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1. INTRODUCTION

In the previous paper [1] we have analyzed the wide-
spread variant of finite-size scaling based on the con-
cept of the minimal Lyapunov exponent for associated
quasi-1

 

D

 

 systems [2–5]. It was shown for the 2

 

D 

 

case,
that the minimal Lyapunov exponent does not obey
one-parameter scaling and the usual interpretation of
the raw numerical data is basically incorrect. Contrary
to the statements made in [3–5], the transition of the
Kosterlitz-Thouless type between exponential and
power-law localization is possible in 2

 

D

 

 systems [2].
The consideration in [1] is based on the study of the

second moments for a solution of the Cauchy problem
for the Schrödinger equation, and in this respect it is
close to [6, 7]. However, justification of approach and
interpretation of results are essentially different, and in
fact we disagree with most of statements made in [6, 7].
In what follows, the results for dimensions 

 

d

 

 > 2 are
presented.

Apart a clear demonstration of existence of the
Anderson transition for 

 

d

 

 > 2 (which has a certain for-
mal interest though contains no physical novelty), the
present approach leads to the conclusion that there is
possible “splitting” of the critical point. When the
amplitude of disorder 

 

W

 

 is changed, two critical points

 

W

 

c

 

 and 

 

W

 

c

 

0

 

 arise: exponential localization takes place
for 

 

W

 

 > 

 

W

 

c

 

0

 

 and the metallic phase exists for 

 

W

 

 < 

 

W

 

c

 

,
while the interval 

 

W

 

c

 

 < 

 

W

 

 < 

 

W

 

c

 

0

 

 corresponds to the
states with a power-law envelope and strong fluctua-
tions on the small length scales; such properties are

widely discussed for the states corresponding to the
critical point.

Such conclusion is supported by direct numerical
evidence but contradicts the accepted theoretical views
on the Anderson transition. The possibility to restore
the conventional picture still exists but requires a radi-
cal reinterpretation of the raw numerical data: one
should admit that the accepted values for critical disor-
der are strongly exaggerated and in fact the transition
occurs at essentially smaller disorder.

2. PROPERTIES OF A SOLUTION 
OF THE CAUCHY PROBLEM

We consider the algorithm of finite-size scaling
based on consideration of associated quasi-1

 

D

 

 systems:
for example, instead of an infinite 3

 

D

 

 system one
should consider a finite system of size 

 

L

 

 

 

×

 

 

 

L

 

 

 

×

 

 

 

L

 

z

 

, where

 

L

 

z

 

  

 

∞

 

. A solution of the Cauchy problem for the
quasi-1

 

D

 

 Schrödinger equation with the initial con-
ditions on the left end allows decomposition of the
form [1]

(1)

where 

 

γ

 

s

 

 are the Lyapunov exponents (

 

γ

 

1

 

 > 

 

γ

 

2

 

 > … >

 

γ

 

m

 

 > 0), 

 

n

 

 is the discrete longitudinal coordinate (in
units of the atomic space), 

 

r

 

⊥

 

 is the transverse coordi-
nate and 

 

A

 

s

 

(

 

n

 

, 

 

r

 

⊥

 

) are bounded functions. The Lyapunov
exponents 

 

γ

 

s

 

 exist due to Oceledec’s theorem [8] and

ψn r⊥( ) A1 n r⊥,( )e
γ 1n

=

+ A2 n r⊥,( )e
γ 2n

… Am n r⊥,( )e
γ mn

,+ +
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can be calculated by the transfer matrix method [2].
The minimal Lyapunov exponent 

 

γ

 

min

 

 

 

≡

 

 

 

γ

 

m

 

 can be used
to estimate the correlation length 

 

ξ

 

1

 

D

 

 of the quasi-1

 

D

 

system (

 

ξ

 

1

 

D

 

 ~ 1/

 

γ

 

min

 

) and introduce the scaling variable

 

g

 

 = 

 

ξ

 

1

 

D

 

/

 

L

 

, which increases with 

 

L

 

 in a phase with long-
range order and decreases in a phase with short-range
correlations [1, 2].

The mean value of 

 

〈ψ

 

n

 

(

 

r

 

⊥

 

)

 

〉

 

 does not have a system-
atic growth inside the allowed energy band [1], while its
second moment allows decomposition of the type (1)

(2)

with the same number of positive exponents 

 

β

 

s

 

. As it
was extensively discussed in [1], the exponents 

 

β

 

s

 

 pro-
vide a rigorous upper bound for 

 

γ

 

s

 

, 

 

β

 

s

 

 

 

≥

 

 2

 

γ

 

s

 

, while the
order of magnitude equality 

 

β

 

s

 

 ~ 

 

γ

 

s

 

 holds for a typical
physical situation. The latter estimate follows from the
relation 

 

b

 

s

 

 

 

�

 

 

 

a

 

s

 

 for the parameters 

 

a

 

s

 

 and 

 

b

 

s

 

 entering the
logarithmically normal distribution [1], which is con-
firmed by existing analytical results for weak [9] and
strong [10] disorder and different numerical investiga-
tions [11]. Consequently, the study of decomposition (2)
makes it possible to obtain qualitative information on
the spectrum of exponents 

 

γ

 

s

 

 and rigorous restrictions
on their behavior.

Consider 

 

d

 

-dimensional Anderson model describing
by the discrete Schrödinger equation

(3)

where we separated the longitudinal coordinate n; m is
a vector cite number in the transverse direction, and ei

are the unit vectors directed from the cite m to its near-
est neighbors in the plane n = const. Introducing the
pair correlators

(4)

one can obtain a closed system of the difference equa-
tions (see [1] for details)

(5)

ψn
2 r⊥( )〈 〉 B1 r⊥( )e

β1n
=

+ B2 r⊥( )e
β2n

… Bm r⊥( )e
βmn

,+ +

ψn 1+ m, ψn 1– m, ψn m ei+,

i

∑+ +

+ Vn m, ψn m, Eψn m, ,=

xm m ', n( ) ψn m, ψn m ',〈 〉 ,≡
ym m ', n( ) ψn m, ψn 1– m ',〈 〉 ,≡
zm m ', n( ) ψn 1– m, ψn m ',〈 〉 ,≡

xm m ', n 1+( ) W2δm m ', xm m ', n( )=

+ xm ei+ m ', e j+ n( ) xm m ', n 1–( )+
i j,
∑

+ ym ei+ m ', n( ) zm m ', e j+ n( ),
j

∑+
i

∑

where we accept that E = 0. The cite energies Vn, m are
considered to be statistically independent quantities
with the first two moments

(6)

The dependence of the solution on n is exponential,

(7)

and after the formal change of variables

(8)

we have, with tildes omitted,

(9)

The coefficients are m-independent and the solution is
exponential in m,

(10)

where allowed values of momentum p = (p1, p2, …,
pd − 1) are 2πs/L, s = 0, 1, …, L – 1 for each component
pi and correspond to the periodic boundary conditions
in the transverse direction,  = ψn, m . Using (10)
and excluding ym, l and zm, l from the first equation (9),
we come to the equation

(11)

describing the point defect in the (d –1)-dimensional
block of size Ld – 1 with the periodic boundary condi-

ym m ', n 1+( ) xm ei+ m ', n( ) zm m ', n( ),–
i

∑–=

zm m ', n 1+( ) xm m ', e j+ n( ) ym m ', n( ),–
j

∑–=

Vn m,〈 〉 0, Vn m, Vn ' m ',〈 〉 W2δnn 'δmm ' .= =

xm m ', n( ) xm m ', eβn, ym m ', n( ) ym m ', eβn,= =

zm m ', n( ) zm m ', eβn,=

xm m ', x̃m m ', m– x̃m l, ,   etc., ≡ ≡

eβ e β––( )xm l, W2δl 0, xm l,=

+ xm ei+ l e j ei–+,

i j,
∑ ym ei+ l, ei–

i

∑ zm l, e j+ ,
j

∑+ +

eβym l, xm ei+ l ei–,

i

∑– zm l, ,–=

eβzm l, xm l, e j+

j

∑– ym l, .–=

xm l, xle
ip m⋅ ,   etc.,=

ψn m, Lei+

xm ei e j+ + 2 βe
ip– ei⋅

cosh e
ip– ei e j+( )⋅

– 1–[ ]
i j,
∑

+ 2W2 βδm 0, xmsinh 4 βxm,sinh
2

=



 

940

  

      

  

      

  

      

   

tions  = 

 

x

 

m

 

. Equation (11) can be rewritten in the
form

(12)

and solved by a standard method [12, 13]. Introducing
the Green function 

 

G

 

m

 

, 

 

m

 

'

 

 and the spectrum �(k) of the
unperturbed system (V = 0)

(13)

(14)

(N is a total number of sites), one can obtain xm =
Gm, 0Vx0 from Eq. 12 and then the bounded states are
determined by the self-consistency equation 1 = VG0, 0 .
In the case of (11), this equation takes a form

(15)

(16)

where �0(k) is the ordinary tight-binding spectrum with

xm Lei+

Jm 'xm m '+

m '

∑ Vδm 0, xm+ Exm=

Eδm m ', Jm ' m––( )Gm ' m '',

m '

∑ δm m '', ,=

Gm m ', E( ) 1
N
---- eik m m '–( )⋅

E � k( )–
-----------------------,

k

∑=

� k( ) Jmeik m⋅

m

∑=

1 W2I β p,( ),=

I β p,( ) 2 βsinh

Ld 1–
----------------- 4 βsinh

2
�0

2 k( ) �0
2 k p–( )+ +[

k

∑=

– 2 β�0 k( )�0 k p–( ) ] 1– ,cosh

interaction of the nearest neighbors

(17)

Summation in (16) is performed over allowed values of
momentum k, which are 2πs/L, s = 0, 1, …, L – 1 for
each component. Equation (15) determines a value of β
for each of Ld – 1 allowed values of p, and the number of
positive exponents βs coincides with the number of pos-
itive exponents γs for the same problem.

For d = 2, the expression for I(β, p) takes a form

and corresponds to the results of [1]. The latter equality
can be obtained for odd L with the use of the Poisson
summation formula.

3. INVESTIGATION
OF THE SELF-CONSISTENCY EQUATION

Dependences of I(β, p) on β for fixed p are shown in
Fig. 1. Below we describe the main steps of investiga-
tion of Eqs. (15) and (16) leading to this picture.

Large b. In the localized phase, the spectrum of βs

does not extend to zero; for fixed β and L  ∞ one
can replace summation in (16) by integration over the
first Brillouin zone:

(18)

For large β, using a specific form of the spectrum �0(k),
one can obtain

. (19)

For β  ∞, all the bunch of curves for different p in
Fig. 1 shrinks in the single curve; it expands, when β
diminishes. The upper curve of the bunch corresponds
to p = 0, while the lower curve corresponds to p = G/2,
where G is a vector of the reciprocal lattice correspond-
ing to the corner of the Brillouin zone

(20)

Upper part of the bunch. Let us make a shift k 
k + p/2 in the integral (18). Then the behavior of curves

�0 k( ) 2 ki.cos
i 1=

d 1–

∑=

I β p,( ) βsinh
2 βcosh pcos–( )
-----------------------------------------=

× 1
L
--- 1

βcosh 2k p–( )cos–
--------------------------------------------------

k

∑ βL/2( )coth
2 βcosh pcos–( )
-----------------------------------------=

I β p,( ) 2 β dd 1– k

2π( )d 1–
------------------- 4 βsinh

2
�0

2 k( )+[∫sinh=

+ �0
2 k p–( ) 2 β�0 k( )�0 k p–( ) ] 1– .cosh–

I β p,( ) 1
2 βsinh
-----------------

�0 p( )

4 βsinh
2

------------------- …+ +=

G 2π 2π … 2π, , ,( ).=

1/L

βc3 βc2 βc1 β0

Ic

I(β, p)

I(β, p)

Ic

β0

Fig. 1. The integral I(β, p) as a function of β for fixed p in
the continual approximation. Insert shows the same depen-
dences, when discreteness of the sum in (16) is taken into
account.
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in the upper part of the bunch in Fig. 1 is determined by
the region of small k, where the integral has a form

(21)

with

(22)

If a vector p belongs to the first Brillouin zone (|pi | < π),
then the quadratic form in the denominator of (21) is
positively determined. The quantity ∆ is positive for
large β and has a form

(23)

for β  0. Under condition |�0(p/2)| ≤ 2 (which
always holds for d = 2), the quantity ∆ remains nonne-
gative for all β. If p is such that ||�0(p/2)| > 2 then ∆
changes a sign at some critical value βc .

For β ~ 1, all eigenvalues of the matrix aij  in (21) are
of the order of unity, and the integral has a singularity
∆(d – 3)/2 for small ∆ (with the logarithmic branching for
odd d). As a result, the integral becomes complex for
∆ < 0 and equation (15) has no solutions, while the cor-
responding curve disappears from Fig. 1. For d ≤ 3,
integral (21) diverges at ∆  0 and the corresponding
curve goes to infinity; for d > 3, integral (21) is finite,
but the discrete sum in (16) still diverges due to a term
with k = 0. For small β, the quadratic form in (21)
reduces to (k · v)2, where v is a velocity vector with the
components vi = –2sin(pi/2), and integral (21) diverges
as ∆–1/2 for all d.

It is clear from this analysis, that the curves in the
upper part of the bunch in Fig. 1, corresponding to suf-
ficiently small p (for which |�0(p/2)| > 2), one after
another go to infinity at points βc1, βc2, βc3, …, and only
the curves with |�0(p/2)| < 2 reach the point β = 0.

Lower part of the bunch. For large β, the lower
curve of the bunch corresponds to p = G/2 (see (20)),
when (18) takes a form

(24)

where N(�) is a density of states corresponding to the

I β p,( ) 2 β dd 1– k

2π( )d 1–
------------------- 1

∆ aijkik j

i j,
∑+

--------------------------------∫sinh=

∆ 4 βsinh
2

2 2 βcosh–[ ]�0
2 p/2( ),+=

aij 4 βcosh 4–( )�0
p
2
---⎝ ⎠

⎛ ⎞ pi/2( )δijcos=

+ 8 β
pi

2
----⎝ ⎠

⎛ ⎞ p j

2
-----⎝ ⎠

⎛ ⎞ .sinsincosh

∆ β2 4 �0
2 p/2( )–[ ]=

I β G
2
----,⎝ ⎠

⎛ ⎞ 2 β N �( ) �d

4 βsinh
2

2 2 βcosh+( )�
2+

---------------------------------------------------------------,∫sinh=

spectrum �0(k). For small β, one have

(25)

For d ≥ 4, the curve with p = G/2 remains lowermost
for all β. 1 

For d = 3, it is certainly not the case: the two-dimen-
sional tight-binding spectrum �0(k) provides the Van
Hove singularity N(�) ∝ ln(1/|� |) at the band center, and
I(β, G/2) diverges as ln(1/β) for β  0. As a result, the
curve with p = G/2 does not remain lowermost for
small β.2 

Small b. Generally, integral (18) is finite for β 
0, and has a following behavior for small β:

(26)

i.e. typical curves have a linear or parabolic form. To
prove this statement, let us substitute an explicit form of
�0(k) to (18) and set pi = π + 2qi . Then one have for
small β

(27)

where ai = cosqi , bi = sinqi and summation is implied
over repeated indices. Consider an integral over one of
the component of the vector k, e.g. kx . According
to (27) it has a structure

(28)

and can be performed by the contour integration. Set-
ting z = exp(ikx), we have

(29)

1 Tested numerically for d = 4, 5, 6.
2 Ignorance of this fact lead the authors of [6, 7] to zero value of

critical disorder for E = 0 and d = 3.

I β G
2
----,⎝ ⎠

⎛ ⎞ β
2
--- N �( ) �d

�
2 β2+

------------------∫ π
2
---N 0( ).≈=

I β p,( ) I 0 p,( ) A p( )β2, d– 3,=

I 0 p,( ) A p( )β, d– 4,≥⎩
⎨
⎧

=

I β p,( ) β
2
--- dd 1– k

2π( )d 1–
------------------- 2ai kicos( )2{∫=

+  β 
2
 1 a i k i cos ( ) 

2
 b i k i sin ( ) 

2
 –+  [ ] } 

1–
 ,

β kx kxcos α–( )2{d

π–

π

∫
+ β2 A kxcos

2
B kx C kxsin D+ +cos+( ) }

1–

β zd
z
----- z z 1–+

2
--------------- α–⎝ ⎠

⎛ ⎞
2

⎩
⎨
⎧

z 1=

∫

+ β2 A
z z 1–+( )2

4
---------------------- …+

⎭
⎬
⎫

1–

z zd
P4 z( )
-------------,

z 1=

∫=
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where 

 

P

 

4

 

(

 

z

 

) is a polynomial in 

 

z of degree four, which
has two roots (z1, z2) inside the circle |z | < 1, and two
roots (z3, z4) outside it. For β  0, two pairs of roots
merge, while a parametrization

(30)

is possible for small β, if |α| < 1. Substitution (30)
into (29) shows, that the result is finite for β  0 and
the correction O(β) vanishes. The rule for integration
of (28) can be written in the form

(31)

For |α| > 1, the first term in the braces in (28) does not
turn to zero, and the integrand can be expanded in β
immediately:

(32)

For d = 3, the condition |α| < 1 can be always provided,
performing integration over kx or over ky in the first
turn; so, the result (31) holds and its structure does not
change in the course of integration over remaining vari-
able, in correspondence with (26). It is possible to find
explicitly, for which value of p the integral I(β, p) is
minimal in the small β limit. Taking p = (π, π – 2q) and
integrating over kx according to the rule (31), one have

(33)

The integral has symmetry in respect to replacement q
by π/2 – q. It diverges for q  0 and q  π/2, while
at q = π/4 it takes a minimum value (d = 3)

(34)

z1 z0 aβ– bβ2, z2+ z0* a1β– b1β2,+= =

z3 z0 aβ bβ2, z4+ + z0* a1β b1β2+ += =

β
kxd

kxcos α–( )2 β2 f 2 kxcos kxsin,( )+
----------------------------------------------------------------------------------

π–

π

∫

=  
π

1 α2–
------------------- 1

f α 1 α2–,( )
--------------------------------- 1

f α 1 α2––,( )
------------------------------------+ O β2( ).+

β
kxd

kxcos α–( )2 β2 f 2 kxcos kxsin,( )+
----------------------------------------------------------------------------------

π–

π

∫

=  β 2πα
α2 1–( )3/2

------------------------ O β3( ).+

I 0 p,( ) 1
8π
------=

×
kyd

1 q kycos
2

cos
2

– 1 q kysin
2

sin
2

–
------------------------------------------------------------------------------------.

π–

π

∫

Ic I 0 p,( )
p

min
2

3π
------K

1
3
---⎝ ⎠

⎛ ⎞   =  0.3432 … ,= =  

where 

 

K

 

(

 

k

 

) is the complete elliptic integral. Consider-
ing 

 

p

 

 = (

 

π

 

 – 

 

q

 

x

 

, 

 

π

 

/2 – 

 

q

 

y

 

) with small 

 

q

 

x

 

 and 

 

q

 

y

 

, one can
be convinced that (34) realizes a local minimum over
both variables 

 

q

 

x

 

 and 

 

q

 

y

 

. Numerical investigation shows
that this minimum is in fact global.

For 

 

d

 

 

 

≥

 

 4, the modulus of 

 

α

 

 in (28) can be greater or
smaller than unity, depending on the values of other
variables; the result of integration is given by a super-
position of (31) and (32), so the term 

 

O

 

(

 

β

 

) is finite in
correspondence with (26). It can be demonstrated
explicitly, transforming (27) according to the scheme

(35)

where 

 

J

 

0

 

(

 

t

 

) is the Bessel function. We have omitted
sums in the brackets of (27): the first of them is
restricted from above by a quantity of the order of 

 

β

 

,
while the second is insignificant for small values 

 

q

 

i

 

,
which have a main interest. It can be tested, that 

 

I

 

(0, 

 

p

 

)
has a local minimum at 

 

q

 

 = 0 (i.e. for 

 

p

 

 = 

 

G

 

/2 in accor-
dance with the previous discussion) with the corre-
sponding value in it

(36)

Expansion of (35) in 

 

β

 

 shows finiteness of the linear
correction to 

 

I

 

c

 

, in accordance with (26).

 

3

 

 

 

Region of small 

 

b

 

 for finite 

 

L

 

.

 

 In the previous dis-
cussion we considered (16) for finite 

 

β

 

 in the limit

 

L

 

  

 

∞

 

, when summation can be replaced by integra-
tion (in fact, it is possible for 

 

β

 

 

 

�

 

 1/

 

L

 

). The situation is

 
3

 For  a  i   = 1, the logarithmic divergency arises for  d  = 5, so 
I

 
(

 
β

 
, 

 
G

 
/2) – 

 
I

 
(0, 

 
G

 
/2) ~ 

 
β

 
ln

 
β

 
.

I β p,( ) β
2
--- dd 1– k

2π( )d 1–
------------------- 1

2ai kicos( )2 β2+
---------------------------------------∫=

=  
β
2
--- �d

�
2 β2+

---------------- dd 1– k

2π( )d 1–
-------------------δ � 2ai kicos

i 1=

d 1–

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

∫
∞–

∞

∫

=  
β
2
--- �d

�
2 β2+

---------------- td
2π
------ dd 1– k

2π( )d 1–
-------------------∫

∞–

∞

∫
∞–

∞

∫

× it� it 2ai kicos
i 1=

d 1–

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

=  
1
4
--- te βt /2– J0 2ait( ),

i

∏d

0

∞

∫

Ic
1
4
--- t J0 t( )[ ]d 1–d

0

∞

∫=   =  

0.2241

 
…

 

,

 

d

 

4,=

0.2256 … , d 5,=

0.1884

 
…

 

,

 

d

 

6.=

 

⎩
⎪
⎨
⎪
⎧
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different, when 

 

L

 

 is finite and 

 

β

 

 is arbitrary small;
then (16) reduces to the form

(37)

For odd 

 

L

 

, the difference 

 

�

 

0

 

(

 

k

 

) – 

 

�

 

0

 

(

 

k

 

 – 

 

p

 

) is strictly zero
for some value 

 

k

 

 = 

 

k

 

*, existing for any allowed value
of 

 

p

 

:

 

4

 

 it is 

 

k

 

* = (

 

p

 

 + 

 

g

 

)/2, where 

 

g

 

 is one of vectors of
the reciprocal lattice (we take into account, that 

 

�

 

0

 

(

 

k

 

) =

 

�

 

0

 

(–

 

k

 

), 

 

�

 

0

 

(

 

k

 

 + 

 

g

 

) = �0(k)). For β  0, the term with
k = k* provides the singular contribution, which can be
naturally separated:

(38)

Here �2(k*) ≤ �2(p/2) for values of p inside the first
Brillouin zone. As a result, the curves in Fig. 1, which
have a finite limit for β  0 in the continual approxi-

mation (they correspond to 4 – (p/2) > 0), in fact
bend up (due to 4 – �2(k*) > 0) and go to infinity (insert
in Fig. 1).

4. COMPARISON WITH NUMERICAL RESULTS 
AND GENERAL ANALYSIS OF SITUATION

Matching (26) and (38) for β ~ 1/L shows, that the
quantity Ireg(β, p) is close to the quantity I(0, p),
obtained in the continual approximation. The W depen-
dence of the minimal exponent βmin, entering in (2), is
determined by (24), (26) and (38) in the whole region

except for the narrow vicinity of the point Wc = 1/
(which diminishes for L  ∞). One can see, that
βmin  const for W > Wc and βmin ∝ 1/Ld – 1 for W <
Wc in the large L limit. Supposing that the minimal
exponents βmin and γmin are of the same order of magni-
tude, one can estimate the correlation length ξ1D of the
quasi-1D system as 1/βmin and introduce the scaling
parameter g = ξ1D/L. Then its behavior

(39)

indicates the existence of the metallic phase for W < Wc

and exponential localization for W > Wc (see discussion
in [1]).

However, there is evidence that the relation βmin ~
γmin is violated for d > 2: according to numerical results
[2–4, 14, 15], the quantity γmin turns to zero (for L = ∞)

4 For even L, such value k* exists not for all p. As a result, a num-
ber of positive βs does not coincide with a number of positive γs ,
and there are difficulties in comparison (1) and (2). For this rea-
son, we do not use even values of L.

I β p,( ) 2β
Ld 1–
----------- �0 k( ) �0 k p–( )–[ ]2{

k

∑=

+ β2 4 �0 k( )�0 k p–( )–[ ] } 1– .

I β p,( ) 2

βLd 1–
--------------- 1

4 �0
2 k*( )–

------------------------- Ireg β p,( ).+=

�0
2

Ic

g
Ld 2– , W Wc,<
1/L, W Wc>⎩

⎨
⎧

∼

in the point Wc0, different of Wc (Fig. 2a), which is
accepted commonly as a point of the Anderson tran-
sition.5 The table lists values of Wc = 1/  following
from Eqs. (34) and (35), and values of Wc0 obtained
numerically in the papers [2–4, 14, 15]: these values

correspond to the quantity  = W , because con-
ventionally the cite energies Vn, m are supposed to have a

rectangular distribution of width  with  =

/12. Let us discuss the possible interpretations of the
arising situation.

4.1. Possibility of the Band of Critical States 

There is no doubt, that the region W < Wc corre-
sponds to the metallic phase, while the region W > Wc0
corresponds to exponential localization. Interpretation
of the region Wc < W < Wc0 is ambiguous.6 For the sake

5 Numerical results for d = 5, 6 were presented by I. Zharekeshev [16]
but remained unpublished.

6  It is clear from the analysis in [1] that Wc0 and Wc are the points,
where the parameters a and b entering the logarithmically normal
distribution vanish correspondingly; hence, both of these points
have a real physical sense.

Ic

W̃ 12

W̃ Vn m,
2〈 〉

W̃
2

Fig. 2. (a) The minimal exponents βmin and γmin for L = ∞
versus the strength of disorder W. (b) Dependences of Wc
and Wc0 on the space dimensionality d in assumption of
their continuity. Regions 1, 2, 3 correspond to exponential
localization, power-law localization and the metallic phase,
respectively.
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of simplicity, consider an 1D system, where a solution
ψn of the Cauchy problem has a following behavior for
its typical value and the first two moments

(40)

If β > 0 and γ = 0, then ψn has no systematic growth but

ψn eγn, ψn〈 〉 1, ψn
2〈 〉 eβn.∼ ∼ ∼

contains rare splashes of increasing amplitude (see
Fig. 3a). Eigenfunctions of the 1D system can be con-
structed by matching two solutions of type (40), propa-
gating from different ends of the system: such construc-
tion shows existence of the delocalized component, as
well as the localized structure of individual splashes
(Fig. 3b). The simplest interpretation suggests that an
eigenfunction is a hybrid state, i.e. a superposition of
the localized and delocalized functions [1].

However, there is another possible interpretation.
Zero value for γ forbids only the exponential growth for
the typical value of ψn and does not exclude possibility
of its more slower (power-law) increase. As for the
envelope of the localized component, its form depends
on the statistics of splashes and can be power-like as
well as exponential. Indeed, let the splashes occur at
points xn , have a width ∆n and a random height of the
order of hn; then the histogram of the distribution P(ψn)
consists of rectangles of width hn and height ∆n/xn . In
order ψn has no systematic growth, its distribution
P(ψn) should be normalizable, so the quantity �n =
hn∆n/xn should decrease quicker than 1/n. On the other

hand, variance ∆n/xn ~ �n  increases as eβn and a

power-law envelope hn ~  is possible for

(41)

One can see, that a situation with γ = 0, β > 0 may cor-
respond to eigenfunctions with a power-like envelope
and strong fluctuations on the small scales; such prop-
erties are extensively discussed for the states corre-
sponding to a critical point [17]. Consequently, vanish-
ing of βmin and γmin in the different points (Fig. 2a) may
correspond to existence of the whole band of critical
states in the interval Wc < W < Wc0. Such picture
matches well with the situation for d = 2 discussed
in [1]: a value Wc tends to zero in the limit d  2 due
to the absence of the metallic state in the 2D case, while
Wc0 remains finite due to existence of the Kosterlitz-
Thouless type transition between exponential and
power-law localization (Fig. 2b).7 

Let us come to comparison with numerical results.
In spite of the large number of publications and the
claims of some authors for high accuracy in determin-
ing the transition point, there are only few papers where
the Anderson transition is studied directly as a change
in the character of the wave functions. In fact, practi-
cally all papers since 1981 use one-parameter scaling

7 It should be noted, that power-law localization has different man-
ifestations in finite-size scaling for d = 2 and d > 2: as βmin ~
γmin ~ 1/L in the first case and as βmin ~ 1, γmin  0 (for
L  ∞) in the second case.

hn
3 hn

2

xn
α

xn eβn/�n( )1/2α
, hn eβn/�n( )1/2

,∼∼

∆n �n eβn/�n( ) 1 α–( )/2α
.∼

Fig. 3. A solution of the Cauchy problem (a) and an eigen-
function of the 1D system (b) in the situation γ = 0, β > 0.

5

5

10 15 20
W

10

15

g

Fig. 4. The parameter g, characterizing sensitivity to the
boundary conditions, versus W for different L [18]: L = 2 (�),
L = 4 (�), L = 6 (�). 

Values of critical disorder for different dimensions d and the
rectangular distribution of Vn, m

d Wc Wc0

3 5.91 16.5

4 7.32 34

5 7.29 –

6 7.98 –

(a)

(b)
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and rely on the study of quantities that have rather indi-
rect relation to the Anderson transition.

Existence of the band of unusual states for 5 < W <
15 (compare with table) in the 3D diamond lattice was
noted in the early paper by Edwards and Thouless [18].
The scaling parameter g, characterizing sensitivity to
the boundary conditions (cited as “Thouless number”
or dimensionless conductance [19] in the contemporary
literature), was practically independent of L for these
states, contrary to the expected growth in the metallic
phase and the decrease in the localized phase (Fig. 4).
Later, Last and Thouless [20] interpreted these states in
terms of power localization.

Existence of the band of critical states is also con-
firmed by the studies of the participation ratio

(42)

For a finite system in the form of the cube with side L,
the quantity P behaves as Ld for extended states and as
L0 for exponentially localized states. At the critical
point, one expects the behavior P ~ Ld* in accordance
with existence of the fractal dimensionality Ld* [21];
the same behavior is expected in the localized and
metallic phases on the scales L � ξ where a system is
indistinguishable of the critical one. As a result, the
behavior of P in the log–log coordinates should have a
form presented in Fig. 5a.

The numerically found behavior [22] is in a striking
contrast with Fig. 5a: the power-law dependences P ∝
Lα are observed for all W, with the exponent a depend-
ing on the strength of disorder (Fig. 5b). However, such

P ψn
2

n
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2

    ψ n 
4

 

n

 ∑ .=  

behavior agrees excellently with existence of the band
of critical states. According to table, three upper lines of
Fig. 5b (with 
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4.2. Possibility of Restoring the Conventional Picture 

 

If the presented picture is correct, the localization
theory appears in a difficult situation: the possibility of
the band of critical states is not predicted in any existing
variant of theory. The only optimistic outlook is as fol-
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in explanation the mechanism, due to which the iso-
lated critical point is expanded into the band of critical
states. The outlined possibility matches well with the
situation for d = 2 (Fig. 2b) where existence or absence
of the Kosterlitz-Thouless type transition depends on a
specific model [1].

In fact, possibilities of restoring the conventional
picture are more wide but require a radical reinterpreta-
tion of the numerical data. It should be noted, that
numerical calculations do not demonstrate vanishing
γmin for W < Wc0 (in the limit L  ∞) directly; this
conclusion is usually drawn using the interpretation of
results in terms of one-parameter scaling (when the
parameter g = 1/γminL is supposed to depend only on the

ratio L/ξ). According to [1], the minimal Lyapunov
exponent is a wrong scaling variable and does not obey
one-parameter scaling: as a result, the sense of the point
Wc0 becomes somewhat doubtful. In fact, the situation
is more complicated: the point Wc0 is distinguished not
only in the studies of the Lyapunov exponents but for
many other quantities [25]. However, this fact can also
be explained.

The natural scaling variable in the localization the-
ory is the Thouless parameter g [19], which is supposed
to obey the Gell-Mann–Low equation

(43)

If equation (43) has a fixed point g* (such as β(g*) = 0),
then the typical g(L) dependences have a form shown in
Fig. 6a: the Thouless parameter g remains constant for
the critical point (curve 1) and tends to zero or infinity
in the localized and metallic phases correspondingly
(curves 2, 3). With increasing of dimensionality d,
equation (43) is violated, because one of irrelevant scal-
ing parameters (let it be h) becomes relevant, as the
upper critical dimension dc2 is reached [26]. As a result,
in the vicinity of dc2 one should use the two-parameter
scaling equations

(44)

which can be reduced to a form [26]

(45)

where dc2 = 4 [27], b > 0. Investigation of (45) for d ≥ 4
shows that the Thouless parameter g does not remain
constant in the critical point but increases as Ld – 4 for
d > 4 and logarithmically for d = 4 (Fig. 6b, curve 1).
The growth becomes quicker, as Ld – 2, in the metallic
phase (curve 2), while the reentrant behavior is realized
in the localized phase in the vicinity of the transition
(curve 3). In the deep of the localized phase, the param-
eter g decreases monotonically (curve 5), and by conti-
nuity there exists curve 4, corresponding to approxi-
mately constant g in the small L region. Value gc0, cor-
responding to the initial part of curve 4, will be
interpreted as a critical point, if a formal treatment in
terms of one-parameter scaling is performed.

Situation for d = 4 – � is characterized by existence
of the large scale

(46)

d gln
d Lln
------------ β g( ).=

d gln
d Lln
------------ β g h,( ),

d hln
d Lln
------------ γ g h,( ),= =

d gln
d Lln
------------ d 2–( ) β̃ g
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---⎝ ⎠

⎛ ⎞ ,+=

d hln
d Lln
------------ d dc2–( ) b

h
---,+=

L0 const/�( )exp∝

Fig. 6. The Thouless parameter g as a function of the length
scale L for (a) d = 3, (b) d > 4, (c) d = 4 – �.
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(Fig. 6c), as in the ordinary theory of critical phenom-
ena [28]. For L � L0, one-parameter scaling holds in
the vicinity of g* (compare curves 1, 2, 3 in Fig. 6c and
Fig. 6a), while fictive one-parameter scaling arises in
the vicinity of gc0 for L � L0 (curves 4, 5, 6). The points
g* and gc0 are the roots of the equations β(g, h*) = 0
and β(g, h0) = 0 correspondingly, where h* = b/� is the
limiting value of the parameter h for L  ∞ (existing
according to (45)) and h0 is its initial value, which
remains practically unchanged in the L � L0 region.
Existence of the large scale L0 is also possible for d = 3,
if const in (46) has a value of several units.

It is clear from the previous discussion, that a formal
treatment of the dependence g(L) for small L in terms
of one-parameter scaling is rather doubtful for d ≥ 4 and
d = 4 – � (and may be for d = 3): it inevitably distin-
guishes a fictive critical point gc0, which will manifest
itself in all physical quantities. In fact, the point gc0
(which corresponds to the amplitude of disorder Wc0)
lies in the deep of the localized phase. The interval Wc <
W < Wc0 corresponds to the reentrant behavior of the
Thouless parameter g: it affects the properties of eigen-
functions but does not change their exponentially local-
ized character. From this point of view, difference
between Wc0 and Wc in table should be considered as an
artifact, related with not sufficiently large system size
for d = 3 and the principal inapplicability of one-param-
eter scaling for d ≥ 4. Correspondingly, the results pre-
sented in Fig. 4 and Fig. 5b do not have a deep sense
and reflect a transient behavior related with relaxation
of the parameter h to its limiting value h*.

It should be noted, that incorrect determination of
the transition point (gc0 instead g*) leads to the incor-
rect value of the critical exponent ν of the correlation
length: for d < 4, it will be determined by the derivative

(gc0, h0) instead of (g*, h*) as it should be. May
be, it will resolve the contradictions between analytical
and numerical results that was discussed by the author
in [1] and [29].

5. CONCLUSIONS

The above analysis reveals the serious contradic-
tions between the existing theoretical views and the
available numerical results. In the framework of the
presented picture, practically all numerical data for
d > 2 indicate the existence of the whole band of critical
states, which is not described by existing theories. In
particular, it cannot be explained by the one-parameter
scaling theory [21], and the conventional interpretation
for the majority of numerical data becomes self-contra-
dictory.

In order to clarify the situation, it is desirable to
extend the studies of the participation ratio (Fig. 5b) to
the region of essentially greater L. It is technically pos-
sible, because such calculations are performed pres-
ently for the systems, whose size is 5–10 times greater,

βg' βg'

but unfortunately only for disorder corresponding to the
point Wc0 [30]. As a result of such studies, the picture in
Fig. 5b either remain unchanged, or begin to change
into direction of Fig. 5a. In the former case, existence
of the band of critical states will be essentially con-
firmed. In the latter case, such studies will inevitably
reveal the large scale L0, which was discussed in Sec-
tion 4. In any case, reinterpretation of practically all
numerical data appears to be inevitable.

This work is partially supported by the Russian Foun-
dation for Basic Research (project no. 03-02-17519).
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