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Abstract—A ccording to the available publications, the field theoretical renormalization group approach in the
two-dimensional case givesthe critical exponentsthat differ from the known exact values. This property isasso-
ciated with the existence of nonanalytic contributions in the renormalization group functions. The situation is
analysed in this work using a new algorithm for summing divergent series that makes it possible to determine
the dependence of the results for the critical exponents on the expansion coefficients for the renormalization
group functions. It has been shown that the exact values of all the exponents can be obtained with a reasonable
form of the coefficient functions. These functions have small nonmonotonities or inflections, which are poor-
ly reproduced in natural interpolations. It is not necessary to assumethe existence of singular contributions in

the renormalization group functions.
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1. INTRODUCTION

The field theoretical renormalization group
approach [1] isthe most appropriate method for calcu-
lating the critical exponents. In this method, phase tran-
sitions are described by the effectivep? theory with the
action

1 >2

S{¢} = [d' x{-(wp) +516 + ig@“} )

where $ isthe n-component field vector, d isthe space
dimension, t is the distance to the transition, and g is
the coupling constant. The Fourier transform G(k, t) of
the correlation function G(r, t) = (@(x)@(x + r)) satisfies
the Callan—Symanzik equation
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Under certain conditions, this equation has the solu-
tions
G0, 1) <1, Gk 0)ock >

corresponding to the general phenomenology of the

stationary point of the renormalization group; after that,
themain critical exponentsare given by the expressions

n =n(g*), v =v(Eg*),
Y =v(g*), o=p'(g"),
while the other critical exponents are expressed
through them wusing the well-known relations

[2]. The renormalization group functions B(g), n(g),
and v(g), aswell as the functions

n?(g) = v7i(g) +n(g) -2,

7)) = 1+ (9)/(2-n(g)),

are determined by the power seriesin the coupling con-
stant g. The first expansion coefficients in these series
are calculated by means of the diagrammatic technique,
and the known Lipatov asymptotics exists for
high orders[3, 4]. Owing to the factorial divergence of
the series, their summation requires the use of special
methods [5-7].

In the three-dimensional case, such an approach
allowed the determination of the critical exponentswith
an accuracy to thethird significant digit [5, 6, 8], but its
application to two-dimensional systems appeared to be
less successful (see table). In the pioneering work by
Baker et al. [5], the four-loop expansions for the renor-
malization group functions at n = 1 were obtained and
then summed by the Padé-Borel method. Owing to the
comparatively low accuracy of the summation, the rea-
sonabl e results were obtained for the “large” exponents

©)

(4)

phase transitions [2]. The procedure reduces to deter-
mining a root of the equation B(g*) that specifies the

(v, 7), whereas the “small” exponents (n, o) remain-
ed almost undetermined (see the second column in table).
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Table
Exact value [5] [6] [9] Thiswork

Y 175 1.72+0.20 1.79+0.09 1.790 1.785+ 0.040

v 1.00 0.92+0.30 0.97 £0.08 0.966 1.01+0.07

n 0.25 0.08+0.20 0.13+0.07 0.146 0.145+0.014
n@ -0.75 -0.83+0.20 -0.85+0.07 -0.872 —0.865 + 0.050

) 43 (?) 0.7+04 1.3+0.2 1.31+0.03 1.345+ 0.075

g* 1.754 (?) 1.8+0.3 1.85+0.10 1.837 +0.030 1.82+0.04

Le Guillou and Zinn-Justin [6] used a more accurate
summation method (based on Borel transformation and
conformal mapping) and carefully analysed uncer-
tainty of the results, which allowed them to signifi-
cantly reduce the error. As aresult, the difference of n
and @ = n®@(g*) from the known exact values was
revealed for the two-dimensional Ising model (the third
column in the table). More recently, Orlov and Sokolov
[9] calculated the five-loop contributions in the renor-
malization group functions and found that the central
values of the critical exponents ailmost did not change
compared to [6] (the fourth column in table). Uncer-
tainty of the results were not analysed in detail, but the
character of their convergence with increasing the per-
turbation theory order provides a certain conclusion
that the differences of the calculated exponents from
the respective exact values are significant and the situa-
tionwill not improved with theinclusion of further terms
of the series. These differences were attributed to the
existence of nonperturbative contributions with a sin-
gularity at zero [such as exp(—/g)] in the renormaliza-
tion group functions. The summation resultswereinde-
pendently confirmed by Calabrese et a. [10], who
hypothesized the possibility of existing contributions
singular at the stationary point g* [10, 11]. The exist-
ence of nonanalytic contributions means that the field
theoretical renormalization group approach cannot pro-
vide the calculation of the critical exponents with an
arbitrarily high accuracy; i.e., the usual belief that
the problem is solved in principle is called in question.

Theaim of thiswork isto analyse the situation using
anew algorithm proposed for summing divergent series
in[7, 12]. The application of thisagorithm beginswith
the interpolation of the coefficient function, which
makes it possible to almost completely remove the
dependence of theresults on variation in the summation
procedure. Thus, only their dependence on the way of
interpolation remains, which is directly related to the
incompleteness of the initial information. Correspond-
ingly, the relation of the summation results with the
assumed behavior of the coefficient functions can be
constructively analysed. For technical reasons, such a

possibility wasabsent in other algorithms.1 In fact, those
algorithms were formulated in such a manner that
unknown expansion coefficients were not considered

clearly [5, 6]. This gives rise to the strong dependence
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of the results on variation in the summation procedure,

which was restricted using semi-empirical recipes; for
thisreason, areliable estimation of the accuracy beco-
mes impossible.

Following thetradition[5, 6, 8, 9], apart the series
for B(g) we sum four series for functionsn(g), n@(g),
v*(g), and vi(g), among which only two functions are
independent [see Egs. (4)]. Thelatter sircumstance alows
usto verify the self-consistency of the procedure. The last
column of the table presents the exponents obtained for
acertain set of “natura” interpolations (see Sections 2,
3). It is seen that uncertainty of the results for v and vy
covers the exact value. Since these exponents can be
taken as independent, there is no fundamental problem
of the agreement of the obtained results with the exact
values. However, the results obtained for n and n®@

deviate from the exact values® (in accordance with the
results of other authors|[5, 6, 9, 10]), and there exists
the technical problem of the inconsistency of
the natural interpolations for different (interdepend-
able) functions. Analysis shows (see Section 4) that the
probable origin of this problem isthe oscillatory behav-
ior of the first expansion coefficients for n(g) that gen-
erates a small nonmonotonicity or inflection in the
coefficient functions for n@(g) and y(g). These pe-
culiarities are poorly reproduced by

simple interpolations. As shown in Section 4, the exact
valuesfor the exponentsv, v, 1, and @ can be obtained
with areasonable form of the coefficient functions. For
thisreason, thereis noneed to assume the singularity
of the renormalization group functions, which contra-
dicts the general principles (see Section 5).

1 Animportant point isthe stability of the algorithm with respect to
smooth errors (including the umbiguity of interpolation); this
circumstance makes it possible to avoid the catastrophic incre-
ase of errorsin the course of resummation of the series [7, 12].

2 One can see, that these deviations have no deep meaning, using
the relations between the exponents. For the central values in the
table, y=1.785, v = 1.01, and | = 0.145, therelation y=v(2 -m)
isviolated by 0.09, determining the scale of the uncontrolled sys-
tematic error, which is sufficient for the agreement of the results
from the table with the exact values.
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2. INITIAL INFORMATION
AND SUMMATION PROCEDURE
The initial information is given by five-loop

expansions for B(g), n(g), and n@(g), which are
obtained in [9, 13], and series for y*(g) and v(g),

which can be recalculated from them:3

3

(10.33501055 + 47.67505273)
(n+8)°

4
+

( 8)3(5.000275928;12
n+

+149.1518586n + 524.3766023)

5

2 (0. 088842906n° + 179.6975910n°  (5)
(n+8)"

+2611.154798n + 7591.108694 )

6
+

z(—0. 00407946n" + 80.3096n°
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+5253.56n° + 53218.61 + 133972)

+. . +e(=a)'T(N+b)g" + ...,
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g
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2 3
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4
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4(0.583377094113 + 139.655555x°
(n+8) (6)

+ 844.500099% + 1135.04499)

5

=(—0. 146720n" + 130.427n° + 2885.83n°
(n+8)°

+13691.4n + 16885.3)

+. (=) T(N+b)g" + ...,

3 Peper [9] containes an error in the five-loop term for
v X(g), which was corrected in [13]. The five-loop contribution
for n(z)(g) can be extracted from Table 1V in [13] (where this
function was denoted asn(g), whereas thefirst four loops (with a

higher accuracy) can be obtained from the series for y‘l(g) and
N(g) presented in [9].

2
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n(g) =
(n+
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-~ S(n + 2) x 0.05460897758
(n+38)

4
+

2(=0. 0926844583n° + 4.05641051n°
(n+8)*
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5(8. 352074597n°
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4
+

%(0. 676061553n° + 1355991451 (9)
(n+8)*

+ 815.248932n + 1093.50978)
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5
L8

(n+8)

-(—0.217639n" + 129.375n° + 2828.07n"

+ 13366.1 + 16458.4)

+. (=) T(N+b)g" + ...,

as well as the parameters of the asymptotic behavior
for high orders, which are calculated in [4]:

214793295333 . _ . n+7
g = 214793295333 1, _nt 7
n+8 2
b = n+5
2 1
+8 (10
_ n n
¢ = 0.00983B 52 x 0.7335,
¢ = 0644120 o = 0.3306¢".

n+8

The normalization of g and B(g) in Egs. (5)<9) is
changed as compared to Egs. (1) and (2) so that thefirst
two coefficientsin Eq. (5) are equal to unity (see[4, 5]).

The divergent series
W(g) = Y Wy=)" (11)
N =N,

whose coefficients W, have the asymptotic behavior

ca"T'(N + b) is summed by means of the Borel tran-
sformation

W(g) = _[dxe‘*xh"‘lB(gx),
° (12)

- W
B) = Y, Bv-D". By = 5y
N =N, 0

where b, is an arbitrary parameter, and the subsequent
conformal mapping (which is different from that in [6])

u
(1-u)a’

Z:

After that, reexpansion of B(z) in the powers of u

B(z) = Y By(-2)"

N=0
_ N
- 3 U
N=0

gives the convergent series with the coefficients

2= fw) — 5 B(u)
(13)
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K K ~K-1
—(-Dfey,
Ea R €7
N = 1.

Uy = By, Uy =

The asymptotic behavior of
large N,

the coefficients U, for

Uy = UN*', N—» o,
W.
a“T()T(by+ )

(15

is related to the asymptotics for W(g) in the strong
coupling limit

W(g) = W.g", g—=oo.

(16)

The coefficient function is interpolated by the formula

; ~ A
Wy = caNNbF(N+b—b){1+N L
(17)
+ A'i 2+...+A—K~K+...
(N=N) (N—=N)

where the series is truncated and the coefficients
A are chosen from correspondence with the vaues of

the coefficients Wi Wiers o Wi where L, needs

not to coincide with N,. The optimal value bh=b-172
[12] is used below, if another value is not indicated.

The parameter N is used for varying the interpolation
procedure. The coefficients Uy for N < N,, = 20 are
directly calculated by Eq. (14) and are then continued
by power law (15) in order to avoid the catastrophic
increase of errors [7, 12]. Thus, the consistent imple-
mentation of the algorithm necessarily requires the
determination of the strong-coupling asymptotic
behavior for W(g) [see EqQ. (16)]. For the summation
of the seriesintheregion g ~ 1, ahigh accuracy inthe
determination of this asymptoticsisnot necessary and
its more or less detailed analysis implies the perspective
applications to the strong-coupling region [7].

As compared to previousworks[7, 12], aprocedure
for estimating errorsin the region g ~ 1 is additionally
developed. As atest example, we use the series for an
anharmonic oscillator with the first nine coefficients.
The best accuracy in determining the strong-coupling
asymptotic behavior is reached at the optimal value

N = Nox = 5.5[12]. The actual meaning of this value
is clarified when considering the interpolation curves
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100
N

Fig. 1. Interpolation curves for the anharmonic oscillator at
various N values. The inset shows the results of summing
the series for g = 1. Uncertainty of the results at a given N

valueisassociated with varying b within the limits

of uncertainty in the strong-coupling asymptotics.
The horizontal dashed straight line in the inset is the
exact value. The parameter N, is equal to 22.

(see Fig. 1) for the reduced coefficient function

_ Wy
as N \b-12
C

a N I'(N+1/2)

corresponding to the optimal parameterization of the
Lipatov asymptotics with b=b-172 [12]. When N
is varied near Nopt by avalue of the order of unity, the
shape of the curves almost does not change. When N is

strongly decreased (for N = —8), nonmonotonicity
appears in approaching F to the limit value F., = 1.

When N is strongly increased (for N = -2), alarge
bump appears for noninteger N values (see Fig. 1).
These observations make it possible to separate the set

of natural interpolations—8.3< N < -2.0: the nonmono-
tonicity of the curvesfor them at largeN is at the
level of the deviation of the last known point F; from 1
and the bumps at noninteger N values are small as com-
paredto a typical valueF,.A particular choice of these

constraints is not critical® and their reasonable variation
weakly affects the result (see the inset in Fig. 1). The
summation of the series for ¢ = 1 on the set of natural
interpolations provides the range —-W(1) = 0.8033 —
0.8042, which contains the exact value—W(1) = 0.80377.

(18)

4The height of the maxima increases sharply with varying 1(’,
whereas the summation results are comparatively smooth func-

tions of N ; for this reason, the estimate of the uncertainty in the

results is not too sensitive to the choice of the restrictions and is
performed rather objectively.
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3. SUMMATION RESULTS FOR NATURAL
INTERPOLATIONS

3.1. Function B(g)

According to Eg. (5), the expansion coefficients B
with N =1, 2, ..., 6 are known. The interpolation by
Eq. (17) with the use of al the coefficients (L, =1, L = 6)
providesthefollowing conclusions. First, theinterpola-

tion curves for al N are unsatisfactory in the sense
of Section 2; i.e., they have essential bumps at nonin-
teger N or significant nonmonotonicitiesinthelarge N
region. Second, the attempt to estimate the strong-
coupling asymptotics (16) gives unsatisfactory
results: the pattern of the x2 minima [12] is indistinct
and poorly interpreted. We think that this occurs,
because the value F with N = 1 does not lie on a
smooth curve obtained by analytic continuation from
the points N = 2, 3, 4, .... Such a situation certainly
takes place in the dimensional renormalization scheme,
where B(g) = —eg + Bo(g) for space of dimensionality
d = 4 — ¢, and the function By(g) refers to four-dimen-
sional case (its expansion begins with g2 and the coef-
ficients are independent of €). Result (5) refers to
another renormalization scheme, but asimilar situation
is also possible. For this reason, it is necessary to take
Ly =2, i.e, to disregard the first point in the interpola-
tion. More generally, possibility of such situations fol-
lows from the Sommerfel d-Watson summation proce-
dure [12, Sect. 8.3]: the function W(z) that is the ana-
lytic continuation of W, onto the complex plane
[W(N) =Wy, N=Ny, N+ 1, Ny+ 2, ...] hasasingular
point z = a, where o is the exponent in the strong-cou-
pling asymptotic expression [see Eq. (16)]. If ccislarger
than NV, one should take

No Ny
W(g) = Wyg +...+Wyg +W(g), (19

where N, ischosen from the condition N; <o < N; +1,

sum the series for W(g), and add the separated
terms to the sum. Therefore, N; = 1 and L, = 2 should
be taken for the function B(g). After that, the results for
the asymptotics (16) are satisfactory (see Fig. 2)
and provide the value o = 1, which aposteriori justifies
the use of decomposition (19). It is important that the
difference of W, from—W, lies beyond the error, so that
the asymptotic behavior W(g) « g is valid for the
whole function W(g).

Figure 3 shows the interpolation curves for Fy

obtained for various N values. The inset shows the
results for g* and . It is easily seen that the natural

interpolations correspond to the interval 1.1 < N <
1.42 and the summation of the series yields the result

¢* = 1.78-1.86 (20)
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~05 —03 01 N

Fig. 2. Parameters of the strong-coupling asymptotics
(16) for the functionB(g). Uncertainty of the results for

agiven N valueis determined according to [12]; N, = 21.

for theroot of the equation B(g*) = 0. Thisresult isusu-
aly compared to a value of 1.754 obtained from the
analysis of the high-temperature series [14] (see table).
Such a comparison is useful for orientation, but full
coincidence of the results should not be expected. It is
known that the renormalization group functions depend
on the choice of the renormalization scheme [15] and
only observables (critica exponents) are invariant.
Result (20) isvalid for field theoretical model (1) with
the isotropic momentum cutoff |k| < A, whereas high-
temperature series are constructed for lattice models,
where the effective momentum cutoff is anisotropic.
These details are physically insignificant, but they
determine the difference between the renormalization
schemes. Aswill be seen below, the results for the crit-
ical exponents do not favor any systematic shift of g*,
because adecrease in g* improves the results for y and
n®@, but worsens the results for 1. For this reason, the
central value g* = 1.82 seems to be the ideal compro-
mise.

The numerical differentiation of B(g) provides the
results for the exponent o presented in the table: they
agree with the value ® = 4/3, which appears in one of
the versions of the conforma field theory, although
other possibilities also exist (see discussion in [9]).

3.2. Function n(g)

According to Eg. (6), the expansion for 1(g) begins
with g2. Interpolation with L, = 2 (i.e., with the use of
all the coefficients) implying the smoothness of F, for
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Fig. 3. Interpolation curves for the function B(g). The inset
shows the results for g* and .

N > 2 provides unsatisfactory results (in terms of Sec-
tion 2). For Ly = 3, satisfactory interpolation curves are

obtained for 1.2 < N < 2.9 (see Fig. 4a); in this case,
the parameters of the strong-coupling asymptotics
are (see Fig. 5a)

o = 2.01+0.01,

- (21)
W.. = 0.051+0.007.

and indicate the existence of the singularity of W(z) at

z = 2, which confirms the correctness of the removal of
the first point. The results of series summation on the set
of natural interpolations are shown in the inset in
Fig. 4a. Their total uncertainty,

n = 0.131-0.158, (22
issmall and does not include the exact valuen = 0.25.

3.3. Functions M?(g), v'(g), and v (g)

Theinterpolation with L, = 1 provides very uncertain
results for the strong-coupling asymptotics (16).
Therefore, it is reasonable to try to use the interpolation
with L, = 2. In this case, according to Figs. 5b-5d,

n?(g): o = 0.99+0.01, W. = 0.47+0.03, (23)

v (g): o = 0.985+0.115,
W. = 0.345+ 0.235,

(24)

v (g): o = 0.955+ 0.105,
W. = 0.22+0.11.

The natural interpolations correspond to the intervals —
25< N <18,-46< N <1.7,and-3.3< N <1.7for

(25)
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Fy

10

10

Fig. 4. Interpolation curvesfor thefunctionsn(g), v-(g), n@(g) (Lo = 3), and y(g) (Lo = 1). Theinset showsthe summation results

atg=g*.

the functions n@(g), v(g), and y(g), respectively;
after that, the summation yields

n® = <0.835-0.879), v (g) = 0.980—1.060, (26)
Y7 (¢) = 0.536-0.570.

According to Eq. (4), the asymptotic expressionsfor
the functions under consideration do not contradict
each other only when the function n(g) is disregarded,
because the expansion coefficients of the function n(g)
are much smaller than those for other functions; there-
fore, the difference between the reduced coefficient
functionsfor n@(g), v-(g), and y(g) isvery small and
is not revealed by approximate analysis. The function
Nn(g) isvery small for g ~ 1, but its asymptotics (16)
grows more rapidly in the strong-coupling region
[see Eq. (21)]. For this reason, the approximate linear
behavior of n(g), v(g), and y*(g) occurs at not too
large g values, whereas the function n(g) distorts this
behavior at large g region.

According to Eq. (4), the general linear behavior of
n®@(g) and v(g) [see Egs. (23) and (24)] is supple-
mented by additions proportional to g? with small coef-
ficients, so that “W'(z) involves weak singularities at z =

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 105

2, owing to which the interpolation with L, = 2 is
invalid. At Ly = 3, the interpolation curves for the func-
tionsn®@(g) (see Fig. 4b) and v-1(g) (see Fig. 4c) have
the satisfactory formfor -3.3< N <2.72and-2.6< N

< 2.71, respectively. The series summation results are
shown in theinset in Figs. 4b, 4c and lie in the ranges

n® = —<0.814-0.915), v '(g) = 0.930-1.065. (27)

The function y'(g) has an approximately linear
behavior at g ~ 1, whereas its behavior at large g regi-
on changes to approaching a constant or decrease [see
Eq. (4)].% Thisindicates the absence of any singularities
in the coefficient function for N> 1. Therefore, interpo-
lation should be performed with L, = 1, which provides

satisfactory results for —0.7 < N <05 (seeFig. 4d); in
this case, the summation of the seriesyields

v = 0.548-0.573. (28)

5 The decrease is possible when the asymptotic behavior of 1¢9(g)

is purely linear and does not include additions proportional to g2;
it looks rather probablein view of small uncertainty in Eq. (23).
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Fig. 5. Parameters of the strong-coupling asymptotic expression for the functionsn(g), v=(g), n?(g), v-(g), and yX(g) with N, =

20, 19, 18, and 19, respectively.

Comparison of Eqg. (26) with Egs. (27) and (28)
shows that the coordination of the results for asymp-
totics shifts the central values for the exponents and
|eads to more adequate estimate of the accuracy. Uncer-
tainty in vt and y* on the set of natural interpolations
[see Egs. (27) and (28)] coversthe exact values (v1=1
and y*! = 4/7 = 0.5714); therefore, the fundamental
problem of disagreement of the summation results
with the exact values is absent. However, deviations
from the exact values 0.25 and — 0.75 for n and n@,
respectively, are beyond the errors [see Egs. (22) and
(27)] and there exists a technical problem, revealing in
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not complete consistency of natural interpolations for
different (interdependable) functions.

4. GUESSING OF THE COEFFICIENT
FUNCTIONS

Let us verify if the exact values for al exponents
could be ensured with a reasonable (and consistent)
choice of the coefficient functions.

Let us begin with the function n(g) whose first
expansion coefficients have an oscillatory behavior (see
Fig. 4a). For this behavior, the possibility of their rel-
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Fig. 6. Coefficient functions providing the exact values of the exponents.

iable interpolation with high order asymptotic beha-
vior seems to be doubtful from the very beginning.
According to Section 3, the single-parameter set of
interpolations used there cannot provide the exact value
N =n(g*). Let us perform the simplest complication of
the procedure and use the two-parameter family of
interpolations. In this case, one parameter can ensure
the exact n| value and the second parameter can be used
to ensure the maximally “natural” form of the interpo-
lation curve. Figure 6a shows the best results thus
obtained. The solid lineis obtained using Eqg. (17) with

two varying parameters N and b and corresponds to
thevalues N =—2.0and b =-7.506. The dashed lineis
obtained by varying N and the first unknown coeffi-
cient Wy (at b=b- 1/2) and corresponds to the values

N =2.0and Wy = 0.0787. In the latter case, clear and
easily treated results correspondingto oo = 2 and W, =
0.7 are obtained for the strong-coupling asymptotic
behavior and confirm the correctness of the choice of

L,.% Both curves thus obtained (see Fig. 6a) are similar
and characterized by oscillations with an amplitude of

the same scale as the oscillations of the first coeffi-
cients: we think that such a behavior is admissible.

6 Theinterpolation with Ly = 3 is used. Theinterpolation with Ly =2
lead to bumpsin theinterval 2 < N < 3, indicatingapoleat N > 2.
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Thefunction v(g) for which the exact value at g* =
1.82 isreached for one of the natural interpolations (cor-

responding to N = 1.77) is used as the second indepen-
dent function (see Fig. 6b). Accepting thisinterpolation
curve for vi(g) and the solid line in Fig. 6a for n(g),
one can use Egs. (4) and obtain the expansion coeffi-
cientsfor n@(g) and y*(g), which are shownin Figs. 6¢
and 6d, respectively. The summation with these coeffi-
cients gives the exact values of n® and y. According
to Eqg. (4), the coefficient function for @ is the super-
position of the smooth dependence for v(g) (see
Fig. 6b) and the strongly oscillating dependence for
N(g) (seeFig. 6a), which givesriseto itsinflection (see
Fig. 6¢) or nonmonotonicity (if more strong oscillations
are allowed in Fig. 6a). Such an inflection is poorly
described by simple interpolations; for this reason, n®
obtained in Section 3, differs from the exact value. A
similar inflection (Fig. 6d) or nonmonotonicity
(Fig. 4d) is expected for the function y?(g).

Thus, the exact values of all four quantitiesn, v,n®,
and vy can be reached with a quite reasonable choice of
the coefficient functions. It is not necessary to assume
the existence of singular contributions in the renormal-
ization group functions [9-11].
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5. THEORETICAL STATUS
OF THE SINGULAR CONTRIBUTIONS

The assumption of the existence of nonperturbative
contributions with a singularity at zero [such as exp(—
clg)] [9] contradictsthe general principles of the theory
of divergent series. Indeed, the consistent treatment of
divergent seriesis possible only in the framework of a
certain set of axioms in which the Borel procedure for
the series summation is accepted by definition [7].
Under this definition, no additions to the Borel integral
such as exp(—c/g) are necessary, because such contribu-
tions have already been included in the definition of the
sum. The problems appear only when the Borel integral
is ill-defined [7]; however, this is not so in the present
case, because al the singularities of the Borel images
in the ¢* theory are located on the negative semiaxis
[16]. Onecanformally reject the possibility of the con-
sistent treatment of divergent series and discard the
indicated set of axioms, but such a position can hardly
be expected from researchers involving in these inves-
tigations.

The possibility of contributions with asingularity at
the fixed point g* [10, 11] is even more doubtful for
the following reasons.

(i) The renormalization group functions in the Wil-
son picture [17, 18] relate the properties of finite blocks
and should not have singularities, because the phase
transitions are absent in the finite systems. In the gen-
eral case, the regularity of the renormalization group
functionsisthe basic principle of modern phenomenol-
ogy replacing phenomenology of Landau theory: the
latter  explains the singular critical behavior on
the basis of the analyticity of the thermodynamic poten-
tial, whereasthe former phenomenol ogy isbased on the
regularity of the renormalization group functions. The
nonanalyticity of these functions means that the mod-
ern phenomenology is unsatisfactory, in contradicti-
on with its obvious successes.

(if) The constructive estimates indicate the power-
law behavior of the Borel images at infinity (Section 3).
In this case, Borel integral (12) determines a function
regular on the positive semiaxis.

(iii) According to modern point of view, the criti-
cal exponents are continuous functions of the space
dimension d, which in particular ensures the success of
the Wilson e expansion [17, 18]. In the dimensional
regularization scheme, the Gell-Mann—Low function
for d = 4 — e hastheform

B(g) = —eg+Bolg),

where By(g) is independent of e. The fixed point can
be smoothly changed by varying €, whereas 4(g)
cannot be singular at each point.

(iv) The constructive argumentation from [10, 11] is
based on the comparison of corrections to scaling that
follow from the general (many-parameter) version of the
Wilson renormalization group with the analogous cor-
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rections in the field-theoretical formalism. However,
such comparison is certainly incorrect, because
the field-theoretical models are strictly renormalizable
onthelevel of two parameters and do not involve correc-
tions to scaling that are associated with the evol ution of
other parameters. The attempt to introduce them artifi-
cially givesriseto the necessity of assuming the singu-

larity of the renormalization group function [10, 11].”

(v) The only real fact, to which the authors of [10,
11] appedl, is associated with the 1/n expansion. The
first-order 1/n correction to the B-function has aform of
the sum of the integrals over regular functions that can
have singularities only in the case of their divergence.
According to [10, 11], such divergencesreally exist due
to the presence of small denominators and give rise to
singularities of the type (g — g*)°. In fact, this result is
associated only with the incorrectness of the 1/n expan-
sion of integrands: the presence of small denominators
shows that the real expansion parameter is not small in
acertain part of the integration domain; for this reason,

the restriction to the first order in 1/n isinappropriate.®
A more accurate calculation inevitably results in the
cutoff of the singularities found in [10, 11] and in the
recovery of analyticity at g = g*.

The above discussion indicates that the assumption
of singular contributionsmadein [9-11] contradictsthe
general principles of the renormalization group
approach and is theoretically unfounded. Recognition
of their existence means that the field-theoretical renor-
malization group approach does not provide the princi-
pa solution to the problem of thecritical exponents,
because they cannot be calculated with arbitrarily high
accuracy. On our opinion, this assumption is too strong
and in fact thereisno need in it; according to the above
analysis, the exact values of the exponents can be
obtained with a reasonable choice of the coefficient
functions.
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" The correct sti pulation: “Barring miracles, the approach [to the
fixed point] should have nonzero components along any of the
irrelevant directions’ was present in [10, 11]. However, the field
theoretical models certainly belong to miracles and have no pro-
jections onto the irrelevant directions, because they have aremar-
kable property of the strict renormalizability with two parameters.

8 This possibly means that the renormalization group functions
(in contrast to the critical exponents) in some renormalization
schemes have no regular 1/n expansion.
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