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Landau, Abrikosov, and Khalatnikov showed [1]
that the relation between the bare charge e0 and
observed charge e in quantum electrodynamics (QED)
is defined by the expression

(1)

where m is the electron mass and Λ is the momentum
cutoff parameter. For a finite e0 and for Λ  ∞, the
“zero charge” situation (e  0) takes place. The gen�
erally accepted interpretation of formula (1) lies in its
inversion [1],

(2)

so that e0 corresponds to the scale of distances Λ–1 and
is chosen in accordance with the value of observed
charge e. With increasing Λ, the value of e0 increases
and formulas (1) and (2) become inapplicable in
region e0 ~ 1; for this reason, the existence of the so�
called Landau pole in formula (2) has no physical
sense meaning.

The actual behavior of the charge as a function of
scale of distances L is controlled by the Gell�Mann–

Low equation
1
: 

(3)

(where g = e2 is the fine�structure constant) and
depends on the type of function β(g). In accordance
with the Bogoliubov–Shirkov classification [2], the

1 In view of the difference in renormalization schemes, the
dependences of the bare and renormalized charge on L do not
coincide and are described by different β functions [3]; for these
functions, only the first two coefficients β2 and β3 are identical.
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increase in g(L) is terminated if function β(g) has zero
for finite values of g and can be continued to infinity if
β(g) is nonalternating and has an asymptotic form
β(g) ∝ gα with α ≤ 1 for g  ∞. If, however, β(g) ∝ gα

with α > 1, then g(L)  ∞ for a finite L = L0 (a real
Landau pole appears), and the theory is self�contra�
dictory in view of indeterminacy of g(L) for L < L0.
Landau and Pomeranchuk [5] tried to substantiate the
implementation of the latter possibility, arguing that
formula (1) is valid without any limitation; however,
the latter statement is correct only for exact equality
β(g) = β2g

2, which obviously does not hold in view of
finiteness of β3.

It can be concluded from the above arguments that
the problem of electrodynamics at short distances
requires knowledge of the form of the Gell�Mann–
Low function β(g) for arbitrary values of g and, in par�
ticular, its asymptotic behavior for g  ∞. It was
established by the author in the recent publication [4]
that the asymptotic forms of renormalization group
functions for actual field theories can be determined
analytically. Earlier attempts at constructing the Gell�
Mann–Low function β(g) in the ϕ4 theory by summa�
tion of series in perturbation theory resulted in the
asymptotic form of β(g) = β

∞
gα for g  ∞, where

α ≈ 1 for space dimensions of d = 2, 3, and 4 [6–8].
This leads to the hypothesis that the asymptotic form
is β(g) ∝ g for all values of d. Analysis of the zero�
dimensional case confirms the hypothesis and reveals
the mechanism of its implementation. It is associated
with the unexpected fact that the limit g  ∞ for a
renormalized charge g is controlled not by large values
of bare charge g0 (which appears as intuitively obvi�
ous), but its complex values. Moreover, it is sufficient
to confine analysis to the domain |g0 | � 1, in which
functional integrals can be estimated in the steepest

NUCLEI, PARTICLES, FIELDS,
GRAVITATION, AND ASTROPHYSICS

Exact Asymptotic Form for the β Function
in Quantum Electrodynamics

I. M. Suslov
Kapitza Institute for Physical Problems, Russian Academy of Sciences, Moscow, 119334 Russia

e�mail: suslov@kapitza.ras.ru
Received January 28, 2009

Abstract—It is shown that the asymptotic form of the Gell�Mann–Low function in quantum electrodynam�
ics can be determined exactly: β(g) = g for g  ∞, where g = e2 is the running fine�structure constant. This
solves the problem of electrodynamics at small distances L (for which dependence g ∝ L–2 holds) and com�
pletely eliminates the problem of “zero charge.”

PACS numbers: 11.10.Gh, 11.10.Hi, 11.10.Jj, 12.20.Ds

DOI: 10.1134/S1063776109060089



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 108  No. 6  2009

EXACT ASYMPTOTIC FORM FOR THE β FUNCTION 981

descent approximation. If the direction is chosen in
the complex plane of g0 so that the steepest descent
contribution from a trivial vacuum is comparable to
the steepest descent contribution from the principal
instanton, the functional integral may vanish. Limit
g  ∞ is precisely connected with zero of one of the
functional integrals; as a result, this limit is quite con�
trollable and it is possible to obtain asymptotic forms of
the β function, as well as anomalous dimensions thereof
(the former function is indeed found to be linear).

Here, we show that this idea can also be employed
in QED. An attempt at reconstructing the Gell�
Mann–Low function in this theory [9] leads to a non�
alternating function β(g) (see figure) with asymptotic
form β

∞
gα, where

(4)

Within uncertainty, this β function satisfies the ine�
quality

(5)

derived in [10, 11] from spectral representations, while
asymptotic form (4) coincides to within the uncer�
tainty with the upper bound of inequality (5). Such a
coincidence appears to be not accidental and indicates
that asymptotic form β(g) = g is an exact result. It will
be shown below that this is indeed true.

The most general functional integral in QED con�
tains M photon fields and 2N fermion fields in the pre�
exponential factor,

(6)

where S{A, ψ, } is the Euclidean action,

(7)

e0 and m0 are the bare charge and mass; crossed sym�
bols indicate convolutions of the corresponding quan�
tities with Dirac matrices. The Fourier transforms of
integrals IM, N, with excluded δ functions of momen�
tum conservation will be referred to as KMN(qi, pi) after
extraction of the usual factors depending on tensor

indices;
2
 and qi and pi are the momenta of electrons

and photons. Introducing the Green functions

2 The specific form of these factors is immaterial since the results
are independent of absolute normalization of e and m.

α 1.0 0.1, β∞± 1.0 0.3.±= =

0 β g( ) g,<≤

IM 2N, DADψDψAµ1
x1( )…∫=

×…AµM
xM( )ψ y1( )ψ z1( )…ψ yN( )ψ zN( )

× S A ψ ψ, ,{ }–( ),exp

ψ

S A ψ ψ, ,{ } d
4x∫=

× 1
4
�� ∂µAν ∂νAµ–( )2 ψ i∂ m0– e0A+( )ψ+ ;

G(M, N) = KMN/K00, we can determine the “amputated”
vertices Γ(M, N) with M photon and N electron ends:

(8)

and so on, where G(p) and D(q) are exact electron and
photon propagators.

Multiplicative renormalizability of vertex Γ(M, N)

indicates that

(9)

i.e., its divergence for Λ  ∞ vanishes after appropri�
ate separation of the Z factors and passage to renor�
malized charge e and mass m. Renormalization condi�
tions at zero momentum are accepted:

(10)

where we took into account the conventional pole
structure of the electron and photon propagators. Sub�
stituting expressions (10) into formula (9), we obtain
the following expressions for e, m, Z2, and Z3 in terms
of the bare quantities:

(11)

The Gell�Mann–Low function in the renormaliza�
tion scheme used here is defined as

(12)
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General form of the Gell�Mann–Low function in QED.
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Using expression (8) and the definition of the Green
functions G(M, N), we obtain

(13)

where the last relation corresponds to q, p, p' = 0.
Assuming that

(14)

for small momenta and using relations (11), we obtain

(15)

Further, marking differentiation with respect to m0 by
a prime, we obtain

(16)

Since differentiation in relation (12) is carried out for
e0 and Λ = const, it is convenient to assume that these
parameters are fixed in the course of calculations; in
this case, m is a function of m0 alone, and formula (16)
can be “inverted” (we can consider it as the expression
for derivative dm0/dm). In accordance with the defini�
tion of β function (12), we obtain

(17)

after transformation, this gives

(18)

(19)

Formulas (18) and (19) define dependence β(g) in para�
metric form since their right�hand sides are functions of
parameters m0, g0, and Λ, the last two of which are assumed
to be fixed. Expressing m0 in terms of g with the help of
equality (18) and substituting the result into formula (19),
we obtain β as a function of g, g0, and Λ; however, the inde�
pendence of β from the last two parameters of ensured by
general theorems (see, for example, [3, 12]).
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Analysis carried out in [4] leads to the conclusion
that the strong coupling regime for the renormalized
interaction is associated with zero of one of the func�
tional integrals. It can be seen from formula (18) that
the limit g  ∞ can be attained in two ways: by mak�

ing  or  tend to zero. For   0, expression
(19) is simplified,

(20)

and the parametric representation can be resolved in
the form

(21)

For   0, we have

(22)

whence

(23)
Thus, the asymptotic form of β(g) is given either by
(21) or (23). The second possibility contradicts ine�
quality (5), while the first possibility is in excellent
agreement with results (4) obtained by summing a
series in perturbation theory. In our opinion, this
allows us to assume that expression (21) is the exact
result for the asymptotic form of β(g). This means that
the general form of the β function (see the figure) has
been established quite reliably. If the observed charge
(corresponding to scales L � m–1) is finite, the
increase in the fine�structure constant for small values
of L follows the law g ∝ L–2 in pure electrodynamics.

In the above analysis, we proceeded from the fact
that the mechanism for the emergence of the asymp�
totic form of the β function is the same as in the ϕ4 the�
ory. Strictly speaking, it cannot be ruled out that the
strong coupling regime is attained via some other
mechanism (e.g., due to a rapid increase in K12). How�
ever, such a possibility appears unlikely. If we roughly
estimate the integrals, assuming that all fields are
localized on a unit scale of length,

(24)

substitution into formula (18) gives g ~ 1. A change in
the general scale of all lengths does not affect the value
of g simply in view of its dimensionless nature. For this
reason, large values of g cannot be attained by chang�
ing the amplitudes of fields A, ψ, and  or the general
scale of their spatial localization. Apparently, the only
possibility is when the mean value 〈A〉 or  for one
of the integrals turns out to be anomalously small as
compared to other integrals for some reason (e.g., due
to the sign�alternating nature of the fields). This, how�
ever, brings our analysis back to the already�consid�
ered possibilities.
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Analogously [4], zeros of the functional integrals
can be obtained for complex values of g0 with |g0 | � 1
from the condition of compensation of the contribu�
tion of trivial vacuum by the steepest descent contribu�
tion of the instanton configuration, which is charac�
terized by minimal action. The latter contribution was
studied comprehensively when the Lipatov asymptotic
form was calculated [9, 13–15] and has the form

(25)

where S0 is the instanton action, b = (M + r)/2, and r
is the number of zero modes. Assuming that t2 =

⎯S0/ , we arrive at expressions of the same type as
those analyzed in [4]. It can easily be verified that
zeros of different integrals KMN and their derivatives
with respect to m0 are realized at different points.

This approach gives new insight into the ideas of
Landau and Pomeranchuk [5], who noted that in
accordance with formula (1), with increasing e0,
observed charge e attains a value of 1/(β2lnΛ2/m2)1/2

independent of e0, and that the photon propagator fol�

lows the dependence D ∝ 1/  by virtue of relation

e2 ∝ D. Such a behavior can be obtained with the

substitution of A  /e0 in functional integral (6)
and omission of the term quadratic in A in action (7).
Such a procedure, being justified for e0 � 1, is still
valid all for e0 � 1, which suggests that formula (1) is
applicable for any e0.

These considerations may turn out to be correct at

the qualitative level
3
 for real values of e0, which were

presumed here. By analogy with the ϕ4 theory, we can
expect [4] that the variation of e0 along the real axis
corresponds to the variation of e from zero to a finite
value emax. If it turns out that emax  0 for Λ  ∞,
this will indicate that formula (1) is qualitatively valid.
Monte Carlo simulations [16] indicates the correct�
ness of this pattern in ϕ4 theory. However, construction
of a theory with finite interaction over large distances
requires that complex values of e0 with |e0 | � 1 be used
[4]. In this case, neither the reduction of a functional
integral to dimensionless form (which is substantiated

3 The correctness of these considerations at the quantitative level
is ruled out by the fact that the β function is not quadratic. In

fact, proportionality D ∝ 1/  follows from the reduction of the

functional integral to dimensionless form only for e0 � 1, while
the same dependence following from formula (1) for e0 � 1 may
be for different reasons. This dependence is obviously violated
for e0 ~ 1, but the coincidence of the proportionality factors in
the orders of magnitude can be expected from the matching
conditions.

KM 2N, qi pi,( )[ ]inst

=  ic qi pi,( )
S0

g0
2

����
⎝ ⎠
⎛ ⎞ b S0

g0
2

����–
⎝ ⎠
⎛ ⎞ ,exp

g0
2

e0
2

e0
2

Ã

e0
2

for |e0 | � 1) nor formula (1) itself is valid. The latter
statement is due to the fact that perturbation theory is
inapplicable in view of the essential role of the instan�
ton contribution in spite of the possibility of using val�
ues of |e0 | � 1.

Some authors believe that the asymptotic form of
β(g) for QED with N flavors of fermions is quadratic in
the limit N  ∞, but this is not true. The expansion
coefficients for the β function are polynomials in N
and have the following structure [17, 18]:

(26)

where β2, β3, β4, a, … are on the order of unity. The
model is exactly solvable in the specific limit N  ∞,
gN = const [19]; i.e., we must set g = /N, β(g) =

( )/N and assume that  is fixed. In this case,

= β2  + O(1/N), and the β function is effec�
tively of the one�loop form for N  ∞. The proce�
dure used here is valid for  = const or g ~ 1/N but
provides no information on the domain of g ~ 1 or,
moreover, for g � 1. For this reason, we cannot judge

the asymptotic form of the β function in these cases.
4
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