operations, their singular points in
the Borel plane are the same as for the integral (1).

3.5. Renormalization procedure

The absence of ultraviolet divergences was implicitly assumed above. In ϕ4 theory
this is correct for d < 2. For 2 ≤ d ≤ 4 a continual theory without divergences can be
constructed by introducing counterterms into the Lagrangian [46, 50]. In the simple case
where only renormalization of the mass is required (2 ≤ d < 4) the corresponding term in
(4) is rewritten in the form

m2
0ϕ

2 = (m2 + ∆m2)ϕ2 = (m2 + Ag + Bg2 + Cg3 + . . .)ϕ2, (45)

where the coefficients A,B, C, . . . are chosen so as to cancel the divergences. When coun-
terterms are present, the analytic properties of integrals of the type (1) become more
complicated, since the coupling constant appears not only in the combination gϕ4, but also
in the form of gϕ2, g2ϕ2, etc. One of the directions of renormalon-related activity involved
specifically the introduction of additional terms into the Lagrangian and tracing the renor-
malon singularities appearing [16, 18, 19]. A question arises in regard to the cancellation of
singularities in the case when the coefficients in front of the additional terms are selected
so as to remove divergences, for which an unequivocal answer could not be obtained.

A simpler route is to explicitly introduce regularization and to use renormalization-
group equations. Here we have in mind the so-called cutoff scheme [51]: the vertex parts
are calculated perturbatively as functions of the bare charge g0 and the cutoff parameter
Λ, then scaling functions which depend only on g0 are obtained, and, finally, renormalized
vertices, which depend on the renormalized charge g, are constructed [50]. In this case the
explicit introduction of counterterms is not required, but all the details associated with
their presence are taken into account, since the fundamental possibility of eliminating the
divergences is essentially used to write the renormalization-group equations.

The simplest way of regularization consists of substituting ϕε(p̂)ϕ, where p̂ is the mo-
mentum operator, for the term (∇ϕ)2 in (4), which is brought into the form −ϕ∆ϕ = ϕp̂2ϕ.
If

ε(p) = ε(−p), ε(p) ≥ 0, (46)

then both the entire structure of the instanton calculations [49] and the proofs presented
above are preserved. The only change occurs in the equation of the instanton (41), which
is brought into the form

ε(p̂)ϕ(x) + m2ϕ(x)− ϕ3(x) = 0. (47)
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Figure 8: Dependence of the action S{ϕ} on the instanton radius R in four-dimensional
ϕ4 theory in the absence of regularization (solid curves) and for a finite cutoff parameter
Λ (dashed lines).

When the regularization
ε(p) = p2 + p6/Λ4 (48)

is employed, the dependence of the action S{ϕ} on the instanton radius R in four-dimensional
ϕ4 theory has the form shown in Fig. 8. 9 If Λ = ∞, there is degeneracy with respect to
the instanton radius in the massless theory [1], while there are no instantons in the massive
theory [49] because of the monotonic dependence of S{ϕ} on R. At finite values of Λ a
minimum appears on the plot of S{ϕ} versus R at m2 > 0 (the dashed curves in Fig. 8),
and instantons appear in the massive theory. Their action S{ϕc} determines the positions

9 This dependence can easily be obtained by describing an instanton by two parameters, viz., its radius
and amplitude, and performing a variational estimation of the action. In the theory of disordered systems
this corresponds to the optimal-fluctuation method [35].
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of the singularities in the Borel plane. For Λ →∞ and arbitrary m2 > 0 the value of S{ϕc}
tends to the instanton action of the massless theory, and the positions of the singularities
do not depend on m. 10

The renormalization-group equations (in the Callan–Symanzik form) are valid for the
vertices ΓL,N with N free tails and L two-line insertions [50]:

[
∂

∂ ln Λ2
+ β(g0)

∂

∂g0

+
(
L− N

2

)
η(g0)− Lη2(g0)

]
ΓL,N(g0, Λ) = 0. (49)

Writing out three such equations with different L and N , we can express the scaling func-
tions β(g0), η(g0), and η2(g0) in terms of the vertices ΓL,N(g0, Λ) using algebraic operations,
which do not shift the positions of the singularities in the Borel plane. In the limit Λ →∞,
where Eq. (49) is valid, the dependence of the scaling functions on Λ disappears [50], and
their singularities in the Borel plane correspond to the massless theory.

The Gell-Mann–Low function β(g0) defines the relationship between the renormalized
charge g and the bare charge g0. Let the functions F0 and F1 be such that F0(g0) ≡ F1(g).
The relationship between the corresponding Borel transforms B0 and B1 [in the sense of
the definition (10)] can easily be found for an infinitesimal charge transformation, g0 =
g + 2β(g)δΛ/Λ [see (25)]:

B1(z) = B0(z) +
2δΛ

Λ

z∫

0

dy [B0(y) + yB′
0(y)]Bβ(z − y), (50)

where Bβ(z) is the Borel transform of the function β(g)/g. Equation (50) is analogous
to Eq. (43); therefore, the analytic properties do not change in the course of the charge
transformation.

The vertices ΓL,N diverge as Λ → ∞, but they become finite after separation of the
divergent Z factors from them and the transition from the bare to the renormalized charge.
Since the Z factors are, in turn, expressed in terms of the vertices ΓL,N (Ref. [50]), the
renormalized vertices have the required analytic properties.

The dependence of the scaling functions on the renormalization scheme is given by the
following conversion formulas [51]:

β̃(q(g)) = β(g)
dq(q)

dg
,

η̃(q(g)) = η(g)− β(g)
d ln p(q)

dg
,

η̃2(q(g)) = η2(g)− β(g)
d ln p2(q)

dg
. (51)

10 For dimensionalities 2 ≤ d < 4 the influence of Λ on the properties of instantons is insignificant, and
the role of renormalizations reduces to the fact that the instanton equation contains the renormalized mass
[36]. The dependence of S{ϕc} on m is preserved in this case.
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The conversion functions q(g), p(g), and p2(g) for standard renormalization schemes (sub-
traction, cutoff etc.) are expressed in terms of the vertices ΓL,N . Therefore, the analytic
properties of the scaling functions are identical in all the schemes. In the general case the
analytic properties of the conversion functions require additional investigation.

4. CONCLUSION

The results in Sec. 3 rule out the existence of renormalon singularities in ϕ4 theory. If
the arguments in Sec. 2 regarding the relationship to a Landau pole are considered con-
vincing, ϕ4 theory cannot be internally inconsistent. The same conclusion can be drawn
on the basis of solid-state applications: a reasonable model of a disordered system reduces
exactly to ϕ4 theory [36, 39], and the internal inconsistency of ϕ4 theory would signify the
impossibility, in principle, of obtaining a mathematical description of this model. There-
fore, a revision of the results in Refs. [34] and [35], in which indications of the internal
inconsistency of ϕ4 theory were obtained on the basis of an approximate reconstruction of
the Gell-Mann–Low function, is urgently needed.

The results of Sec. 3 refer only to ϕ4 theory and cannot be extended directly to other
field theories; however, along with the qualitative arguments in Sec. 2, they demonstrate
the nonconstructiveness of the conception of renormalons as a whole. Therefore, it would
be of interest to generalize the method of proof used in Sec. 3 to other cases.

In quantum chromodynamics (QCD) the renormalon doctrine presently prevails [20]–
[30]. However, the specific details of QCD in this context have never been stressed. For
example, ’t Hooft [15], speaking about QCD, gives explanations within ϕ4 theory and quan-
tum electrodynamics. In recent publications [26, 30] the term “naive nonabelianization”
appeared, which essentially means neglecting the specific details of QCD. On the other
hand, in QCD there is a special reason for the belief in renormalons, which has a purely
phenomenological character. The analysis of experimental data leads to the conclusion
that the contribution of the high orders has a momentum dependence ∝1/q4 (Ref. [22]).
This dependence can easily be obtained from renormalon graphs, but, as is generally as-
sumed, it cannot be obtained within the instanton method. The latter is based on the
results in Refs. [10] and [11], according to which the instanton contribution is proportional
to 1/q18. However, it can easily be seen that a term ∝1/q4 appeared in Refs. [10] and
[11], but contained divergences which the authors found difficult to eliminate; 11 this term
was “transported” to the renormalon sector with the reasoning that it “contributes to the
renormalon singularity . . . rather than to the instanton one” (Ref. [10], p. 287). If there
are no renormalon singularities, this contribution was simply discarded; therefore, no real
calculation of the Lipatov asymptotics were made for QCD.

This work was stimulated by lengthy discussions with P. G. Sil’vestrov, whom we thank
for opposing the renormalon doctrine, his critical remarks, and general assistance in ac-
quaintance with the situation. We also thank B. L. Ioffe, L. N. Lipatov, and the participants

11 Such divergences also appear in ϕ4 theory, and a procedure for eliminating them is well known [36].
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in the seminars at the Institute of Physical Problems, the P. N. Lebedev Physics Institute,
the Institute of Theoretical and Experimental Physics, and the St. Petersburg Nuclear
Physics Institute for their interest in this work and useful discussions.

This work was carried out with financial support from the INTAS (Grant 96-0580) and
the Russian Foundation for Basic Research (Project 96-02-19527).

Appendix
Construction of interpolation polynomial

The polynomial of degree N which coincides with the function f(x) at the points
x0, x1, x2, . . . , xN , is defined by the Lagrange formula [53]:

PN(x) =
N∑

k=0

f(xk)

ψ′(xk)

ψ(x)

(x− xk)
, (A1)

ψ(x) = (x− x0)(x− x1)(x− x2) . . . (x− xN), (A2)

and the interpolation error is given by the expression

RN(x) = f(x)− PN(x) =
f (N+1)(ξ)

(N + 1)!
ψ(x), (A3)

where ξ belongs to the interval (x0, xN).
The function (18), which is of interest to us, behaves as qn at n<∼N with slowly varying

q, so that ln q ∼ ln N . Neglecting these slow variations and omitting the common multiplier
in (16) and (18), we have

f(x) = qx, AN ∼ 1

6NN3
. (A4)

Taking into account that |ψ(x)| ≤ ∆N+1 in the interval 0 ≤ x ≤ ∆, we obtain

|RN(x)| ≤ (ln q)N+1q∆

(N + 1)!
∆N+1, (A5)

and the interpolation error is small for

∆ <∼N/ ln N. (A6)

To investigate the dependence of the coefficient AN on the positions of the points xk, we
set ψ(x) = Re ψ(x + i0), and calculating ln ψ(x + i0) using the Euler–MacLaurin formula,
for ψ(x) we obtain the expression

ψ(x) = F (x) sin G(x). (A7)

In particular, for the power-law arrangement of points

xk = (k/N)α∆, k = 0, 1, . . . , N, (A8)
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at α À 1 we have

F (x) = (−1)N
√

x(∆− x) exp
{
N

[
α(x/∆)1/α + ln ∆− α

]}
,

G(x) = πN(x/∆)1/α. (A9)

For a high-order coefficient of the polynomial (A.1) we obtain

AN =
N∑

k=0

f(xk)

ψ′(xk)
∼ exp{(α− ln ∆)N} (A10)

(the sum is determined by the term with k = 1), and for α ∼ ln N the coefficient AN

can be factorially small or factorially large, depending on the relationship between α and
ln ∆, so that the required value of (A4) falls in the range of variation. Thus, the required
polynomial (16) exists in the interval 0 ≤ n ≤ n0, where n0 ∼ N/ ln N .
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[4] A. P. Bukhvostov and L. N. Lipatov, Zh. Éksp. Teor. Fiz. 73, 1658 (1977) [Sov. Phys.
JETP 46, 871 (1977)].

[5] E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 71, 93 (1977); L. N. Lipatov, A.
P. Bukhvostov, and E. I. Malkov, Phys. Rev. D 19, 2974 (1979).

[6] G. Parisi, Phys. Lett. B 66, 382 (1977).

[7] Large Order Behavior of Perturbation Theory, J. C. Le Guillou and J. Zinn-Justin
(Eds.), Amsterdam (1990).

[8] C. Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 16, 996 (1977); R. Balian, C.
Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 17, 1041 (1978).

[9] E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76, 210 (1978).

[10] I. I. Balitsky, Phys. Lett. B 273, 282 (1991).

[11] S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 463, 489 (1996).

[12] B. Lautrup, Phys. Lett. B 69, 109 (1977).

[13] S. Chadha and P. Olesen, Phys. Lett. B 72, 87 (1977).

25



[14] P. Olesen, Phys. Lett. B 73, 327 (1977).

[15] G. ’t Hooft, in The Whys of Subnuclear Physics: Proceedings of the 1977 International
School of Subnuclear Physics (Erice, Trapani, Sicily, 1977), A. Zichichi (Ed.), Plenum
Press, New York (1979).

[16] G. Parisi, Phys. Lett. B 76, 65 (1978); Nucl. Phys. B 150, 163 (1979).

[17] G. Parisi, Phys. Rep. 49, 215 (1979).

[18] F. David, Nucl. Phys. B 209, 433 (1982); 234, 237 (1984); 263, 637 (1986).

[19] M. C. Bergere and F. David, Phys. Lett. B 135, 412 (1984).

[20] A. H. Mueller, Nucl. Phys. B 250, 327 (1985).

[21] G. B. West, Phys. Rev. Lett. 67, 1388 (1991).

[22] V. I. Zakharov, Nucl. Phys. B 385, 452 (1992).

[23] L. S. Brown and L. J. Yaffe, Phys. Rev. D 45, R398 (1992); L. S. Brown, L. J. Yaffe,
and C. Zhai, Phys. Rev. D 46, 4712 (1992).

[24] G. Grunberg, Phys. Lett. B 304, 183 (1993).

[25] A. H. Mueller, Phys. Lett. B 308, 355 (1993).

[26] M. Beneke et al., Phys. Lett. B 307, 154 (1993); 348, 513 (1995); Nucl. Phys. B 452,
563 (1995); 472, 529 (1996); Phys. Rev. D 52, 3929 (1995).

[27] D. J. Broadhurst, Z. Phys. C 58, 339 (1993).

[28] A. I. Vainstein and V. I. Zakharov, Phys. Rev. Lett. 73, 1207 (1994); Phys. Rev. D
54, 4039 (1996).

[29] C. N. Lovett-Turner and C. V. Maxwell, Nucl. Phys. B 432, 147 (1994).

[30] S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 507, 379 (1997).

[31] G. H. Hardy, Divergent Series, Clarendon Press, Oxford (1949) [Russ. transl., IL,
Moscow (1951)].

[32] Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of
Functions of Complex Variables [in Russian], Nauka, Moscow (1976).
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[39] M. V. Sadovskĭı, Usp. Fiz. Nauk 133, 223 (1981) [Sov. Phys. Usp. 24, 96 (1981)].

[40] G. ’t Hooft, Phys. Rev. D 14, 3433 (1976).

[41] Y. Frishman, Phys. Rev. D 19, 540 (1979).

[42] I. Affleck, Nucl. Phys. B 191, 429 (1981).
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