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1. INTRODUCTION

The modern formulation of the Anderson transition
problem is as follows [1]. The quantity

(1)

which contains complete information on the kinetic
properties, is introduced, where 

 

G

 

R

 

 and 

 

G

 

A

 

 are the
retarded and advanced Green’s functions for the elec-
tron in a random potential, respectively. The Fourier
transform 

 

Φ

 

RA

 

(

 

q

 

) of this quantity at the coinciding
arguments 

 

x

 

1

 

 = 

 

x

 

4

 

 and 

 

x

 

2

 

 = 

 

x

 

3

 

 has the diffusion pole (see,
e.g., [2, 3])

(2)

where 

 

D

 

(

 

ω

 

, 

 

q

 

) is the observed diffusion coefficient and

 

ν

 

(

 

E

 

) is the density of states near the energy 

 

E

 

. The dif-
fusion pole in the localized phase transfers to the 1/

 

ω

 

Berezinskii–Gorkov singularity

(3)

Coordination of Eqs. (2) and (3) provides the conclu-
sion that 

 

D

 

(

 

ω

 

, 

 

q

 

) = –

 

i

 

ω

 

d

 

(

 

q

 

) in the localized phase, so
that 

 

D

 

(0, 

 

q

 

) 

 

≡

 

 0. Therefore, the Anderson transition
does not reduce to the disappearance of 

 

D

 

(0, 0) and is
of deeper meaning [7]: the function 

 

D

 

(0, 

 

q

 

) is identi-
cally equal to zero at the transition point [1, 3]. The

ΦRA x1 x2 x3 x4, , ,( ) GE ω+
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-------------------A q( ) Φreg q( ).+=

 

complicated rearrangement of 

 

D

 

(

 

ω

 

, 

 

q

 

) near the transi-
tion point is of main interest for the theory.

A qualitative scenario of the transition was proposed
by Vollhardt and Wölfle [2] and corresponds to the fol-

lowing simple estimate. The irreducible vertex (

 

q

 

)
entering into the Bethe–Salpeter equation has the diffu-
sion pole in the limit 

 

k

 

 + 

 

k

 

'  0:

(4)

and serves as the “transition probability” in the quan-
tum kinetic equation. The use of the 

 

τ

 

 approximation,

 

D

 

 

 

∝

 

 

 

τ
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〈

 

U

 

〉

 

–1

 

 (where 

 

〈

 

…

 

〉

 

 is averaging over momenta),
leads to the equation

(5)

When the spatial dispersion of 

 

D

 

(

 

ω

 

, 

 

q

 

) is disregarded,
this equation describes the transition between the

 

D

 

 ~ 

 

i

 

ω

 

 and 

 

D

 

 = const(

 

ω

 

) regimes [2]. A more refined
variant of the theory, where the spatial dispersion of

 

D

 

(

 

ω

 

, 

 

q

 

) is taken into account,

 

1

 

 was developed in our
work [3]. This variant has good prospects to be exact,
but in the current status, it is in incomplete agreement
with the numerical researches [8] (see discussion in
[9]). For this reason, the direct microscopic verification
of the phenomenological scheme proposed in [3] is of
current interest.

Ukk '
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This study is devoted to the problem of the structure
of the diffusion pole in the region of the fluctuation tail
of the density of states, i.e., in the energy region corre-
sponding to the band gap of the initial material.
According to [5, 10], the diffusion pole in this case is of
purely nonperturbative origin and can be found by the
instanton method. The idea of such an approach is
undoubtedly correct. However, a number of problems
concerning the calculation procedure and results arise.

(i) The saddle-point approximation used in [5, 10]
makes it possible to obtain the dependence ΦRA ~ 1/ω
in a certain region of the parameters, but its applicabil-
ity conditions are violated in the limit ω  0, which
is of main interest.

(ii) In fact, Sadovskiœ [5] and Cardy [10] obtained
the singularity2 

(6)

For E1 = E + ω + iδ and E2 = E – iδ, this singularity cor-
responds to Eq. (3). However, such a singularity must
be absent when E1 and E2 have the imaginary additions
of the same sign (this case corresponds to the averages
〈GRGR〉 and 〈GAGA〉). It is unclear from [5, 10], which
mechanism ensures the disappearance of the singularity
in the last case.

(iii) Singularity (6) is in agreement with singularity
(3) if E1 and E2 are treated as the bare energies. How-
ever, according to the conventional paradigm
(see, e.g., the calculation of conductivity in [11]), the
renormalized energies that contain terms with finite
damping ±iΓ rather than infinitely small imaginary
additions ±iδ should be used in such cases. The correct
procedure of instanton calculations [12] (for more
details, see [1, 13]) also requires the transition to the
renormalized energy, because otherwise the instanton
contribution diverges. The replacement of iδ by iΓ
would lead to the disappearance of the diffusion pole in
the localized phase3, which would result in large diffi-
culties for the theory, because the initial Anderson
localization criterion [16, 17] is called in question (see
discussion in [5, 6, 10]).

1 The inclusion of the spatial dispersion of D(ω, q) is of general
physical interest and of significant importance for the satisfaction
of the Ward identity [2],

where ∆Gk(q) ≡  – , ∆Σk(q) ≡  – ,

and Σk is the self energy, because the summation with respect to
k1 involving D(ω, k + k1) must ensure the cancellation of the 1/ω
singularity on the right-hand side.

2 The notation GE is used for the Green’s function when the sign of
the imaginary addition to the energy is of no importance.

3 Such statement was made in recent works [14], but it is incorrect
in our opinion [15].

∆Σk q( ) 1
N
---- Ukk1

RA q( )∆Gk1
q( )

k1

∑=

Gk q/2+
R

Gk q/2–
A Σk q/2+

R Σk q/2–
A

1

GE1
GE2

〈 〉 1
E1 E2–
-----------------,∼

1

1

(iv) The momentum dependence of the results
reported in [5, 10] is in disagreement with the depen-
dence following from the direct analysis of the Bethe–
Salpeter equation [3].

(v) The calculations performed in [5, 10] are deter-
ministic and give no indications to the origin of the
self-consistent treatment for the diffusion coefficient; the
necessity of such a procedure seems to be reasonable
from the physical concepts (see above).

It will be shown in Section 5 that problems (i) and
(ii) are of technical character and can be solved by mod-
ifying the calculation procedure. In particular, it is
mathematically more correct to apply the instanton
method to calculate high orders of perturbation theory
and to obtain a singular contribution as a result of their
summation. This procedure provides a clear interpreta-
tion of the arising expressions and removes the prob-
lem of imaginary additions. The problem of the inappli-
cability of the saddle-point approximation can be over-
come by the correct integration over the soft mode.

Problems (iii)–(v) are deeper: they are not removed
even if the problem is extremely simplified by taking
zero-dimensional limit (which corresponds to the strong
disorder limit in arbitrary dimension). On the contrary,
they are extremely sharpened in this case and become
paradoxes. The main paradox is specified by the fol-
lowing statements: (i) the 1/ω singularity is determined
by high orders of perturbation theory, (ii) the high-order
behaviors for ΦRA and URA are the same, and (iii) the
1/ω singularity exists in the quantity ΦRA, whereas it is
absent in the quantity URA.4 Analysis of this paradox is
the main aim of this work. Its solution leads to the fol-
lowing conclusions. The instanton approach deter-
mines only the general structure of the diffusion pole
and makes it possible to obtain the 1/(ω + 2iγ) singular-
ity, whereas the parameter γ remains indefinite and
should be determined with the inclusion of information
from low orders of perturbation theory. It is individual
for a quantity under consideration and is generally a
function of the momenta. It is physically expected that
γ for the quantity ΦRA in the localized phase is on the
order of ω. Owing to this fact, the 1/ω singular contri-
bution is recovered, but its momentum dependence
changes. The parameter γ in the metallic phase is finite
in correspondence with the finite diffusion coefficient
and must be determined by a certain self-consistent pro-
cedure. This behavior confirms the Vollhardt–Wölfle
scenario at the fundamental level.

The cross verification of all statements is of current
interest due to the existence of the paradox. Moreover,
the investigation of the zero-dimensional case is useful
for the combinational analysis of the diagrams [18, 19],
construction of expansions in the dimension of space
[20], and use in interpolation schemes [21]. For this

4 The last statement is specific for the zero-dimensional case and is
associated with the absence of the momentum integration in the
Ward identity (see Footnote 1).
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reason, the approaches based on the functional integra-
tion and exact diagrammatic expansions are given in
Sections 2 and 3, respectively. The physical interpreta-
tion is presented in Section 4. The calculation proce-
dure for high orders of perturbation theory is consid-
ered in Section 5 and their summation is discussed in
Section 6. The solution to the formulated paradox is
given in Section 7. Finally, the modification of instan-
ton calculations performed in [5, 10] is presented in
Section 8 on the basis of the performed analysis.

2. ZERO-DIMENSIONAL LIMIT
IN THE FUNCTIONAL INTEGRAL

The average Green’s function of the disordered sys-
tem and the quantity ΦRA can be represented in the form
of the functional integrals [22]

(7)

where κ2 = –E ± iδ and

(8)

Here,

where

(9)

j and f are the m- and n-component vectors, respec-
tively, and the passage to the limit m, n  0 is per-
formed at the end of calculations.5 Formulas (7) and (8)
correspond to the usual Anderson model with the Gaus-
sian distribution of the energies of the sites

(10)

which is considered near the lower edge of the band
and, in the continual limit, is equivalent to the

5  The summation over repeated subscripts α and β is not implied
in Eqs. (7) and (8).

1

G x x ',( )〈 〉 Dϕϕα x( )ϕα x '( )∫–=

× ddx
1
2
--- ∇j( )2 1

2
---κ2j2 1

4
---gj4+ +∫–

 
 
 

,exp

ΦRA x1 x2 x3 x4, , ,( ) DϕDφϕα x1( )ϕα x2( )∫=

× φβ x3( )φβ x4( ) S ϕ φ,{ }–( ),exp

S ϕ φ,{ } ddx
1
2
--- ∇j( )2 1

2
--- ∇f( )2 1

2
---κ1

2j2+ +




∫=

+
1
2
---κ2

2f2 1
4
---g j2 f2+( )2

+




,

g W2/2, κ1
2– E ω iδ+ +( )– κ2 i∆,–≡= =

κ2
2 E iδ–( )– κ2 i∆.+≡=

P V( ) 1

2πW2
------------------ V2

2W2
----------–

 
 
 

,exp=

Schrödinger equation with the δ correlated random
potential.

Let us treat the functional integral as a multiple inte-
gral on a lattice. For the passage to the zero-dimen-
sional limit, let us consider a system spatially limited in
all the directions at a sufficiently small scale. For this
system, the coordinate dependences ϕ(x) and φ(x) can
be disregarded and the gradient terms can be omitted in
Eqs. (7) and (8). Taking a sufficiently sparse lattice, one
can assume that only one its site is located inside the
system. In this case,

(11)

where it is taken into account that

(12)

in the limit n  0, where Sn is the area of the unit
sphere in the n-dimensional space, and, similarly,

(13)

The power expansion in g provides the series

(14)

(15)

where the binomial formula and the multiplication the-
orem for the gamma function are used [23].

3. DIAGRAMMATIC EXPANSIONS
IN THE ZERO-DIMENSIONAL CASE

The Green’s functions in the zero-dimensional case
are independent of the coordinates or correspond to
zero momentum in the momentum representation. The
diagrammatic expansions (see Fig. 1) have the usual
form, but do not contain coordinate or momentum inte-

grals. All the diagrams of the same order at  =  are
equal to each other and the perturbation series can be
constructed on the basis of the combinational analysis
of the diagrams. At the same time, the combinational
analysis of the diagrams can be performed by means of

G〈 〉 ϕ ϕ 1
2
---κ2ϕ2–

1
4
---gϕ4–

 
 
 

,expd

0

∞

∫–=

dnϕϕαϕα∫ Sn ϕn 1– ϕϕ2

n
----- ϕ ϕd

0

∞

∫d

0

∞

∫=

ΦRA ϕ ϕ φ φd

0

∞

∫d

0

∞

∫=

× 1
2
---κ1

2ϕ2–
1
2
---κ2

2φ2–
1
4
---g ϕ2 φ2+( )2

–
 
 
 

.exp

G〈 〉 1

πκ2
------------- 4

κ4
-----– 

  N
Γ N

1
2
---+ 

  gN ,
N 0=

∞

∑–=

ΦRA 1

π κ1
2 κ2

2–( )
----------------------------- 4–( )NΓ N

1
2
---+ 

 
N 0=

∞

∑=

× κ2
2( ) 2N 1+( )– κ1

2( ) 2N 1+( )–
–[ ]gN ,

κ1
2 κ2

2
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“functional integrals” (11) and (13) [18, 19]. The actual
diagrams are shown in Fig. 1, where the dashed line
corresponds to the factor W2, the thin solid line means
the bare Green’s function

(16)

and the thick solid line stands for the total Green’s func-
tion

(17)

where Σ ≡ ΣR = –∆E + iΓ for GR (and similarly for GA).
In particular, the series in Fig. 1a has the form

(18)

because the number of diagrams of the Nth order is
equal to (2N – 1)!! [the first of 2N vertices is connected
to one of the 2N – 1 remaining vertices, the first free
vertex is connected to one of the 2N – 3 remaining ver-
tices, etc.). The self-energy Σ (see Fig. 1b) can be
expanded in both bare (see Fig. 1c) and renormalized
(see Fig. 1d) Green’s functions

(19)

where the sequences LN and KN are determined by the
recurrence relations

(20)

The first relation follows from the equality
G(E − Σ) = 1 as a result of the multiplication of series
and the second relation was obtained in [19]. It is inter-
esting that the sequence KN also determines the expan-
sions for the quantities Φ and U (which are analogues of

ΦRA and URA at  = ) in the renormalized
Green’s function [19]

(21)

G0 E( ) 1
E
---

1

κ2
-----,–= =

G E( ) GE〈 〉≡ 1

Ẽ
--- 1

E Σ–
-------------

1

κ̃2
-----,–= = =

G E( ) 1
E
--- GN

W2

E2
------- 

 
N

,
N 0=

∞

∑=

GN 2N 1–( )!! 2NΓ N 1/2+( )
π

---------------------------,= =

Σ E( ) E LN
W2

E2
------- 

 
N

N 1=

∞

∑=

=  Ẽ KN
W2

Ẽ
2

-------
 
 
  N

,
N 1=

∞

∑

LN GN K– LK , L0

K 0=

N 1–

∑ 1,= =

KN 1+ N KM 1+ KN M– , K0

M 0=

N 1–

∑ 1.= =

κ1
2 κ2

2

Φ 1

Ẽ
2

----- KN 1+
W2

Ẽ
2

-------
 
 
  N

,
N 0=

∞

∑=

(22)

The first relation follows from the Ward identity relat-
ing Σ and Φ and the second relation follows from the
fact that all the diagrams for U (see Fig. 1g) can be
obtained from the diagrams for Σ (see Fig. 1d) by suc-
cessive cutting along one of the 2N – 1 internal G lines.
Similarly, the expansion of Φ in the bare Green’s func-
tions,

(23)

follows from the fact that the diagrams for Φ (see
Fig. 1e) are obtained from the diagrams for G (see
Fig. 1a) by cutting along one of the 2N + 1 electron
lines. From the method of constructing expansions (23)
and (24), it is clear how they are generalized to the case

 ≠ :

(24)

U Ẽ
2

2N 1–( )KN
W2

Ẽ
2

-------
 
 
  N

.
N 1=

∞

∑=

Φ 1

E2
----- 2N 1+( )!! W2

E2
------- 

 
N

,
N 0=

∞

∑=

κ1
2 κ2

2

ΦRA 2N 1–( )!!W2N

N 0=

∞

∑=

× G0
R( )K

G0
A( )2N 2 K–+

,
K 0=

2N 1+

∑

= + +
〈G〉

+ + + ...

+

+= Σ

+ +=Σ

= + + ...

Φ

Φ

+ + + + ...=

+ + + ...∪=

Φ+=

= + + + + ...

(a)

(b)

(c)

(d)

+ ...

(e)

(f)

(g)

∪∪

∪

∪

Fig. 1. Diagrammatic expansions for the electron in a ran-
dom potential.
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(25)

It is easy to verify that expressions (18) and (24) are
equivalent to Eqs. (14) and (15) presented in the pre-
ceding section.

4. PHYSICAL INTERPRETATION
AND EXACT RESULTS

The zero-dimensional case physically corresponds
to the Anderson model at one site of the lattice. The
exact Green’s function

(26)

after the trivial averaging has the form

(27)

The density of states is obviously equal to

(28)

and the renormalized energy and damping are given by
the expressions

(29)

where

(30)

The quantity ΦRA is specified by the expression

(31)

and, at ω  0, has the singularity

(32)

obviously coinciding with Eq. (3). From the Bethe–Sal-
peter equation (see Fig. 1f)

(33)

URA KNW2N

N 1=

∞

∑=

× GR( )K 1–
GA( )2N 1– K–

.
K 1=

2N 1–

∑

GR E( ) 1
E V– i0+
------------------------=

GR E( )〈 〉 P V( ) Vd
E V– i0+
------------------------

∞–

∞

∫ 1
E ∆E iΓ+ +
-----------------------------.≡=

ν E( ) 1
π
---Im GR E( )〈 〉– P E( ),= =

E ∆E+
f E( )

πν E( )[ ]2 f E( )[ ]2+
------------------------------------------------,=

Γ πν E( )
πν E( )[ ]2 f E( )[ ]2+

------------------------------------------------,=

f E( ) P.v.
P V( ) Vd

E V–
--------------------.

∞–

∞

∫=

ΦRA GR E ω+( )GA E( )〈 〉=

=  
1

E V– ω i0+ +
----------------------------------- 1

E V– i0–
------------------------P V( ) Vd

∞–

∞

∫

ΦRA 2πP E( )
iω–

-------------------,=

ΦRA GRGA 1 URAΦRA+[ ],=

the vertex URA is obtained in the form

(34)

The same result can be obtained from the Ward identity
(see Footnote 1)

(35)

For Gaussian distribution (10), Eqs. (27) and (31) are
equivalent to Eqs. (11) and (13), respectively. Indeed,
replacement of the gamma function in Eqs. (14) and (15) to
the determining integral and the summation of the
appearing geometric progression (which corresponds
to the Borel summation in the theory of divergent series
[24]) provide the expressions

(36)

(37)

which, after the substitution x = V2/4|g |, are reduced to
Eqs. (27) and (31), respectively.

5. HIGH ORDERS OF PERTURBATION THEORY

The possibility of constructing exact diagrammatic
expansions is specific for the zero-dimensional case.
The role of high orders, which can be analyzed in arbi-
trary dimension, is more interesting. High-order
asymptotic expressions for expansions presented in
Section 3 are determined by the two results

(38)

The first of them follows from the fact that expansions
(18) and (19) in bare energies are related to each other
due to the relation G(E) = 1/(E – Σ). With the use of the
algebra of the factorial series [1, 13] for a power of –1,

(39)

it is easy to show that LN ≈ GN in high orders. The result
for KN was obtained by Kuchinskiœ and Sadovskiœ [19]:
the expression KN = const(2N – 1)!! follows from recur-
sion relations (21) and the equality const = 1/e was
found numerically.

A general method for investigating high orders is the
Lipatov method [25] based on the fact that the coeffi-
cients FN of the expansion of the function F(g) in the

URA 1
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-------------- O ω( ).+=

∆Σ URA∆G.=
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κ2 π
------------- xx 1/2– e x– 1 4 g x

κ4
------------–
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,d

0

∞
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π κ1
2 κ2

2–( )
----------------------------- xx 1/2–d

0

∞
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× e x– κ2
2

κ2
4 4 g x–
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2

κ1
4 4 g x–

-----------------------–
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,

LN 2N 1–( )!!, KN
1
e
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A0 A1g … ANgN …+ + + +( ) 1–
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power series in g are expressed in terms of F(g) in the
form of the contour integral. In particular, for Eq. (11),

(40)

where C is the contour around the point g = 0 and the
integral at large N values is determined by the contribu-
tion from the saddle-point configuration

(41)

which gives the result

(42)

which is exact in this case [see Eq. (14)].
Similarly for Eq. (13),

(43)

The saddle points at ∆ = 0 form a continuous set and lie
on the circle ϕ2 + φ2 = 4N/κ2. The saddle points at ∆ ≠ 0
are discrete points (ϕ2 = 0, φ2 = 4N/κ2) and (ϕ2 = 4N/κ2,
φ2 = 0) (see Fig. 2). The calculation of the contribution
from the latter points corresponds to the approach used
in [5, 10]. In this case, the saddle-point approximation
is inapplicable in the limit ∆  0, because change in
the action along the circle ϕ2 + φ2 = 4N/κ2 for small ∆
values is very small and this is a typical soft mode: inte-
gration along this circle should be performed exactly
rather than in the saddle-point approximation.

The general idea for treating soft modes [24, 26] is
that the instanton is sought as the extremum of the
action under an additional condition (constraint), which
fixes the degree of freedom corresponding to the soft
mode; after that, the integration over this degree of free-
dom is performed. In this case, it is convenient to take
the constraint in the form

(44)

so that the extremum of the following function should
be sought:
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gd

2πg
--------- ϕ ϕd

0

∞

∫
C

∫°–=

× 1
2
---κ2ϕ2–

1
4
---gϕ4– N gln–

 
 
 

exp

ϕc
2 4N

κ2
-------, gc

κ4

4N
-------,–= =

GN
1

πκ2
------------- 4

κ4
-----– 

  N
Γ N

1
2
---+ 

  , N  � 1,–=

ΦRA[ ]N
gd

2πg
--------- ϕ ϕ φ φd

0

∞

∫d

0

∞

∫
C

∫°=

× 1
2
---κ2 ϕ2 φ2+( )–





exp

–
1
2
---i∆ ϕ2 φ2–( ) 1

4
---g ϕ2 φ2+( )2

– N gln–




.

1

ϕ2 φ2– ξ const,= =

(45)

where µ is the Lagrange multiplier. The extremum
exists at µ = –i∆/2, when function (45) corresponds to
the action of the symmetric problem (∆ = 0).

The formal procedure is the introduction of the
decomposition of unity,

(46)

that transforms integral (13) to the form

(47)

In terms of the polar coordinates r and θ introduced
through the relation ϕ = rcosθ and φ = rsinθ,

(48)

where the integral over r (disregarding the  δ  function
term) is similar to Eq. (11) and its high-order expansion
coefficients are determined by the saddle point rc =

. For small ∆ values, deviations of r from rc in
the Dirac δ function can be neglected, because they are

1
2
---κ2 ϕ2 φ2+( ) 1

4
---g ϕ2 φ2+( )2

+

–
1
2
---i∆ ϕ2 φ2–( ) µ ϕ2 φ2– ξ–( ),–

1 ξδ ξ ϕ2– φ2+( ),d

∞–

∞

∫=

ΦRA ϕ ϕ φ φ ξδ ξ ϕ2– φ2+( )d

∞–

∞

∫d

0

∞

∫d

0

∞

∫=

× 1
2
---κ2 ϕ2 φ2+( )–

1
4
---g ϕ2 φ2+( )2

–
1
2
---i∆ξ+

 
 
 

.exp

ΦRA θ 2θ ξe
1
2
--- i∆ξ

r3 rd

0

∞

∫d

∞–

∞

∫sind

0

π/2

∫=

× 1
2
---κ2r2–

1
4
---gr4–

 
 
 

δ ξ r2 2θcos–( ),exp

4N /κ2

ϕ

φ

∆ = 0

∆ ≠ 0

Fig. 2. Saddle points for integral (44).
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insignificant as compared to change in θ. This allows
one to factorize the dependence on ∆:

(49)

After the calculation of the expansion coefficients for
ΦRA(0), the resulting expression has the form

(50)

For small ∆ values, this expression coincides with the
asymptotic form of the coefficients in Eq. (15). The
described method can be generalized on arbitrary
dimension of space (see Section 8).

6. WHAT CAN BE EXTRACTED
FROM HIGH ORDERS?

The contribution from high orders of perturbation
theory is often substantial. This is associated with the
relation [1, 13]

(51)

which is obtained by Borel summation of the series on
the left-hand side. In the limit δ  0, the result is
independent of N0, because the imaginary part of each
term of the series (and the sum of the finite number of
these terms) is infinitely small. Result (51) is valid for
finite δ values under the condition N0 � 1/δ, which is
usually satisfied, because δ is usually exponentially
small. The form caNΓ(N + b) is typical for the high-
order asymptotic expressions obtained by the Lipatov
method [24]. Corrections to it have the form of a regular
expansion in 1/N, which provides a regular expansion
in g after summation according to Eq. (51). For this rea-
son, result (51) is constructive at g � 1. In this case, the
real part of the series is well approximated by several
first terms. The applicability of such results for the
expansions considered in Section 3 is restricted by the
region |E | � W. The nonperturbative results such as
exp(–const/g) are usually obtained by the instanton
method, but relation (51) makes it possible to reproduce
them directly from perturbation theory.

ΦRA ∆( ) ΦRA 0( ) 2 θ 2θsind

0

π/2

∫=

× 1
2
---i∆rc

2 2θcos
 
 
 

.exp

ΦRA ∆( )[ ]N
2

πκ4
------------- 4

κ4
-----– 

  N
=

× Γ N
3
2
---+ 

  ei∆λN e i∆λN––
2i∆λN

-------------------------------, λ 2

κ2
-----.=

Im caNΓ N b+( )gNeiδN

N N0=

∞

∑

=  
πc

ag( )b
-------------e 1/ag– , ag 0,>

1

The summation of high orders for 〈G〉 [see Eq. (18)]
allows one to obtain the fluctuation tail of the density of
states

(52)

according to Eq. (28) for distribution (10). The summa-
tion of series (19) for Σ yields the following expression
for damping Γ:

(53)

which can also be obtained from Eq. (29) at |E | � W,
when f(E) ≈ 1/E � πν(E).

The summation of the series with coefficients (50)
provides the 1/ω singularity:

(54)

in agreement with Eq. (32). It is very important that the
exponentials in the numerator in Eq. (50) have imagi-
nary arguments with opposite signs. For this reason, the
real parts of the series cancel, whereas the imaginary
parts are summed and the 1/ω singularity appears in (50).
If the imaginary additions to the energy in Eq. (9) had
the same signs (which corresponds to averages such as
〈GRGR〉 or 〈GAGA〉), the arguments of the exponentials
in the numerator in Eq. (50) would have the form i∆1λN
and i∆2λN with Re∆1 · Re∆2 > 0. This circumstance
would lead to the cancellation (in the leading order in ∆)
of both real and imaginary parts of two series of form
(51) and to the removal of the singularity.

The contribution from high orders to sum (25) for

URA is calculated similarly: with  = – e–iβ and  =

– eiβ,

(55)

The substitution of β = Γ/  and Eq. (53) provides the
result URAGRGA ≈ 1 coinciding with Eq.(34).

It is easily seen that all the physical results in the
region of the fluctuation tail (|E | � W) (see Section 4)
are determined by high orders. The contribution from
these orders in all cases prevails over the contribution

ν E( ) 1
π
---Im GR E( )〈 〉–

1
π
---Im

1
E iδ+
---------------–= =

× 2NΓ N 1/2+( )
π

--------------------------- W
E iδ+
--------------- 

 
2N

N N0=

∞

∑ e E
2/2W

2–

2πW2
------------------=

Γ ImΣR– Im E iδ+( )–= =

× 2NΓ N 1/2+( )
π

--------------------------- W
W iδ+
---------------- 

 
2N

N N0=

∞

∑ πE2e E
2/2W

2–

2πW2
---------------------------,=

ΦRA[ ]sing ΦRA[ ]NgN

N N0=

∞

∑ 2π
iω–

--------- e E
2/2W

2–

2πW2
------------------= =

κ1
2 E κ2

2

E

URAGRGA 2NΓ N 1/2+( )
πe

--------------------------- W

E
----- 

  2N

N N0=

∞

∑=

× eiβ 2N 1–( ) eiβ 2N 1–( )–

eiβ e iβ––
---------------------------------------------- πEP E( )

eβ
--------------------,≈

E
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from the first terms of the series, which are treated in
the asymptotic sense [24].

7. PARADOX AND ITS SOLUTION

Unfortunately, the results of the summation for ΦRA

and URA [see Eqs. (54) and (55)] coincide with the exact
results (see Section 4) only incidently. According to
Bethe–Salpeter equation (34),

(56)

i.e., the series for ΦRA and URA are determined by the
mutually inverse functions and their high-order expan-
sion coefficients almost coincide with each and differ
only in a constant factor [see Eq. (39)]. From Eqs. (24,25)
it is easy to obtain the expansion of URA in the bare
Green’s functions and the expansion of ΦRA in the
renormalized Green’s functions. The summation of
these expansions provides the results

(57)

which are in sharp disagreement with the results given
in Eqs. (54), (55), and Section 4.

The main of arising paradoxes was formulated in
Section 1. The 1/ω singularity is determined by high
orders (see Section 6). The high-order behaviors for
ΦRA and URA are the same according to Eqs. (56) and
(39). However, ΦRA has the singularity, whereas URA

does not have it according to Eqs. (32) and (34), respec-
tively.

It is convenient to begin to analyze the paradox with
the derivation of the second of results (38), where the
factor 1/e was determined in [19] only numerically. As
will be seen, this provides a key to the problem. As seen
from Eq. (19), KN is the number of the “skeleton” dia-
grams of the Nth order for the self-energy Σ (see
Fig. 1d), whereas LN is the number of the diagrams for
Σ, where the self-energy insertions are not excluded
(see Fig. 1c). As mentioned above, for high orders,
LN ≈ (2N – 1)!! due to Eq. (39) and KN = const(2N – 1)!!
due to Eq. (20), where const should be determined. It is
easy to understand that LN includes

(i) the KN skeleton diagrams;
(ii) the diagrams that are obtained from the skele-

ton diagrams of the (N – 1)th order; the number of
such diagrams is KN – 1 ≈ KN/2N, but approximately 2N
one-loop insertions are possible in the internal lines;
therefore, the total number of these diagrams is also
equal to KN;

(iii) the diagrams that are obtained from the skele-
ton diagrams of the (N – 2)th order; the number of
such diagrams is KN – 2 ≈ KN/(2N)2, but approximately
(2N)2/2! one-loop insertions are possible and this pro-
vides KN /2! diagrams; in addition, approximately 2N
two-loop insertions are possible and this provides about

URA 1

GRGA
--------------

1

ΦRA
----------,–=

ΦRA πP E( )
eβE

----------------, URAGRGA 2πE2P E( )
iω–

-------------------------,= =

KN /N diagrams, but this number is insignificant for
large N values;

(iv) the diagrams that are obtained from the skele-
ton diagrams of the (N – 3)th order; the number of
such diagrams is KN – 3 ≈ KN /(2N)3, but approximately
(2N)3/3! one-loop insertions are possible and this pro-
vides KN /3! diagrams; in addition, approximately 2N
three-loop insertions or about (2N)2 combined (two- +
one-loop) insertions are possible, but this contribution
is insignificant for large N values; etc.

It is seen that the difference between LN and KN in
the leading order is determined by the one-loop inser-
tions; therefore,

(58)

which was to be proved.
The property revealed above is a particular case of a

more general statement [12] that the leading Lipatov
asymptotic form is sensitive to the renormalization of
the energy (or “mass” in the field-theory terms) only at
the one-loop level and only in the form of a constant
factor. More precisely, let the Lipatov asymptotic form
in terms of the bare energy E is expressed as

(59)

where the parameter b is determined only by the num-
ber of the external lines and zeroth modes and is energy
independent [24].    Then,   in   terms  of  the  renormal-

ized energy , it has the form

(60)

where k is independent of N and c( ) and a( ) are the
same functions as in Eq. (59).

Indeed, the transition from the bare energy to the

renormalized energy, κ2 =  + Σ(0, ), in functional
integrals (7) and (8) reduces to the change of variables

(61)

In the calculation of high orders, the saddle-point con-

figuration in which  ~  ~ N and gc ~ 1/N [cf.
Eq. (41)] is substantial in the functional integral. For
this reason, in Eq. (7),

where (62)

i.e., the transition from κ2 to  conserves the func-
tional form of the saddle-point contribution and leads
only to the appearance of the factor e–A that is indepen-

dent of N and is determined by the coefficient a1( ),

i.e., by the one-loop contribution.6 Hence, the Lipatov
asymptotic form does not change if the coefficients

LN KN 1 1/1! 1/2! 1/3! …+ + + +( ) eKN ,= =

c E( )a E( )NΓ N b+( )

Ẽ

k Ẽ( )c Ẽ( )a Ẽ( )NΓ N b+( ),

Ẽ Ẽ

κ̃2 κ̃2

κ2 κ̃2 a1 κ̃2( )g a2 κ̃2( )g2 a3 κ̃2( )g3 …+ + + +=

ϕc
2 φc

2

S ϕc κ2,{ }–( )exp S ϕc κ̃2,{ }– A–( ),exp=

A
1
2
---a1 κ̃2( )gc ddxϕc

2 x( ) O 1/N( );+∫=

κ̃2

κ̃2
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a2( ), a3( ), etc. are set to zero. At the same time, the
complete renormalization of energy qualitatively dif-
fers from the one-loop renormalization. In the first case,

the damping Γ in  = –E – ∆E – iΓ is the same as in
the average Green’s function and is finite for all E val-
ues [see Eq. (29)].7 In the second case, the imaginary

part of  is infinitely small in the entire region of the
fluctuation tail. Moreover, an arbitrary change in vari-
ables specified by Eq. (61) with arbitrarily chosen coef-

ficients a2( ), a3( ), etc. makes it possible to arbi-

trarily change the imaginary part of  without change

in the functional form of the Lipatov asymptotic form.8 

According to the above consideration, the instanton
method allows one to find only the general structure of
the singularities for ΦRA and URA:

(63)

where the parameters γ and  remain indefinite and
cannot be determined in the framework of the instanton
method, neither in the leading saddle-point approxima-
tion nor in the case of the inclusion of the finite-order
corrections to it. They must be determined with the
inclusion of information from low orders of perturba-
tion theory. The parameters γ and  in the zero-dimen-
sional case are unambiguously determined with the use
of Ward identity (35) and Bethe–Salpeter equation (33)
by the expressions

(64)

which obviously demonstrate that the general princi-
ples responsible for the preferable use of the bare
energy or renormalized energy are absent. Thus, the
parameters γ and  are different and generally depend
on the momenta. The problem of determining them for
arbitrary dimension of space is open. Since the singu-
larities of ΦRA and URA are determined by the same dif-
fusion coefficient [see Eqs. (2) and (4)], it is confirmed
that this coefficient should be calculated with the self-
consistent treatment used in the Vollhardt–Wölfle theo-
ries [1, 2].

6 The values a2( ), a3( ), etc. become significant when the cor-

rections of the orders 1/N, 1/N2, etc. are successively taken into
account.

7 This is also the case for arbitrary dimension of space [1, 13, 27].
8 Note that an arbitrary one-loop renormalization of the energy

[i.e., the correct a1( ) value] at d ≥ 2 is fundamentally neces-
sary, because it eliminates the ultraviolet divergence in the
parameter c of the Lipatov asymptotic form [1, 12, 13].

κ̃2 κ̃2

κ̃2 κ̃2

κ̃2

κ̃2

κ̃2 κ̃2

κ̃2

κ̃2

1

ΦRA 1
ω 2iγ+
------------------, URA 1

ω 2iγ̃+
------------------,∼ ∼

γ̃
1

γ̃

γ 0, γ̃ Γ,= =

γ̃

8. INSTANTON CALCULATIONS
IN THE GENERAL CASE

Let us show how the instanton calculations per-
formed in [5, 10] should be modified in view of the
above analysis. The introduction of the decomposition
of unity

(65)

which is similar to Eq. (46), into integral (8) reduces it
to the form

(66)

where

(67)

is a composite (m + n)-component vector. The saddle-
point configuration in instanton calculations is sought
in the form

(68)

where

(69)

It is known that the expansion coefficients for the cor-
relation function of M fields in the n-component ϕ4 the-
ory have the form

(70)

1

1

1 ξδ ξ ddxj2 x( )∫– ddxf2 x( )∫+( ),d

∞–

∞

∫=

ΦRA x1 x2 x3 x4, , ,( )

=  DΨϕα x1( )ϕα x2( )φβ x3( )φβ x4( )∫
× ξei∆ξ/2δ ξ ddx j2 f2–( )∫–( )d
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∞

∫

× ddx
1
2
--- ∇Y( )2 1

2
---κ2Y2 1

4
---gY4+ +∫–

 
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 

,exp

Ψ
j
f 

 
 

.=

1

jc x( )
ψc x( )

g–
--------------u, fc x( )

ψc x( )
g–

--------------v,= =

Yc x( )
ψc x( )

g–
--------------U,=

U
u

v 
 
 

, U2 u2
v

2.+= =

ϕα1
x1( )…ϕαM

xM( )〈 〉 N c xi{ } S0–( ) N–=

× Γ N b+( ) dnuδ u2 1–( )uα1
…uαM

,∫
c xi{ } CMn ddyψc x1 y–( )…ψc xM y–( ),∫=
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4
----, I p ddxψc
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The expression for the constant CMn is lengthy and can
be found in [13, 27]. If the saddle-point approximation

(71)

is used for the  δ function term entering into Eq. (66),
the integral with respect to DΨ in Eq. (66) is a usual
functional integral of the (m + n)-component ϕ4 theory
and its expansion coefficients follow from Eq. (70) at
M = 4 as a result of change of the integration with
respect to dnu to the integration with respect to dn + mU =
dnudmv:

(72)

where λ = 2I2/I4. The calculation of the integral is per-
formed in the coordinates u = rcosθ and v = rsinθ and,
in the limit n, m  0, provides

(73)

Here, the following expression is used:

(74)

where Sn is the area of the n-dimensional unit sphere.
Thus, the high-order asymptotic expression for the
coefficients of the expansion of ΦRA,

(75)

has the same ∆ dependence as in the zero-dimensional
case [see Eq. (50)]. For this reason, the argumentation
given in Section 6 for the necessity of the imaginary

additions of opposite signs to  and  for the appear-
ance of a singular contribution in the summation of
high orders,

b
M n d 1–+ +( )/2, d 4,<
M n 1–+( )/2, d 4.>




=

δ ξ
I2

gc u2
v

2–( )
------------------------------– 

  , gc

I4

4N
-------,–=

ΦRA xi{ }[ ]N c xi{ } S0–( ) N– Γ N b+( )=

× dnudm
vδ u2

v
2 1–+( )uα

2
v β

2ei∆λN u
2

v
2–( ),∫

Sn

n
-----

Sm

m
----- un 1– u v

m 1–
vδ u2

v
2 1–+( )u2

v
2d

0

∞

∫d

0

∞

∫

× eiΩ u
2

v
2–( ) eiΩ e iΩ––

8iΩ
----------------------.=

Sn

n
-----

2πn/2

nΓ n/2( )
-------------------- 1 n 0( ).=

ΦRA xi{ }[ ]N
1
4
---c xi{ } S0–( ) N– Γ N b+( )=

× ei∆λN e i∆λN––
2i∆λN

-------------------------------

κ1
2 κ2

2

(76)

remains valid. According to the above analysis, the infi-
nitely small imaginary addition δ appearing in Eq. (9)
is changed to the finite value γ, which remains indefi-
nite in the framework of the instanton analysis.

In the above analysis, it is implicitly implied that the
dimension of space is d < 4 and the instanton ψc(x) is
determined from the equation

(77)

The theory for d > 4 is nonrenormalizable and should
be considered on a lattice. This requires the modifica-
tion of the gradient term in the action and the change of
the integration with respect to ddy in Eq. (70) to the
summation over the sites of the lattice. Results (75) and
(76) remain unchanged, but ψc(x) should be treated as a
lattice instanton [13]. The above calculations at d = 4
should be modified: the integral I2 diverges in massless
theory and, in theory with mass, requires accurate inte-
gration over an additional soft mode associated with
change in the radius of the instanton [26].
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