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1.

 

 Numerous examples given in [1] essentially boil
down to the following. If we know the first few terms of
the diverging series

(1)

and the asymptotic form 

 

W

 

N

 

 for 

 

N

 

  

 

∞

 

, the asymp-
totic form of the sum 

 

W

 

(

 

g

 

) can be varied over a wide
range in the strong coupling limit by varying the values
of the unknown intermediate coefficients. It was con-
cluded that it is not possible in principle to reconstruct
the asymptotic form of 

 

W

 

(

 

g

 

) on the basis of this infor-
mation.

In fact, there is no need to consider so many exam-
ples since a more stringent statement is made in [3]: “a
function with a predetermined behavior at infinity can
be constructed on the basis of a finite number of coeffi-
cients and their asymptotic forms.” The algorithm for
solving this problem is also given: “A comprehensive
formulation of the problem is possible when all values
of 

 

W

 

N

 

 are defined approximately; in this case, the sum

 

W

 

(

 

g

 

) can be reconstructed to a certain degree of accu-
racy. For this reason, a necessary stage in the solution
of the problem is the interpolation of the coefficient
function; naturally, this is possible only under the
assumption of its analyticity.”

These citations reveal the conceptual difference
between the approach used in [2–4] and the position of
the authors of [1]. If the information on the intermedi-
ate expansion coefficients is absent indeed, it is impos-
sible to reconstruct the asymptotic form of 

 

W

 

(

 

g

 

). How-
ever, the smoothness of the coefficient function makes
it possible to predict (using interpolation) the unknown

 

W

 

N

 

 to a certain degree of accuracy and to present them

in the form  + 

 

δ

 

W

 

N

 

, where  are exact coeffi-
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cients and 

 

δ

 

W

 

N

 

 is a small perturbation. By hypothesis,

coefficients  give a power behavior for large values
of 

 

g

 

 (

 

W

 

(

 

g

 

) = 

 

W

 

∞

 

g

 

α

 

 with 

 

W

 

∞

 

 ~ 1), while 

 

δ

 

W

 

N

 

 generate a
generally more rapidly increasing function 

 

g 

 

containing
a small parameter as a coefficient. Consequently, there
exists a domain of 

 

g 

 

in which the true asymptotic form
of 

 

W

 

∞

 

g

 

α

 

 can be reconstructed (naturally, with a certain
error in 

 

W

 

∞

 

 and 

 

α

 

); as the information on coefficients

 

W

 

N

 

 becomes more extensive, their indeterminacy 

 

δ

 

W

 

N

 

decreases, and the above-indicated domain of 

 

g

 

increases indefinitely. Consequently, there are no basic
limitations for determining the asymptotic behavior of

 

W

 

(

 

g

 

): the unattainability of the asymptotic form has the
same sense as unattainability of infinity. The strategy of
choosing the appropriate interval for processing was
discussed in detail in [3], but in a somewhat different
terminology (see below).

 

2.

 

 The analyticity of the coefficient function has
not been proved rigorously, but serious arguments
exist in favor of this property. According to Lipatov
[5], the coefficients of expansion of the functional
integral

(2)

in 

 

g

 

 can be written in the form

(3)

(

 

C 

 

is a contour in the complex plane embracing the
point 

 

g

 

 = 0), and analyticity in 

 

N t

 

akes place under the
condition of convergence of integrals. The integrals
converge at least in the steepest descent approximation,
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which is valid for large values of 

 

N

 

. Unfortunately, the
analyticity region cannot be determined in this way.

It follows from the representation of series (1) in the
form of a Sommerfeld-Watson integral that, in the case
of a power asymptotic form 

 

W

 

(

 

g

 

) 

 

∝

 

 

 

g

 

α

 

, the point 

 

N

 

 = 

 

α

 

is the extreme right singularity of the coefficient func-
tion in the complex plane of 

 

N 

 

[3, 5, 6]. Consequently,
the analyticity region can be controlled by the follow-
ing result: if 

 

α

 

 turns out to be smaller than 

 

N

 

0

 

, the coef-
ficient function is analytic for real Re

 

N

 

 > 

 

α

 

, and the
assumption concerning its smoothness of the real axis
for 

 

N ≥ N0, which is required for interpolation, is self-
consistent.

The analyticity of the coefficient function is explic-
itly violated in a number of examples presented in [1]
(see formulas (6) and (7)). Such perturbations cannot
appear as a result of a smooth interpolation and, hence,
their discussion is not significant.

Examples of type (9), in which the correction δWN

to the coefficients is an integral function, and the corre-
sponding dependence on g is exponential (the impossi-
bility of power dependence is proved by contradiction)
are more interesting. Such perturbations actually
appear as interpolation errors and are manifested in the
form of an exponential component in the coefficients
UN (see Fig. 10 in [3]; the definition of UN will be given
below). For large values of such errors, the results can-
not be interpreted at all with the help of a power law.
This forms the basis of “filtration” of such errors, which
is proposed in [3]: the interpolation method is chosen in
such a way as to ensure the minimum values of χ2 when
the power law is used. As a result, these errors can be
reduced to such an extent that they practically do not
affect the accuracy of the results.1

Remark 12 in [1] contains a reference to the prob-
lem of “ambiguity” of the analytic continuation from
integral points to the complex plane, which emerges
due to the fact that, generally speaking, the point N = ∞
is a singular point.2 However, there are theorems guar-
anteeing the uniqueness of the analytic continuation
under the condition that the singularity at N = ∞ is quite
weak (the rate of increase for |N |  ∞ is limited by a
certain exponential function); the standard interpola-
tion schemes automatically converge to this unique
function [7]. The singularity of the above coefficient

1  If the coefficient functions varies slowly on a scale of the order
of unity and the interpolation curve possesses the same property,
the amplitude of such error is found to be exponentially small.
Indeed, an exponential increase in g occurs only if the correction
to the coefficient function contains an oscillatory factor (–1)N =
eiπN (see Eqs. (9) and (10) in [1]), which is a “high-frequency”
factor in this case; at the same time, higher-order Fourier harmon-
ics are contained in a smooth function with an exponentially
small weight.

2 The conventional uniqueness theory refers to the analytic contin-
uation from a set of points containing an extreme point in the reg-
ularity region.

function in actual field problems is very weak: a regular
expansion in 1/N is valid, but has zero convergence
radius [8]; this is apparently sufficient for proving the
uniqueness.

3. I agree with the authors of [1] that, in the case of
insufficient information, any method gives incorrect
results for the asymptotic form if the transition to it is
strongly protracted, since processing is always carried
out on a certain finite interval of g values (although this
is not always obvious).

The algorithm used in [2–4] is based on the fact that,
in the case of a power asymptotic form (W(g) ∝  gα), the
coefficients UN of the converging series obtained as a
result of a certain procedure inverting the order of sum-
mation of series (1) behave as Nα – 1 in the region of
large N. It can be proved that the knowledge of expan-
sion coefficients with N ≤ Nmax determines the sum of
the series for g � Nmax. The typical working interval
20 ≤ N ≤ 40 used in [3] effectively corresponds to the
region 20 � g � 40. However, I never believed that the
asymptotic form had already stabilized in this region
since the processing was carried out not according to
the purely power law Agα, but taking into account the
first correction of the form A'gα' to this law. This correc-
tion was poorly reproduced and depended strongly on
the specific procedure, but the main asymptotic form
turned out to be very stable. Consequently, the results
obtained in [3] effectively correspond to the range of
rather high values of g. The normalization of charge
used in [3] was chosen from the condition that the near-
est singularity in a Borel’s plane lies at a unit distance
from the origin. In this case, the characteristic scale
over which the variation of the β function occurs is
found to be of the order of unity, and there are all
grounds to state that the working interval lies in the
asymptotic region.

In [9], the expansion coefficients with N ≤ 5 were
used, and interpolation of the coefficient function was
not carried out. The information on the intermediate
expansion coefficients was not used, and the concepts
developed in [1] are applicable to [9] in full volume.
The bundle of curves presented in Fig. 9 [9] and dem-
onstrating a 10% accuracy for g < 50 should not be
overestimated; these curves were obtained for a certain
fixed summation procedure chosen in the course of
“guessing” the asymptotic form. If another asymptotic
form is used, the summation procedure will change,
leading to considerable changes in the results in the
range of large values of g. In my method, coefficients
UN display a clearly manifested intermediate asymp-
totic form UN ~ N (see Subsection 8.3 in [3]), which
corresponds exactly to the result obtained in [9]. If the
values of WN with N ≤ 10 are used for reconstructing the
asymptotic form, my method leads to the results com-
pletely identical to those in [9].
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In [6], the interpolation of the coefficient function
was carried out formally, but index α was determined
from the position of the extreme right singularity
obtained as a result of construction of Padé approxi-
mants. If only the known expansion coefficients are
used for constructing such approximants, the order of
approximation turns out to be quite low and corre-
sponds effectively to an analysis in the range of com-
paratively small values of g. In my opinion, it is more
reasonable to choose first a certain bundle of interpola-
tion curves and construct high-order approximants for
each curve, using the spread in the results for different
curves as a measure of their indeterminacy. Such an
approach makes it possible to reproduce the results
obtained in [3], although with a considerably larger
error.

In my opinion, the above arguments clearly explain
the discrepancy between the results obtained in [3] and
[6, 9]; additional discussion can be found in [3], where
the special Subsection 8.3 is devoted to this question. It
should be noted that the method of reconstructing the
asymptotic form proposed by Kazakov [9, 10] and
Kubyshin [6] are of considerable interest and deserve
special attention: the discrepancy in the results is not
due to drawbacks of these methods, but is associated
precisely with the above-mentioned conceptual differ-
ence in the approaches.

4. The authors of [1] question the validity of my
method of interpolation which was carried out on the
basis of the formula

(4)

by truncating the series and by choosing parameters AK

from a correspondence with L first coefficients WN; the
value of A1 and the parameters of the asymptotic form

 were assumed to be known. For small L, this
method is quite effective: in zero dimension, the inter-
polation error is of the order of 10–4 for L = 1 and of the
order of 10–9 for L = 5. For an anharmonic oscillator, the
error is of the order of 10–2 for L = 5 and of the order of
10–3 for L = 9. The interpolation error for the ϕ4 theory
is estimated at a few percent; this can be done by vary-
ing the interpolation scheme or on the basis of formula
(14) from [2].

I have never stated that the values of coefficients AK

obtained in this case are close to actual values.3 I also
admit that this algorithm may become unsatisfactory
upon an increase in L. Ideally, the method of interpola-
tion must be based on analytic properties of the coeffi-
cient function (see Section 6 in [8]) and possess a guar-
anteed convergence rate for L  ∞.

3 This is true only under certain constraints.
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5. Some remarks made by the authors of [1] lead to
confusion. For example, it is said in Section 3 that,
“introducing up to 50 PT coefficients in calculations,”
it is possible to obtain in the zero- dimensional case
“the value of α = –0.235 ± 0.025, which is close to the
exact value of α = –1/4 which is “not surprising” in
view of the large number of coefficients used. This
result was indeed obtained in [3] at the first stage of
testing (Section 4); however, in the next Section 5, the
use of only one (!) coefficient gives approximately the
same result α = –(0.218–0.271). This result refutes the
main statement made in [1] and stipulating a large num-
ber of expansion coefficients. The amount of informa-
tion required for reconstructing the asymptotic form
can be determined only empirically, but not on the basis
of general principles.

It is stated in Section 3 that the value c∞ = 1.048 was
obtained in [11] instead of 1.0603… for an anharmonic
oscillator, while in [3] this value was obtained with a
10% error. However, index α in [11] was assumed to be
equal to the exact value 1/3, while in [3] it was deter-
mined in the course of data processing. When the exact
value of α is used, the method developed in [3] gives
the value of c∞ with a relative error of 6 × 10–3. Such
details create an impression that the method developed
in [3] is not superior to many other methods and does
not lead to any progress. It should be emphasized in this
connection that this method was claimed from the very
outset not as record exact, but as a “rough” (robust)
method,; i.e., this method possesses an elevated stabil-
ity under unfavorable conditions (see subsection 2.3 in
[3]).4

It should be noted in conclusion that the results
obtained in [2-4] are quite natural: incomplete informa-
tion on the asymptotic form W(g) is extracted from
incomplete information on coefficients WN. My aim
was to reflect adequately the indeterminacy of the ini-
tial information in the indeterminacy of the results.
There are all grounds to believe that this aim was
reached: within the limits of indeterminacy, the results
are independent of the interpolation method. Index α in
the ϕ4 theory varies insignificantly as a result of a con-
siderable decrease in the amount of information [4];
this is an indication that the information is sufficient. In
addition, the results match the available analytic esti-
mates to form a general pattern (see Subsection 8.2 in
[2] and [4]).
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