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Abstract
Reconstruction of the β-function for ϕ4 theory, attempted previously by
summation of perturbation series, led to the asymptotics β(g) = β∞gα at
g →∞, where α ≈ 1 for space dimensions d = 2, 3, 4. The natural hypoth-
esis arises, that asymptotic behavior is β(g) ∼ g for all d. Consideration of
the ”toy” zero-dimensional model confirms the hypothesis and reveals the
origin of this result: it is related with a zero of a certain functional integral.
Consideration can be generalized to the arbitrary space dimensionality, con-
firming the linear asymptotics of β(g) for all d. Asymptotical behavior for
other renormalization group functions (anomalous dimensions) is found to
be constant. Relation to the ”zero charge” problem is discussed.

1. Introduction

According to Landau, Abrikosov, Khalatnikov [1], relation of the bare charge g0 with
observable charge g for renormalizable field theories is given by expression

g =
g0

1 + β2g0 ln Λ/m
, (1)

where m is the mass of the particle, and Λ is the momentum cut-off. For finite g0 and
Λ →∞ the ”zero charge” situation (g → 0) takes place. The proper interpretation of Eq.1
consists in its inverting, so that g0 (related to the length scale Λ−1) is chosen to give a
correct value of g:

g0 =
g

1− β2g ln Λ/m
. (2)

The growth of g0 with Λ invalidates Eqs.1,2 in the region g0 ∼ 1 and existence of ”the
Landau pole” in Eq.2 has no physical sense.

The actual behavior of the charge g(L) as a function of the length scale L is determined
by the Gell-Mann – Low equation

− dg

d ln L
= β(g) = β2g

2 + β3g
3 + . . . (3)
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and depends on the appearance of the function β(g). According to classification by Bo-
golyubov and Shirkov [2], the growth of g(L) is saturated, if β(g) has a zero for finite g,
and continues to infinity, if β(g) is non-alternating and behaves as β(g) ∼ gα with α ≤ 1
for large g; if, however, β(g) ∼ gα with α > 1, then g(L) is divergent at finite L = L0 (the
real Landau pole arises) and the theory is internally inconsistent due to indeterminacy of
g(L) for L < L0. The latter case corresponds to the ”zero charge” situation in full theory
(beyond its perturbation framework).

One can see that solution of the ”zero charge” problem needs calculation of the Gell-
Mann – Low function β(g) at arbitrary g, and in particular its asymptotic behavior for
g →∞. Such attempt was made recently by the present author for ϕ4 theory [3], QED [4]
and QCD [5] (see a review article [6]). It is based on the fact that the first four coefficients
βN in Eq.3 are known from diagrammatic calculations, while their large order behavior
can be established by the Lipatov method [7, 6]. Smooth interpolation of the coefficient
function and the proper summation of the perturbation series give non-alternating β(g)
with α ≈ 1 in four-dimensional ϕ4 theory [3] 1. Recent results for 2D and 3D ϕ4 theory
[12, 13] also correspond to α ≈ 1. The natural hypothesis arises, that β(g) has the linear
asymptotics for arbitrary space dimension d. Simplicity of the result indicates that it can
be obtained analytically.

Below we show that it is so indeed. Analysis of zero-dimensional theory confirms the
asymptotics β(g) ∼ g and reveals its origin. It is related with unexpected circumstance that
the strong coupling limit for the renormalized charge g is determined not by large values
of the bare charge g0, but its complex values. 2 More than that, it is sufficient to consider
the region |g0| ¿ 1, where the functional integrals can be evaluated in the saddle-point
approximation. If a proper direction in the complex g0 plane is chosen, the saddle-point
contribution of the trivial vacuum is comparable with the saddle-point contribution of the
main instanton, and a functional integral can turn to zero. The limit g → ∞ is related
with the zero of a certain functional integral and appears to be completely controllable.
As a result, it is possible to obtain asymptotic behavior of the β-function and anomalous
dimensions: the former indeed appears to be linear, while the latter achieve certain constant
limits. Analogous results can be obtained for QED [17].

The asymptotics β(g) ∼ g in combination with non-alternating behavior of β(g) cor-
responds to the second possibility in the Bogolyubov–Shirkov classification: g(L) is finite
for large L but grows to infinity at L → 0. It looks in conflict with the expected triviality
of ϕ4 theory (see e.g. [14] and the references therein). In fact, two definitions of trivial-
ity were mixed in the literature. The first one, introduced by Wilson [15], is equivalent
to positiveness of β(g) for g 6= 0; it is confirmed by all available information and can be

1 Possibility of correct summation of perturbation series is frequently questioned in relation with possible
existence of renormalon singularities in the Borel plane [8]. Such singularities can be easily obtained by
summing some special sequences of diagrams, but their existence was never proved, if all diagrams are
taken into account [9]. The present result for the asymptotics of β(g) satisfies the general criterion for
absence of renormalon singularities [10] and confirms the proof of their absence suggested in [11].

2 Discussion of unitarity of theory is given in Sec.5.
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considered as firmly established. The second definition, introduced by mathematical com-
munity [16], corresponds to the true triviality and is equivalent to internal inconsistency
in the Bogolyubov–Shirkov sense: it needs not only positiveness of β(g) but also the cor-
responding asymptotical behavior. Evidence of true triviality is not extensive and allows
different interpretation [3]. The present analysis gives new insight to this problem: to
obtain nontrivial theory one need to use the complex values of the bare charge g0, which
were never exploited in mathematical proofs and numerical simulations. This matters will
be discussed in a separate paper [18].

2. Definition of the renormalization group (RG) functions

Consider the O(n) symmetric ϕ4 theory with an action

S{ϕ} =
∫

ddx





1
2

∑
α

(∇ϕα)2 + 1
2
m2

0

∑
α

ϕ 2
α + 1

8
u

(∑
α

ϕ 2
α

)2


 ,

u = g0Λ
ε , ε = 4− d (4)

in d–dimensional space. Following the usual RG formalism [19], consider the ”amputated”
vertex Γ(L,N) with N external lines of field ϕ and L insertions of ϕ2 (where two fields ϕ are
taken in the coinciding spatial points). Its multiplicative renormalizability means

Γ(L,N)(pi; g0,m0, Λ) = Z−N/2
(

Z2

Z

)−L

Γ
(L,N)
R (pi; g, m) , (5)

i.e. divergency at Λ →∞ disappears after extracting the proper Z-factors and transferring
to the renormalized charge and mass. We accept the renormalization conditions at zero
momentum 3

Γ
(0,2)
R (p; g, m)

∣∣∣
p→0

= m2 + p2 + O(p4) ,

Γ
(0,4)
R (pi; g,m)

∣∣∣
pi=0

= gmε , (6)

Γ
(1,2)
R (pi; g, m)

∣∣∣
pi=0

= 1 ,

which are typical for applications in the phase transitions theory [20]. Substitution of (6)
into (5) gives expressions for g, m, Z, Z2 in terms of the bare quantities

Z(g0,m0, Λ) =

(
∂

∂p2
Γ(0,2)(p; g0,m0, Λ)

∣∣∣
p=0

)−1

,

Z2(g0,m0, Λ) =
(

Γ(1,2)(pi; g0,m0, Λ)
∣∣∣
pi=0

)−1

, (7)

3 Dependence on the renormalization scheme is discussed in Sec.5.
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m2 = Z(g0,m0, Λ) Γ(0,2)(p; g0,m0, Λ)
∣∣∣
p=0

,

g = m−εZ2(g0,m0, Λ) Γ(0,4)(pi; g0,m0, Λ)
∣∣∣
pi=0

.

Applying differential operator d/d ln m to (5) for fixed g0 and Λ gives the Callan-Symanzik
equation, valid asymptotically for large pi/m [19]

[
∂

∂ ln m
+ β(g)

∂

∂g
+ (L−N/2) η(g)− Lη2(g)

]
Γ

(L,N)
R (pi; g,m) ≈ 0 , (8)

where the RG functions β(g), η(g) and η2(g) are determined as

β(g) =
dg

d ln m

∣∣∣∣∣
g0,Λ=const

, η(g) =
d ln Z

d ln m

∣∣∣∣∣
g0,Λ=const

, η2(g) =
d ln Z2

d ln m

∣∣∣∣∣
g0,Λ=const

(9)

and according to general theorems depend only on g [19].

3. ”Naive” zero-dimensional limit.

The functional integrals of ϕ4 theory are determined as

Z(M)
α1...αM

(x1, . . . , xM) =
∫

Dϕϕα1(x1)ϕα2(x2) . . . ϕαM
(xM) exp (−S{ϕ}) . (10)

To take a zero-dimensional limit, consider the system restricted spatially in all directions
at sufficiently small scale, and neglecting spatial dependence of ϕ(x) omit the terms with
gradients in Eq.4; interpreting the functional integral as a multi-dimensional integral on a
lattice, we can take the system sufficiently small, so it contains only one lattice site:

Z(M)
α1...αM

=
∫

dnϕϕα1 . . . ϕαM
exp

(
−1

2
m2

0ϕ
2 − 1

8
uϕ4

)
. (11)

The diagrammatic expansions generated by such ”functional” integrals have the usual form,
but all propagators should be taken at zero momenta and no momentum integrations are
necessary.

Such understanding of zero-dimensional theory is conventional in the literature. How-
ever, it does not quite correspond to the true zero-dimensional limit of ϕ4 theory. Consid-
ering expressions for the simplest diagrams in d-dimensional case and taking limit d → 0, it
it easy to be convinced that their trivialization (of the described type) occurs only for zero
external momenta; if the latter are different from zero, no evident simplifications occur.
This point is essential for definition of the Z-factor, which is introduced according to a
scheme (see the first relation in (6))

G2(p) =
1

p2 + m2
0 + Σ(p,m0)

=
1

p2 + m2
0 + a0(m0) + a2(m0)p2 + a4(m0)p4 + . . .

=
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=
Z

p2 + m2 + O(p4)
, (12)

and is determined by the momentum dependence of self-energy. In the described ”naive”
zero-dimensional theory, non-zero momenta are absent and we can accept Z = 1. Such
procedure is internally consistent but does not correspond to the true zero-dimensional
limit of ϕ4 theory. The latter fact is not essential for us, since this model is used only for
illustration and the proper consideration of the general d-dimensional case will be given in
the next section.

Substituting ϕα = ϕuα in (11) and integrating over directions of the unit vector u, we
obtain for even M [21]

Z(M)
α1...αM

=
2πn/2

2M/2Γ(M/2 + n/2)
Iα1...αM

KM(m0, u) , (13)

where Iα1...αM
is the sum of terms like δα1α2δα3α4 . . . with all possible pairings, and

KM(m0, u) =
∫ ∞

0
ϕM+n−1dϕ exp

(
−1

2
m2

0ϕ
2 − 1

8
uϕ4

)
. (14)

Defining the M–point Green functions G(M) as Z(M)/Z(0) and extracting dependence on
indices

G
(2)
αβ = G2δαβ , G

(4)
αβγδ = G4Iαβγδ , Γ

(0,4)
αβγδ = Γ4Iαβγδ , (15)

we have
Γ2 = 1/G2 , G4 = G2

2 −G4
2Γ4 , (16)

where

G2 =
1

n

K2(m0, u)

K0(m0, u)
, G4 =

1

n(n + 2)

K4(m0, u)

K0(m0, u)
(17)

and the vertex Γ
(0,4)
αβγδ is defined by the usual relation

G
(4)
αβγδ = G

(2)
αβG

(2)
γδ + G(2)

αγG
(2)
βδ + G

(2)
αδ G

(2)
βγ −G

(2)
αα′G

(2)
ββ′G

(2)
γγ′G

(2)
δδ′Γ

(0,4)
α′β′γ′δ′ . (18)

Using the renormalization conditions (7), we obtain

m2 = Γ2 =
nK0

K2

, (19)

g =
Γ4

m4
= 1−m4G4 = 1− n

n + 2

K4K0

K2
2

. (20)

Differentiating (19) over m2
0 and taking into account that differentiation of KM transfers it

to KM+2 (see (14)), we have

dm2

dm2
0

=
n

2

{
−1 +

K4K0

K2
2

}
. (21)
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Since all differentiations in (9) occur at g0, Λ = const, the latter parameters are considered
to be fixed throughout all calculations: then m2 is a function of only m2

0 and Eq.21 defines
also the derivative dm2

0/dm2. According to definition of the β-function (9) we have

β(g) = 2
dg

d ln m2
= − 2m4

n(n + 2)

[
2

K4

K0

+
(

K4

K0

)′

m2
0

m2 dm2
0

dm2

]
(22)

and substitution of (21) gives the following expression

β(g) = − 2n

n + 2

K4K0

K2
2


2 +

K6K0

K4K2
− 1

1− K4K0

K2
2


 . (23)

The change of variables ϕ → ϕ(8/u)1/4 in the integrals (14) reduces them to the form

KM(t) =
∫ ∞

0
ϕM+n−1dϕ exp

(
−tϕ2 − ϕ4

)
, t =

(
2

u

)1/2

m2
0 . (24)

The arising factors drop out of the combinations K4K0/K
2
2 and K6K0/K4K2 entering

equations (20),(23), and the latter have the same form in terms of KM(t), as they had
in terms of KM(m0, u). The right hand sides of (20),(23) are the functions of the single
variable t and the dependence β(g) is determined by these expressions in the parametric
form.

The vertex Γ
(1,2)
αβ = Γ12δαβ is determined by the Ward identity,

Γ12 =
dm2

dm2
0

= 1− n + 2

2
g , (25)

and the function η2(g) is given by expression

η2(g) = −d ln Γ12

d ln m
=

β(g)

2/(n + 2)− g
, (26)

while η(g) is identically zero in the accepted approximation.

Using the asymptotic expressions for KM(t) ,

KM(t) =





1√
2
t−(M+n)/2Γ

(
M+n

2

) [
1− (M+n)(M+n+2)

4t2
+ . . .

]
, t →∞

1
4

[
Γ

(
M+n

4

)
− tΓ

(
M+n+2

4

)
+ . . .

]
, t → 0

√
π

2
et2/4

( |t|
2

)(M+n−2)/2 [
1 + (M+n−2)(M+n−4)

4t2
+ . . .

]
, t → −∞ ,

, (27)

it is easy to obtain that g and β(g) depend on t as shown in Fig. 1,a, i.e. variation of
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Figure 1: (a) Dependence of g and β(g) on the parameter t. (b) Resulting appearance of
β(g).

parameter t along the real axis determines β(g) in the interval from g = 0 till the fixed
point (Fig. 1,b) 4

g∗ =
2

n + 2
. (28)

To advance into the large g region, one should investigate the parametric representation
(20), (23) for complex values of t. If t = |t|eiχ and |t| À 1, then (in dependence on
χ) the integrals KM(t) are determined by either trivial saddle point ϕ = 0, or nontrivial
saddle-point ϕ2 = −t/2. The saddle-point contributions to KM(t) depend on t, but this
dependence drops out of the combinations K4K0/K

2
2 and K6K0/K4K2, entering (20,23).

Thus, in the rough approximation, the complex t plane is divided into two parts where g and
β(g) takes constant values g = 0, β(g) = 0 and g = g∗, β(g) = 0. The smooth transition
between these values is related with deviations from the saddle-point approximation, which
arise for |t|<∼ 1; however, corresponding variations of g are expected to be finite, as in the
case of the real t (Fig. 1,a). Now it is easy to understand that large values of g can be
achieved only in those directions of the complex t plane where contributions from two

4 Existence of the fixed point g∗ does not mean the existence of the phase transition, which is absent
for d < 2. The scaling behavior of correlation functions follows from the Callan–Symanzik equation only
in the region of small m, which is inaccessible for physical values of m0 and g0. Eq.(28) is in agreement
with the result g̃∗ = (n + 8)/(n + 2), obtained in [23], where normalization of charge g̃ differs from our,
g̃ = (n + 8)g/2. As discussed above, this result does not correspond to the true zero-dimensional limit of
ϕ4 theory and its use in the interpolation scheme for improving dependence of g∗ on the space dimension
d [23] is not reasonable.
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saddle points are comparable in value. Then for KM(t) we have representation

KM(t) = Aeiψ + A1e
iψ1 = Aeiψ

(
1 + aei∆

)
(29)

and the integral can be turned to zero by the corresponding choice of a and ∆. Indeed, two
available degrees of freedom (Re t and Im t) are in principle sufficient to adjust a and ∆.
With variation of t, parameter a surely passes through the unit value, since the complex
t plane contains regions where dominates either the first, or the second term of (29). As
for the change of ∆, it occurs in infinite limits (see below), and the integral KM(t) has an
infinite number of zeroes lying close to the lines χ = ±3π/4 and accumulating at infinity.
Therefore, the saddle-point approximation used in above considerations can be justified for
zeroes lying in the large |t| region.

It is easy to see that the limit g →∞ can be achieved, if K2 goes to zero; then (20,23)
are simplified,

g ≈ − n

n + 2

K4K0

K2
2

, β(g) ≈ − 4n

n + 2

K4K0

K2
2

, (30)

and the parametric representation can be resolved in the form

β(g) = 4g , g →∞ , (31)

while from (26) we have
η2(g) = −4 , g →∞ . (32)

In accordance with expectations, the asymptotics of β(g) appears to be linear.

In derivation of (31), (32) we did not use the explicit form of the integrals KM(t): it
was essential only that (a) the integral K2(t) has any zeroes, and (b) zeroes of different
integrals KM(t) do not coincide. Let us show that it is indeed so. The values of action
for the saddle points ϕ = 0 and ϕ2 = −t/2 are equal to 0 and t2/4 correspondingly, and
contributions of these points are comparable for Re t2 = 0 or χ = ±π/4,±3π/4. However,
values χ = ±π/4 are not suitable: the integral KM(t) exhibits the Stokes phenomenon,
which is related with the change of topology for lines of the steepest descent (see, e.g. [22]).
This change of topology occurs at χ = ±π/2: for 0 < |χ| < π/2 the line of the steepest
descent passes only the trivial saddle point (Fig. 2,a), while for π/2 < |χ| < π both saddle
points are passed (Fig. 2,b). The compensation of two contributions (29) is possible for
χ = ±3π/4, but does not occur for χ = ±π/4. Setting t = ρeiχ, ρ À 1, χ = 3π/4 + δ,
δ ¿ 1, we have for contributions of two saddle points in the integral K0(t)

K0(t) = ρ−n/2e−i 3π
8

n

[
1

2
Γ

(
n

2

)
+

√
π

2n/2
e−i π

4
+i π

4
n−i 1

4
ρ2

ρn−1e
1
2
ρ2δ

]
(33)

Choosing δ(ρ) from the condition

ρn−1e
1
2
ρ2δ =

2n/2−1

√
π

Γ
(

n

2

)
, i.e. δ ∼ ln ρ/ρ2 (34)
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Figure 2: The lines of the steepest descent for the integral KM(t): (a) for 0 < χ < π/2,
and (b) for π/2 < χ < π.

we obtain

K0(t) =
1

2
Γ

(
n

2

)
ρ−n/2e−i 3π

8
n

[
1 + e

i
4
(π+πn−ρ2)

]
(35)

and zeroes of K0(t) lie in the points

ρ2
s = π(n + 5) + 8πs , s−integer . (36)

The results for KM(t) can be obtained by the change n → n+M , and it is clear from (34),
(36) that different integrals KM(t) turn to zero in different points.

4. General d-dimensional case

According to (24), the complex t values with |t| → ∞ correspond to complex g0 with
|g0| → 0, and we come to miraculous conclusion: large values of the renormalized charge
g corresponds not to large values of the bare charge g0 (as naturally to think 5), but to its

5 It is commonly accepted that some universal function g = f(L) can be introduced, describing the
dependence of the charge on the length scale. Then the observable charge corresponds to gobs = f(m−1),
the bare charge corresponds to g0 = f(Λ−1), and the renormalized charge defined at the scale L, is simply
g = f(L), i.e. all charges entering the theory are in fact one and the same charge but related with different
scales. However, it is well-known that this picture is approximate due to ambiguity of the renormalization
scheme. Definitions of the bare and renormalized charge are technically different and introduced in the
cut-off and subtraction schemes, correspondingly [24]. Associated functions g0 = f1(L) and g = f2(L)
coincide on the one-loop and two-loop level, but differ in higher orders. Hence, our intuition is relevant
only in the weak coupling region.
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complex values; more than that, it is sufficient to consider the region |g0| ¿ 1, where the
saddle-point approximation is applicable.

As a result, the zeroes of the functional integrals can be obtained by compensation of
the saddle-point contributions of trivial vacuum and of the instanton configuration with
the minimal action 6. The latter contribution is well-studied in relation with calculation of
the Lipatov asymptotics and for d < 4 is given by expression (see, e.g. [26], Eq.93)

[
Z(M)

α1...αM
(p1, . . . , pM)

]inst
= icM(−g0)

−(M+r)/2e−S0/g0〈φc〉p1 . . . 〈φc〉pM
Iα1...αM

(37)

and by somewhat more complicated expression for d = 4. Here 〈φc〉p is the Fourier trans-
form of the dimensionless instanton configuration φc(x), S0 is the corresponding action, r
is the number of zero modes, and cM is a certain constant. Then for M = 0, 2, . . . we have

Z0 = 1 + ic0(−g0)
−r/2e−S0/g0 ,

Z
(2)
αβ (p, p′) =

δαβ

p2 + m2
0

+ ic2(−g0)
−(r+2)/2e−S0/g0〈φc〉2p δαβ , (38)

etc., where all contributions are normalized by a value Z(0) at g = 0. Setting t2 = −S0/g0,
we come to expression of type (33), which can be analyzed analogously. It is easy to be
convinced that different integrals KM and their derivatives over m2

0 have zeroes in different
points.

Now we need representation of RG functions in terms of functional integrals. The
Fourier transform of (10) is

Z(M)
α1...αM

(p1, . . . , pM)N δp1+...+pM
=

∑
x1,...,xM

Z(M)
α1...αM

(x1, . . . , xM)eip1x1+...+ipMxM (39)

where N is the number of sites on the lattice, which is implied in definition of the functional
integral. For the choice of external momenta corresponding to the symmetric point, pi ·pj =
p2(4δij − 1)/3, it is possible to extract factors Iα1...αM

from Z(M), in analogy with (13)

Z(0) = K0 , Z
(2)
αβ (p,−p) = K2(p)δαβ , Z

(4)
αβγδ{pi} = K4{pi}Iαβγδ (40)

Introducing vertex Γ(0,4) by relation

G
(4)
αβγδ(p1, . . . , p4) = G

(2)
αβ(p1)G

(2)
γδ (p3)N δp1+p2 + G(2)

αγ (p1)G
(2)
βδ (p2)N δp1+p3+

+G
(2)
αδ (p1)G

(2)
βγ (p3)N δp1+p4 −G

(2)
αα′(p1)G

(2)
ββ′(p2)G

(2)
γγ′(p3)G

(2)
δδ′(p4)Γ

(0,4)
α′β′γ′δ′(p1, . . . , p4) (41)

and extracting Iα1...αM
, we have

G
(2)
αβ(p,−p) = G2(p)δαβ , G

(4)
αβγδ{pi} = G4{pi}Iαβγδ , Γ

(0,4)
αβγδ{pi} = Γ4{pi}Iαβγδ (42)

6 Contributions of higher instantons contain additional smallness for |g0| ¿ 1.
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For strictly zero momenta pi, the relation of G4 to Γ4 contains factors N , proportional to
volume of the system. It is more convenient to set pi ∼ µ, excluding special equalities like
p1 + p2 = 0, and choose µ so that L−1 <∼ µ ¿ m, where lower bound goes to zero in the
limit of the infinite system size L. Then

G4 =
K4

K0

, Γ4 = −G4

G4
2

= −K4K
3
0

K4
2

, (43)

where the integrals are taken at zero momenta, and

G2 =
K2(p)

K0

, Γ2(p) =
1

G2(p)
=

K0

K2(p)
≈ K0

K2

+
K0K̃2

K2
2

p2 (44)

where we have written for small p 7

K2(p) = K2 − K̃2p
2 + . . . (45)

Expressions for the Z-factors, renormalized mass and charge follows from (7)

Z =

[
∂

∂p2
Γ2(p)

]−1

p=0

=
K2

2

K0K̃2

, (46)

m2 = ZΓ2(0) =
K2

K̃2

, (47)

g = m−εZ2Γ4 = −
(

K2

K̃2

)d/2
K4K0

K2
2

, (48)

1

Z2

= Γ12{pi = 0} =
dΓ2(0)

dm2
0

=
(

K0

K2

)′
=

K ′
0K2 −K0K

′
2

K2
2

,

and
dm2

dm2
0

=

(
K2

K̃2

)′
=

K ′
2K̃2 −K2K̃

′
2

K̃2
2

, (49)

where the prime denotes derivatives over m2
0. As in Sec.3, parameters g0 and Λ are consid-

ered to be fixed; then m2 is a function of only m2
0 and derivative dm2

0/dm2 is determined
by the expression, inverse to (49). Using definition (9) for RG functions, we have

β(g) =

(
K2

K̃2

)d/2 {
−d

K4K0

K2
2

+ 2
(K ′

4K0 + K4K
′
0)K2 − 2K4K0K

′
2

K2
2

K̃2

K2K̃ ′
2 −K ′

2K̃2

}
(50)

7 The singular p-dependence Γ2 ∼ p2−η arises near the phase transitions points where m2 = 0. For small
m2, when the correlation radius ξ is finite, p-dependence remains singular for p À ξ−1, but it is regular
for p ¿ ξ−1. In the present case, m2 is finite and in fact tends to infinity in the strong coupling limit; so
the p-dependence is surely regular for small p.
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η(g) = − 2K2K̃2

K2K̃ ′
2 −K ′

2K̃2

[
2
K ′

2

K2

− K ′
0

K0

− K̃ ′
2

K̃2

]
(51)

η2(g) =
2K2K̃2

K2K̃ ′
2 −K ′

2K̃2

{
K ′′

0 K2 −K0K
′′
2

K ′
0K2 −K0K ′

2

− 2
K ′

2

K2

}
(52)

Eqs.(48), (50), (51), (52) determine β(g), η(g), η2(g) in the parametric form: for fixed
g0 and Λ, the right hand sides of these equations are the functions of only m2

0, while
dependence on the specific choice of g0 and Λ is absent due to general theorems (Sec.2).

If we make the change of variables ϕ → ϕ(u/8)−1/4, then all integrals are convergent

for any value of t ∼ g
−1/2
0 (see (24)) and hence they are regular in the whole comlex t plane

except of t = ∞. Any infinities in the right hand sides of Eqs. 48, 50–52 can be related only
with the zeroes of functional integrals. 8 It is clear from Eq.(48) that the limit g →∞ can
be achieved by two ways: tending to zero either K2, or K̃2. For K̃2 → 0, equations (48)
and (50–52) give

g = −
(

K2

K̃2

)d/2
K4K0

K2
2

, β(g) = −d

(
K2

K̃2

)d/2
K4K0

K2
2

, η(g) → 2 , η2(g) → 0

(53)
and the parametric representation is resolved in the form

β(g) = dg , η(g) = 2 , η2(g) = 0 (g →∞) . (54)

For K2 → 0, the limit g →∞ can be achieved only for d < 4:

β(g) = (d− 4)g , η(g) = 4 , η2(g) → 4 (g →∞) . (55)

The results (54), (55) correspond probably to the different branches of the function β(g).
It is easy to understand that the physical branch is the first of them. Indeed, it is com-
monly accepted in phase transitions theory that properties of ϕ4 theory change smoothly
as a function of space dimension, and results for d = 2, 3 can be obtained by analytic
continuation from d = 4− ε. All available information indicates on positiveness of β(g) for
d = 4 (Sec.1), and consequently its asymptotics at g → ∞ is positive; the same property
is expected for d < 4 by continuity. The result (54) does obey such property, while the
branch (55) does not exist for d = 4 at all. Eq.54 agrees with the approximate results
mentioned in Sec.1 and with the exact result β(g) = 2g for the asymptotics of β-function
of the 2D Ising model [25], obtained from the duality relation 9. For d = 0, Eq.54 does not
agree with (31) by the reasons discussed in Sec.3.

8 It is well-known from the phase transitions theory, that singularities of functional integrals can be
related only with the points m2 = 0. In this case, the correlation radius ξ is infinite and we really need
to have an infinite system and make the singular thermodynamic limit. If m2 6= 0, then ξ is finite and we
can take the system size L much larger than ξ but finite. If the condition L À ξ À Λ−1 is fulfilled, the
functional integrals can be approximated by finite-dimentional ones and have no singularities for finite t.

9 Definition of the β-function in [25] differs by the sign from the present paper.
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5. Concluding remarks

According to above considerations, the standard renormalization procedure defines the-
ory for 0 ≤ g ≤ gmax, where gmax is finite. For values gmax < g < ∞, the theory is defined
by analytic continuation, and large values of g correspond to complex values of g0. The
latter situation looks inadmissible: the S-matrix can be expressed through the Dyson T -
exponential of the bare action, and Hermiticity of the bare Hamiltonian looks crucial for
unitarity of theory.

In fact, a situation is more complicated, as demonstrated by Bogolyubov’s axiomatical
construction of the S-matrix [2]: according to it, the general form of the S-matrix is given
by the T -exponential of iA, where A is a sum of (i) the bare action, and (ii) a sequence
of arbitrary ”integration constants” which are determined by quasi-local operators. In the
regularized theory we can set the ”integration constants” to be zero, and the S-matrix is
determined by the bare action. However, in the course of renormalization these constants
are taken non-zero, in order to remove divergences (in fact, Bogolyubov’s theorem on
renormalizability is based on this construction). These non-zero ”integration constants”
can be absorbed by the action due to the change of its parameters. As a result, for the
true continual theory the S-matrix is determined by the renormalized action. Physically,
it is quite reasonable because the bare Hamiltonian does not exist and the Schrödinger
equation is ill-defined. From this point of view there is no problem with the complex bare
parameters, since the renormalized Lagrangian is Hermitian for real g. 10

Some problems remain for regularized theory, where the bare and renormalized La-
grangians are equally admissible and a situation looks controversial: the renormalized
Lagrangian is Hermitian and corresponds to unitary theory, while the bare Lagrangian is
non-Hermitian and unitarity looks spoiled. The analogous situation was discussed for the
exactly solvable Lee model [27], which also has the complex bare coupling for the suffi-
ciently large renormalized coupling. After the paper [28] it was generally accepted and
fixed by textbooks [29, 30] that the Lee model is physically unsatisfactory due to existence
of ”ghost” states (i.e. the states with a negative norm). Quite recently [31] it was found
that this point of view is incorrect and the Lee model is completely acceptable physical
theory. It is a key idea of [31] (see also [32]) that analytical continuation of the Hamiltonian
parameters to the complex plane should be assisted by modification of the inner product
for the corresponding Hilbert space. Instead of the usual definition

(f, g) =
∫

f ∗(x)g(x)dx

the inner product is defined as

(f, g)G = (f, Ĝg) =
∫

f ∗(x)G(x, y)g(y)dxdy

10 The bare Hamiltonian should be taken Hermitian in the process of renormalization, since perturbation
theory is different for non-Hermitian operators. When the relation of renormalized parameters with bare
ones is obtained, it can be analytically continued; possibility of such continuation is clear from Eqs.47,48.
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and with the proper choice of the operator Ĝ the bare Hamiltonian is Hermitian in re-
spect to this inner product. As a result, all states of the Lee model have a positive norm
and evolution is unitary. Modification of the inner product does not imply any revision of
quantum mechanical axioms, if it is applied to formally defined bare Hamiltonians related
with artificial constructions (like an auxiliary lattice) and not existing in reality. The in-
teresting question arises, is such modification admissible in physically relevant situations 11

[32]; in fact, arising of non-locality (the kernel G(x, y) instead δ(x − y)) is rather natural
consequence of regularization.

The analogous procedure should exist in the present case, in order to remove controversy
and give possibility to define the β-function and anomalous dimensions for all positive g.
This procedure can be put in a more general context. The arbitrary choice of non-zero ”in-
tegration constants” in Bogolyubov’s construction allows to express the S-matrix through
different renormalized Lagrangians: it is a well-known ambiguity of the renormalization
scheme [24] corresponding to different definitions of renormalized parameters. Replace-
ment of one definition of charge (g) for another (g̃) corresponds to a change of variables
g = f(g̃), not affecting the values of observable quantities but giving a different parame-
trization for them. Let theory is satisfactory for some specific definition of g; then there
exist a lot of other satisfactory definitions given by ”good” functions g = f(g̃). Also, there
are a lot of definitions given by ”bad” functions (e.g. singular or complex), for which the
theory is looking not satisfactory. From this point of view, the paper [31] gives a construc-
tive interpretation for a ”bad” change of variables g = f(g0) (the bare charge in regularized
theory can be consider as a particular definition of the renormalized charge).

Our results for the β-function confirm that accepted definition of the renormalized
parameters (Eqs. 47, 48) is satisfactory. Indeed, one can accept the arbitrary positive value
for renormalized charge g at the fixed scale µ, while its values for other scales are determined
by the Gell-Mann – Low equation. This definition does not possess any pathologies like
the Landau pole.

Few comments should be given for the dependence of our result (54) on the renormal-
ization scheme. From the mathematical side, the change of variables g = f(g̃) is completely
arbitrary. Physically, we should accept some restrictions on it, if we want that both defini-
tions g and g̃ were definitions of ”charge”, i.e. give some measure of the vertex Γ4. As the
minimal physical restriction we can accept that the function g = f(g̃) should be regular
and give one-to-one correspondence for physical values of g and g̃. If such restriction is
accepted, then the change of variables g = f(g̃) does not allow to transfer between three
qualitatively different situations in the Bogolyubov and Shirkov classification (see [33] for
details). If the ”zero charge” situation is absent for one reasonable definition of charge, it

11 If the answer is negative, then large values of renormalized coupling are inaccessible in the condensed
matter applications of ϕ4 theory (where the lattice bare Hamiltonians have a physical sense). However,
analytical continuation of the β-function to arbitrary g is useful from viewpoint of summation of pertur-
bation series. It should be clear from [3, 6] that knowledge of the strong coupling asymptotics essentially
simplifies the summation procedure and makes it well-defined and more efficient. On the other hand, the
value gmax depends on the specific lattice and can be large in some cases.
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will be absent for another.
Less rigorously, we can argue that two ”physical” definitions of charge differ in the

manner, by which the vertex Γ4 is related with a length scale L. If dependence on L has
a power-law character, then the order of magnitude uncertainty in L gives a factor of the
order of unity in definition of charge; so g ∼ g̃. Then the linear asymptotics β(g) = β∞g in
one case produces the same asymptotics in the other case, as can be proved by contradiction
(since g ∼ L−β∞ for small L, then the difference in β∞ violates the relation g ∼ g̃).

———————-

In conclusion, the strong coupling asymptotics of the β-function in ϕ4 theory is shown
to be linear in the general d-dimensional case. In four dimensions, it means possibility to
construct continuous theory with finite interaction at large distances.

The author is indebted for discussions to the participants of L.N.Lipatov’s seminar in
Petersburg Nuclear Physics Institute and of B.L.Ioffe’s seminar in Institute of Theoretical
and Experimental Physics; he is also grategul to C.M.Bender for discussion of the Lee
model.
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