
ISSN 1063�7761, Journal of Experimental and Theoretical Physics, 2010, Vol. 111, No. 3, pp. 450–465. © Pleiades Publishing, Inc., 2010.
Original Russian Text © I.M. Suslov, 2010, published in Zhurnal Éksperimental’noі i Teoreticheskoі Fiziki, 2010, Vol. 138, No. 3, pp. 508–523.

450

1. INTRODUCTION

In recent works [1, 2], it was shown that the asymp�
totic behavior of the Gell�Mann–Low function β(g)
in the limit g  ∞ for actual field theories can be
obtained analytically. The expression of the β function
in terms of functional integrals leads to the parametric
representation

(1)

where t is the running parameter related to the bare

charge g0 as t ∝ . The analysis of Eqs. (1) indicates
that infinite g values are related to a zero of one of the
functional integrals; Eqs. (1) near such a zero are
strongly simplified and the parametric representation
is resolved in an explicit form. The asymptotic behav�
ior of the β function in the ϕ4 theory [1] and QED [2]
is linear and the anomalous dimensions have constant
limits.

Functional integrals definitely have zeros at com�
plex t values corresponding to complex g0 values. In
view of this circumstance, questions regarding the
Hermiticity of the initial Hamiltonian, unitarity of the
S matrix, etc. arise. In our opinion that there is no sub�
ject for anxiety: Eqs. (1) were derived for real g0 values
(this fact ensures the correct perturbation theory) and
were then analytically continued to the complex
plane. Since the theory is renormalizable, the bare
charge g0 is excluded in all of the observables and its
complex�valuedness at large g is of no significance: the
bare theory involves artificial constructions (such as an
auxiliary lattice) and has no physical meaning.

g f t( ), β g( ) f1 t( ),= =

g0
1/2–

However, scientific society has a bias against com�
plex bare parameters, which is related with the old dis�
cussion of the Lee model [3] by Pauli, Heisenberg, etc.
After work [4], the Lee model was considered as phys�
ically unsatisfactory owing to the existence of states
with a negative norm (“ghost states”). Recently,
Bender et al. [5, 6] showed that the Lee model is an
acceptable physical theory, but the out�of�date point
of view was already included in many textbooks [7, 8].
In fact, the problem of complex bare parameters is
completely solved in the Bogoliubov asymptotic con�
struction of the S matrix [9] (for details, see Section 8).

A more significant problem is associated with the
applications of the ϕ4 theory in the condensed matter
physics; in this case, the bare Hamiltonian has a phys�
ical meaning and its parameters certainly cannot be
complex. For this reason, the strong�coupling regime
seems to be inaccessible and the asymptotic expres�
sions obtained in [1] for renormalization�group func�

tions seem to be physically meaningless.
1

Below, it will be shown that the parametric repre�
sentation (1) in the case of the lattice interpretation of
the functional integrals has a singularity at the point
t = 0, which ensures the strong�coupling regime
g ∞ (see Sections 2, 3). Such a possibility seems
intuitively more satisfactory, because the bare charge
g0 tends to infinity rather than to a singular point in the
complex plane; this solves the problem of the physical

1 They are of interest even in this case, because they strongly sim�
plify the summation of divergent series in the calculation of the
critical exponents (see discussion in [10]).
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implementation of the strong�coupling regime in the
condensed matter physics. The asymptotic behavior of
the β function coincides with the expression obtained
in [1], whereas the results for anomalous dimensions
are somewhat different (see Section 4), but this differ�
ence has no physical meaning (see Section 7). The
analysis of the topology of trajectories in the t plane
(see Section 5) shows that they can remain on the real
axis or go to the complex plane in dependence on the
choice of the lattice. From the field�theory point of
view, the problem of the real or complex bare parame�
ters is associated with the choice of the renormaliza�
tion scheme [11] and is physically meaningless. For
the scheme most often used in the theory of phase
transitions [12], the presence of trajectories in the
complex plane is inevitable and the convention of the
use of complex bare parameters is particularly obvious
(see Section 6).

The lattice expansions studied in Section 3 are sim�
ilar to high�temperature series in the theory of phase
transitions [13]. In the field�theory context, they were
considered in [14–17], where the main attention was
focused on the analysis of the relation of the renormal�
ized quantities to the bare parameters; this analysis
required the knowledge of a large number of expansion
terms and the use of the approximate extrapolation
methods. However, of physical interest are the rela�
tions between the renormalized quantities (according
to the general philosophy of renormalizability), which
are simpler (see Section 4). Moreover, the problem of
the correct transition to the strong�coupling regime
remained to be unsolved; in particular, neither con�
stancy of bare mass nor the constancy of the renormal�
ized mass [15] is a correct condition for this limiting
transition (see Section 4). Note that the indication to the
linear asymptotic behavior of the β function was
obtained as early as in [16]; recently, Frasca [18] showed
that the linear asymptotic behavior is in agreement with
a particular solution of the Dyson–Schwinger equations
[18].

2. PRELIMINARY DISCUSSION

Let us consider the n�component ϕ4 theory with
the action

(2)

S ϕ{ } d
dx 1

2
�� ∇ϕα( )2

α 1=

n

∑
⎩
⎨
⎧

∫=

+ 1
2
��m0

2 ϕα

2 1
4
��u0 ϕα

2

α 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

2

⎭
⎬
⎫

,+
α 1=

n

∑

u0 g0Λ�
, � 4 d,–= =

where g0 and m0 are the bare charge and mass, respec�

tively; d is the dimension of space;
2
 and Λ is the

momentum cutoff parameter. The most general func�
tional integral of this theory contains M multipliers of
the field ϕ in the pre�exponential factor,

(3)

and will be denoted as KM{pi} after transition to the
momentum representation and extraction of δ�func�
tional factors

(4)

where  is the sum of the terms … with

all the possible pairings, and � is the number of the
sites of the lattice on which the functional integral is
defined. The integrals KM{pi} are usually estimated at
zero momenta and only one integral K2(p) is required
at small p values,

. (5)

Introducing the vertices Γ(L, N) with N external lines

of the field ϕ and L external lines of the interaction
3
;

taking into account their multiplicative renormaliz�
ability [20],

(6)

where g and m are the renormalized charge and mass,
respectively; and using the renormalization conditions
on zero momenta,

(7)

the Gell�Mann–Low function β(g) and anomalous
dimensions η(g) and η2(g) can be determined as

(8)

2 It is assumed that d ≤ 4; under this condition, the ϕ4 theory is
renormalizable; the parameter � is not assumed to be small, if
the opposite assumption is not mentioned.

3 In the diagrammatic technique where the interaction is marked
by dashed lines [19].

Zα1…αM

M( ) x1 … xM, ,( ) Dϕϕα1
x1( )ϕα2

x2( )∫=

…ϕαM
xM( ) S ϕ{ }–( ),exp

Zα1…αM

M( ) p1 … pM, ,( )

=  KM pi{ }�δp1 … pM+ + Iα1…αM
,

Iα1…αM
δα1α2

δα3α4

K2 p( ) K2 K̃2p2– …+=

Γ L N,( ) pi; g0 m0 Λ, ,( )

=  Z N/2– Z2

Z
����⎝ ⎠

⎛ ⎞
L–

ΓR
L N,( ) pi; g m,( ),

ΓR
0 2,( ) p; g m,( ) p 0→

m2 p2 O p4( ),+ +=

ΓR
0 4,( ) pi; g m,( ) pi 0= gm�

,=

ΓR
1 2,( ) pi; g m,( ) pi 0= 1;=

β g( ) dg
d mln
����������

g0 Λ, const=

,=

η g( ) d Zln
d mln
����������

g0 Λ, const=

,=
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Expressing these functions in terms of the functional
integrals, the parametric representation for them can

be obtained in the form [1]
4

(9)

(10)

(11)

(12)

where primes stand for the derivatives with respect to

. The right�hand sides of Eqs. (9)–(12) depend on
three parameters g0, m0, and Λ; one of them can be
taken as a running parameter; if it is expressed in terms
of g using Eq. (9) and is excluded from Eqs. (10)–(12),
the dependence on other two parameters disappears
according to general theorems [20].

According to Eq. (9), large g values can be reached

near the zero of K2 or . In the limit   0, the
right�hand sides of Eqs. (10)–(12) are strongly simpli�
fied and the parametric representation is resolved in
the form [1]

(13)

Similar results are obtained in the limit K2  0, but
this limit is unphysical, because it does not ensure a
continuous transition to the four�dimensional case
owing to the absence of divergence in Eq. (9) at d = 4.

The relation of the strong�coupling limit g  ∞ to
the zero of one of the functional integrals was found in
[1] from an analogy with the zero�dimensional case.

4 The expression for the function η2(g) was written in [1] incor�
rectly because another definition of the mass is accepted in the
Ward identity given by Eq. (55) in that work; its correct form is

 = Γ12(0) = dΓ2(0)/d  = (K0/K2)'. Thus, η2(g) = 0 and

η2(g) = 4 are obtained in Eqs. (61) and (62), respectively, in [1].

η2 g( ) d Z2ln

d mln
�����������

g0 Λ, const=

.=

Z2
1–

m0
2

g
K2

K̃2

����⎝ ⎠
⎛ ⎞ d/2K4K0

K2
2

����������,–=

β g( )
K2

K̃2

����⎝ ⎠
⎛ ⎞ d/2K4K0

K2
2

����������–=

× d 2
K4' /K4 K0' /K0 2K2' /K2–+

K2' /K2 K̃2' /K̃2–
��������������������������������������������������+

⎩ ⎭
⎨ ⎬
⎧ ⎫

,

η g( )
2K2K̃2

K2K̃2' K2' K̃2–
������������������������� 2

K2'

K2

����
K0'

K0

����– K̃2'

K̃2

����– ,–=

η2 g( )
2K2K̃2

K2K̃2' K2' K̃2–
�������������������������=

×
K0''K2 K0K2''–

K0' K2 K0K2'–
������������������������� 2

K2'

K2

����–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,

m0
2

K̃2 K̃2

β g( ) dg, η g( ) 2, η2 g( ) 0 g ∞( ).= = =

This relation can be derived in a more rigorous man�
ner. After the discretization of the space, Eq. (2) is
written in the form of the lattice sum

(14)

where the case n = 1 is considered for simplicity and
Λ = a–1 (a is the lattice constant) is accepted. With the
change

(15)

and the parameter

(16)

functional integral (3) is represented in the form

(17)

Hereinafter, a = 1 is accepted and Jx – x' and  are

measured in the units of Λ2. At a finite number of inte�
grations �, the integral converges for all t values and is
regular throughout the finite part of the complex
t plane. Singularities can appear only in the limit
�  ∞, but this occurs only at the points of phase
transitions, when m2 = 0 and the correlation radius ξ is
infinite; in this case, the transition to the infinite vol�
ume of the system, which is singular, is really neces�
sary. If m2 ≠ 0, then owing to finiteness of the correla�
tion radius ξ, the size of the system � can be chosen
large but finite; under the condition

, (18)

the functional integral is well approximated by its
finite�dimensional analog. In the case under consider�
ation, m2 is certainly finite (in fact, m2  ∞ in the
limit g ∞) and the passage to the limit �  ∞ is
not required. For this reason, the integrals KM and
their derivatives are regular in the complex t plane and
the appearance of infinities on the right�hand sides of
Eqs. (9)–(12) can be attributed only to the zeros of

S ϕ{ } 1
2
��ad Jx x '– ϕxϕx '

x x ',

∑=

+ 1
2
��m0

2
ad ϕx

2

x

∑
1
4
��g0a2d 4– ϕx

4
,

x

∑+

ϕ ϕ g0a2d 4–
/4( )

1/4–

t 1/g0( )1/2
,=

Z M( ) xi{ } 2t( )
� M+

2
�������������

ϕxd
x

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

ϕx1
…ϕxM∫=

× t Jx x '– ϕxϕx '

x x ',

∑–
⎩
⎨
⎧

exp

– tm0
2 ϕx

2 ϕx
4

x

∑–
x

∑
⎭
⎬
⎫

.

m0
2

� � ξ � a
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denominators; in particular, they appear in Eq. (9)

only near the zero of K2 or . The parameter t is con�
sidered below as the running parameter of the para�
metric representation.

The transition from Eq. (2) to Eq. (14) was based
on the correspondence

(19)

where  is the momentum operator,

(20)

is the bare spectrum, and it is taken into account that
exp{i  ⋅ x} is the operator of the translation by the vec�
tor x. The overlap integrals Jx are assumed to be rapidly
decreasing with an increase in  so that spectrum
(20) is regular, J0 = 0 is accepted, and the coefficient of
the term p2 is taken to be unity for the correspondence
with the continual limit (see Eq. (19)) taking into
account that �(0) can be included in the renormaliza�

tion of .

Below we analyze the singularity of the parametric
representation (9)–(12), which has a simple origin.
For g0 � 1 in Eq. (17), the expansion in the gradient
term  is possible. In the zeroth order in t,

the integral Z(2) in the coordinate representation has
the form of a δ function, Z (2)(x, x') ~ δxx' and its Fou�
rier transform is independent of the momentum; this
dependence appears only in the first order in t. For this

reason, the integral  in expansion (5) has an addi�

tional smallness as compared to K2; i.e., K2/  ~ 1/t;
this leads to a singularity in Eqs. (9) and (10). This sin�
gularity is more complicated than that near the zero of

 in the complex plane, when the other integrals and
their derivatives remain finite [1]. In the limit t  0,
the integral KM has an additional factor proportional
to tM/2 as compared to K0 (see Eq. (17)) and the differ�

entiation with respect to  provides the factor t; for
this reason, the singularity in Eqs. (9)–(12) requires a
more accurate analysis.

3. LATTICE EXPANSIONS

The expansion of functional integral (17) in the
gradient term  contains the mean values of

K̃2

ϕ x( )∇2ϕ x( )– ϕ x( )p̂2ϕ x( ) ϕx� p̂( )ϕx=

=  Jx x '– ϕxϕx ',

x '

∑

p̂

� p( ) Jxeip x⋅

x

∑ � 0( ) p2 O p4( ),+ += =

p̂

x

m0
2

tJx x '– ϕxϕx '

K̃2

K̃2

K̃2

m0
2

tJx x '– ϕxϕx '

the products of the fields … over the distribu�

tion
5

(21)

Such mean values are nonzero only for partially
(or completely) coinciding coordinates and are repre�
sented through the scheme

(22)

where the means  are given by the expression

(23)

Following this scheme, it is easily to obtain

(24)

5  For technical reasons, it is convenient to retain the term ~t

in the exponential. This is not an excess of the accuracy, because

m0 is an independent parameter and t  is not necessarily small

at t � 1; the term ~t  in the exponential expands the region of

the applicability of the expansions; this fact will be substantial
below (see Section 4).

ϕx1
ϕx2

m0
2

m0
2

m0
2

P ϕ{ } tm0
2ϕx

2– ϕx
4–{ }.exp

x

∏∼

ϕx1
ϕx2

ϕx3
ϕx4

〈 〉 ϕx1

2〈 〉 ϕx3

2〈 〉δx1x2
δx3x4

1 δx1x3
–( )=

+ ϕx1

2〈 〉 ϕx2

2〈 〉δx1x3
δx2x4

1 δx1x2
–( )

+ ϕx1

2〈 〉 ϕx2

2〈 〉δx1x4
δx2x3

1 δx1x2
–( )

+ ϕx1

4〈 〉δx1x2
δx1x3

δx1x4

=  ϕ2〈 〉 ϕ2〈 〉 δx1x2
δx3x4

δx1x3
δx2x4

δx1x4
δx2x3

+ +( )

+ ϕ4〈 〉 3 ϕ2〈 〉 ϕ2〈 〉–[ ]δx1x2
δx1x3

δx1x4
,

ϕ2k〈 〉

ϕ2k〈 〉
I2k

I0

�����,=

I2k ϕϕ2k tm0
2ϕ2– ϕ4–{ }.expd

∞–

∞

∫=

Z 0( ) 2t( )�/2I0
� 1 t�

I2

I0

���J0– …+ ,=

Z 2( ) x1x2( ) 2t( )�/2I0
�=

× 2t
I2

I0

���δx1x2
2t

I2
2

I0
2

���Jx1 x2–– …+
⎩ ⎭
⎨ ⎬
⎧ ⎫

,

Z 4( ) x1…x4( ) 2t( )�/2I0
� 2t( )2=

×
I2

2

I0
2

��� δx1x2
δx3x4

δx1x3
δx2x4

δx1x4
δx2x3

+ +( )
⎩
⎨
⎧
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The correction term ~�t to Z(0) disappears in view of
the accepted condition J0 = 0. In the general case, the
terms containing � formally appear in the expansion,
but correspond to “unconnected diagrams,” when the
factors ϕx appearing from the expansion of the expo�
nential in Eq. (17) are averaged independently of the
multipliers …  in the pre�exponential factor. It

is easy to understand that the contribution of the
unconnected diagrams is factorized in all of the quan�
tities Z(M) in the form of the same factor and disappears
in the ratios of the functional integrals. Therefore,
expansions (24) are valid under the condition t � 1,
and not the more strong condition �t � 1.

After the transition to the momentum representa�
tion and the introduction of KM according to Eq. (4),
the formulas

(25)

+
I4

I0

��� 3
I2

2

I0
2

���–
⎝ ⎠
⎜ ⎟
⎛ ⎞

δx1x2
δx1x3

δx1x4
…+

⎭
⎬
⎫

.

ϕx1
ϕxM

K0 2t( )�/2I0
�

,=

K2 p( ) 2t( )�/2I0
� 2× t

I2

I0

��� 2t
I2

2

I0
2

���� p( )–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

K4 pi{ } 2t( )�/2I0
� 2t( )2× 1

3
��

I4

I0

��� 3
I2

2

I0
2

���–
⎝ ⎠
⎜ ⎟
⎛ ⎞

⎩
⎨
⎧

=

+
I2

2

I0
2

���� δp1 p2+ δp1 p3+ δp1 p4++ +( )
⎭
⎬
⎫

are obtained. The limit pi  0 in K4{pi} is taken
according to the agreement accepted in [1]: pi ~ μ is
taken in such way as to exclude the special equalities
such as p1 + p2 = 0 and then μ tends to zero. Using
expansion (20) for �(p) and taking into account defini�

tion (5) for K2 and , it is possible to arrive at the
expressions

(26)

Similar calculations in the n�component case give

(27)

where

(28)

The representation of Eqs. (10)–(12) in the form

(29)

and the differentiation with respect to  taking into
account the relation

(30)

provide

(31)

K̃2

K2

K0

���� 2t
I2

I0

���, K̃2

K0

���� 2t( )2I2
2

I0
2

���,= =

K4

K0

���� 2t( )2 I4

3I0

������
I2

2

I0
2

���–
⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

K2

K0

���� 2t
I2

nI0

������, K̃2

K0

���� 2t( )2 I2
2

nI0
2

������,= =

K4

K0

���� 2t( )2 1

n2
���� n

n 2+
����������

I4

I0

���
I2

2

I0
2

���–
⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

I2k ϕϕn 1– 2k+ tm0
2ϕ2– ϕ4–{ }.expd

0

∞

∫=

β g( )
K2

K̃2

����⎝ ⎠
⎛ ⎞ d/2K4K0

K2
2

���������� d 2
K4K0/K2

2ln( ) '

K2/K̃2ln( ) '
���������������������������+

⎩ ⎭
⎨ ⎬
⎧ ⎫

,–=

η g( ) 2
K2/K0ln( ) ' K2/K̃2ln( ) '+

K2/K̃2ln( ) '
�������������������������������������������������,=

η2 g( ) 2
K0/K2ln( ) '' K0/K2ln( ) '[ ]2+

K2/K̃2ln( ) ' K0/K2ln( ) '
��������������������������������������������������������–=

m0
2

I2k' tI2k 2+ ,–=

g n
2t
���

I0

I2

���⎝ ⎠
⎛ ⎞

d/2

1 n
n 2+
����������

I4I0

I2
2

�������–⎝ ⎠
⎛ ⎞ ,=

β g( )
g

��������� d 2

I6I2

I0
2

�������
2I4

2

I0
2

������–
I2

2I4

I0
3

�������+

I4

I0

��� n 2+
n

����������
I2

2

I0
2

���–
⎝ ⎠
⎜ ⎟
⎛ ⎞ I2

2

I0
2

���
I4

I0

���–
⎝ ⎠
⎜ ⎟
⎛ ⎞

���������������������������������������������,+=

t

t

βzero

gzero

g*

Fig. 1. Qualitative behavior of the functions gzero(t) and
βzero(t) corresponding to the zero�dimensional case [1].
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The results can be represented in a compact form by
introducing the functions gzero(t) and βzero(t) corre�
sponding to the zero�dimensional case [1], which have
the form shown in Fig. 1:

(32)

where g* = 2/(n + 2). The solution of the parametric
representation in the limit t  0 provides the asymp�
totic expressions

(33)

which are similar to Eqs. (13); i.e., the β function has
a linear asymptotic behavior and the anomalous
dimensions approach constant limits. The substitution
of the numerical values for n = 1 and d = 4 gives β(g) =
2.29g in agreement with [16].

However, result (33) is not final. Indeed, instead of
the limit t  0 at a constant bare mass, the limiting

transition under condition t   const can be con�
sidered; in this case, the structure of the theory
remains unchanged, but the asymptotic behavior is
different. The problem of the correct transition of the
strong�coupling regime arises.

4. INTERPRETATION OF THE FUNCTIONAL 
INTEGRALS

In the framework of the diagrammatic technique,
the relation of the renormalized mass to the bare mass
is determined by the expansion

(34)

where the contribution of the Nth order in  has the

dimension k2 – �N in the momentum; at d > 2, it is
determined by the upper limit and is of the order
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Λ2 ⎯ �N; taking into account the relation u0 = g0Λ�

(see Eq. (2)), the expansion

(35)

is obtained. It is usually accepted that

(36)

where  is determined from the condition m2 = 0
and, at g0 � 1, is determined by the first term of expan�

sion (35), i.e.,  = –A1g0Λ2. Hence, the continual
limit Λ  ∞ can be taken under the condition

(37)

By analogy, the same condition was accepted when
analyzing the strong�coupling limit g0  ∞ [15, 21];
this procedure is based on the correct intuitive idea

that the passage to the limit at  = const “is not too
good,” but has obvious demerits.

(i) The dependence  ∝ g0 is groundlessly extra�
polated to the strong�coupling region.

(ii) The equation m2 = 0 can have no solutions in
the strong�coupling regime (see Eq. (39)); corre�
spondingly, decomposition (36) may be senseless.

(iii) The condition of the constant renormalized
mass is not physically motivated: if particles have a
finite mass m in the weak�coupling region, this mass
due to renormalization can both increase and decrease
with growth of interaction.

Researchers usually recognized the defectiveness of
such procedure and the passage to the limit under con�
dition (37) was called the “Ising limit” [21]. According
to the above discussion, the problem of the correct
transition to the strong�coupling region is really
unsolved.

The indicated problem in the framework of the
parametric representation (9)–(12) has another
meaning. The deficiency of the results such as
Eqs. (32) is that the right�hand sides of the formulas

depend on two independent parameters t and t ;
when one of them is excluded in favor of g, the depen�

dence on  remains although it should be absent
according to the general theorems [20]. The problem

of resolving this contradiction arises.
6

6 The dependence on  for the result given by Eqs. (32) can be

excluded by changing t   t and multiplying g and β(g) by

the same factor. However, this does not solve the problem in the
general case: there are regular corrections to Eqs. (32) in t that

contain functions of t  as coefficients.
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In reality, there is no contradiction, because the
general theorems imply the appropriate passage to the
continual limit Λ  ∞. This physically means the
condition

(38)

which is equivalent to the condition ξ � a for the cor�
relation radius; in this case, the lattice has many sites
at the characteristic scale of the field variation and its
further division has no significance.

In the framework of the expansions given in Sec�
tion 3, the renormalized mass satisfies the relation (see
[1, Eq. (53)] and Fig. 2)

(39)

according to which the condition m2 � 1 (correspond�
ing to Eq. (38) in the dimensional units) requires the
relation

(40)

The change   κ /2 transforms the exponential
in Eq. (17) to the form

(41)

where the last factor is localized near  = 1 and can

be changed to Aδ(  – 1); the constant A is insignifi�
cant, because it disappears in the ratio of two integrals;
hence, A = 1 can be accepted. As a result, Eq. (17) is
modified to the form
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(42)

and the functional integral becomes an Ising sum over
the values ϕx = ±1. In the n�component case, the δ

function δ(  – 1) fixing the relation  =

 appears and the σ model is obtained instead

of the Ising model [28].

The functional integrals are now functions of the
single variable tκ and the right�hand sides of Eqs. (9)–
(12) depend only on this variable; this condition deter�
mines the renormalization�group functions of one
variable g. The physical motivation of the limiting
transition is based on the conditions

(43)

which ensure Eq. (38), but only two first conditions

are really used when deriving Eq. (42);
7
 i.e., it is valid

under the conditions

(44)

Therefore, Eq. (42) can be used in the region tκ � 1,
where gradient expansions are possible and the renor�
malized charge g can be large. In view of Eqs. (39) and
(40), the strong�coupling regime of the ϕ4 theory cor�
responds to the limit

(45)

which obviously does not coincide with Eqs. (37). The
return to the parametric representation given by
Eqs. (32) under the assumption

(46)

provides the expressions

(47)

which give the asymptotic expressions

(48)

7 The condition t � 1 is necessary for fluctuations of  in the

gradient term to be insignificant.
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Fig. 2. Renormalized mass squared versus the bare mass
squared in the strong�coupling region.
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The last limit in Eqs. (47) is estimated taking into
account that

(49)

where the definitions of βzero(t) and gzero(t) and [1,
Eqs. (30)] were used. It is interesting that the result for
β(g) coincides with Eq. (13); the difference between the
results (13) and (30) for η(g) and η2(g) is discussed in
Section 7.

It is worth noting that representation (42) for the
functional integrals can be used to calculate not only
the renormalization�group functions, but also observ�
ables, which are obtained in the form

(50)

where dA is the physical dimension of the observable
Aobs. With the use of similar expressions for g and m,

(51)

Eq. (50) can be represented in the form

(52)

which is free of the bare parameters g0, m0, and Λ; i.e.,
Eq. (52) presents the “renormalizability theorem” for

the strong�coupling region.
8
 It should be emphasized we

do not take the continual limit in the bare theory and
conserve the lattice is held as a convenient computa�
tional tool, excluding only the lattice constant a from the

8  For the complete proof of renormalizability, it is necessary to
analyze the possibility of excluding information on a particular
form of the overlap integrals Jx from the results such as Eq. (52).
Note that in the classical renormalizability theorems [9, 22],
independence of Λ is proven not for quantities themselves (in the
strong sense), but for the coefficients of their expansions in g (in
the weak sense). The strong and weak statements are equivalent
to each other if there is a certain procedure of the summation of
divergent series, which really exists [23]. However, to implement
this procedure, it is necessary to analyze the analytic properties of
Borel transforms and, in particular, to prove the absence [24] of
renormalon singularities [25, 26]; this requires the renormaliz�
ability in the strong sense (see the comments at the end of work
[27]). The equivalence of the strong and weak statements appar�
ently solves the problem of the dependence on Jx, because such a
dependence is absent in the expansion coefficients.

gzero t( ) g* 2n
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���������� 1
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��,–=

βzero t( ) 8n
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t2
��, t ∞,–=
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dAfA tκ( ),=

g fg tκ( ), m2 Λ2fm tκ( ),= =

Aobs m
dAF g( ),=

physical results. The expansion of the exponential in
Eq. (42) in the gradient term can provide the construc�
tive expansions of Eq. (52) in negative powers of g.

5. TOPOLOGY OF THE TRAJECTORIES
IN THE t PLANE

Since the functions η(g) and η2(g) in Eqs. (48) are
different from the respective functions in Eqs. (13), it
is interesting to determine the conditions of the appli�
cability of these two results. This requires a more detail
analysis of parametric representation (1).

Let the running parameter t move along a certain
continuous trajectory in the complex plane along
which the relation g = f(t) ensures the reality of the
renormalized charge g and its monotonic increase. If
f '(t0) ≠ 0 at a certain point t0 of the trajectory, there is
one and only one direction of the passage through the
point t0 along which g is real (see Fig. 3a): a trajectory
reaching the point t0 passes through it without a
change in the direction. If f '(t0) = 0 and f ''(t0) ≠ 0, g is
real along two mutually perpendicular directions:
there are two directions of increasing and two direc�
tions of decreasing f(t) (see Fig. 3b). For this reason, a
trajectory reaching the point t0 should turn by an angle
of ±90°. If f '(t0) = 0, f ''(t0) = 0, and f '''(t0) ≠ 0, there
are three directions of increasing and three directions
of decreasing f(t): a trajectory reaching the point t0 can
continue in the same direction or turn by an angle of
±120° (see Fig. 3c), etc. It is easy to see that the trajec�
tory cannot end at a regular point for the function f(t),
because a direction for its continuation always exists.
It can end only at a singular point tc (finite or infinite)
near which g increases unboundedly remaining real.

According to Eq. (9), finite singular points tc are

associated with the zeros of the integrals K2 and .K̃2

(a) (b) (c)

Fig. 3. Passage through a regular point t0 under the condi�
tions (a) f '(t0) ≠ 0; (b) f '(t0) = 0, f ''(t0) ≠ 0; and (c) f '(t0) =
0, f ''(t0) = 0, and f '''(t0) ≠ 0. The solid and dashed lines
show the directions of increasing and decreasing f(t).

Fig. 4. Fragment of the complex t plane along the ray
arg t = ±3π/4. The trajectories begin at the zeros of the

integrals K0 and K4 and end at the zeros of K2 and .K̃2

K4

K0

K2

K2

t

~
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According to [1], each functional integral has the infi�
nite number of zeros, which are located along the rays
arg t = ±3π/4 and concentrated at infinity. The varia�
tion of g from 0 to ∞ corresponds to the infinite num�
ber of trajectories that begin at the zeros of K0 or K4

and end at the zeros of K2 or  (see Fig. 4). In small
segments of the rays arg t = ±3π/4, the zeros of the
integrals are located quasiperiodically and it is reason�
able to expect that all of them are closed to each other;
only several zeros in the region  ~ 1, which can be
topologically connected with trajectories passing
through the real axis, can be “uncompensated.”

Let us briefly discuss the possibility of going the tra�
jectory to infinity. In the zero�dimensional case, it is
possible to verify [1] that an increase in ρ at t = ρeiχ is
accompanied by a decrease in g to zero at χ < 3π/4 and
by the saturation of g at χ > 3π/4; a similar situation is
expected for the general case. At d = 0, the trajectory
goes to infinity along the negative semiaxis, but then
returns to the finite part of the complex plane; i.e., the
trajectory passes through the point t = ∞, but does not
end at it. The end of the trajectory at infinity
(approached in another direction) is low probable,
because for an unbounded increase in g, the trajectory
should go to infinity, approaching one of the rays χ =
±3π/4; in this case, the trajectory should pass near the

K̃2

t

infinite number of singular points and should not turn
to any of them.

The trajectory that begins at t = +∞ and passes
along the real axis is of main interest. At t � 1, g ∝ g0 =
1/t2, whereas at t � 1, g ∝ t–d/2; the latter dependence
was discussed in Section 3. Two main scenarios are
possible at intermediate t values.

(i) If the function g = f(t) is strictly monotonic on
the real axis, then f '(t) ≠ 0 and the trajectory cannot
turn to the complex plane: it continues to t = 0,
whereas all of the zeros of the functional integrals at
complex t values are closed to each other (see Fig. 5a).

(ii) If the function g = f(t) is nonmonotonic on the
real axis, the point of the maximum t1 and the point of
the minimum t2 exist in the simplest case (see Fig. 5b).
Then, the trajectory reaching the point t = t1 from t =
+∞ should turn at this point at the right angle to the
upper (or lower) half�plane and end at one of the sin�
gular points . Similarly, the trajectory passing along
the real axis to the point t = 0 should reach the real axis
at the point t2 and begin at a certain complex point .

When case (i) is smoothly transformed to case (ii),
the trajectories are reconnected (cf. Figs. 5a, 5b); in
the marginal case t1 = t2 (corresponding to the saddle
point), they are branched according to Fig. 3c. The
real situation (Section 6) is close to the marginal case:
the function g = f(t) has a plateau from t ~ 1 to
t ~ (Λ/m)� (see Fig. 6). It is reasonable to expect that
change in lattice action (14) can “break” this function
to both cases (i) and (ii). Therefore, the passage of the
trajectory in the complex plane (with the implementa�
tion of results (13)) or along the real axis (with the
implementation of results (48)) is determined by the
method of the regularization of the functional integrals.

6. INFORMATION
FROM THE GELL�MANN–LOW EQUATION

The Gell�Mann–Low equation makes it possible
to analyze the relation of the renormalized charge g at
the scale m to its value gΛ at the scale Λ; the latter value

t1*

t2*

Fig. 5. Topology of the trajectories in the t plane for the
cases where the dependence g = f(t) on the real axis is (a)
monotonic and (b) nonmonotonic.

t

g

g*

~1 ~(Λ/m)�

Fig. 6. Real function g = f(t) on the real axis is close to a
marginal dependence.

t

t

t

g
(b)

t1t2

t1
*

t2
* t1t2

t

g(a)
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is directly related to the bare charge g0, but does not
coincide with it (see below); the relation gΛ ≈ g0 is valid
only in the weak�coupling region.

1. The Gell�Mann–Low equation at d = 4 – � with
small � in the region g � 1 can be represented in the form

(53)

and has a stationary point g* = �/β2. The integration of
Eq. (53) with the initial condition g = gΛ at m = Λ pro�
vides

(54)

In the weak�coupling region, gΛ ≈ g0 and, in the limit
�  0, the known result [29]

dg
d mln
���������� β g( ) �g– β2g2+= =

g
gΛ Λ/m( )�

1 β2gΛ Λ/m( )� 1–[ ]/�+
������������������������������������������������, g gΛ � 1.,=

(55)

is obtained. Equation (53) does not impose any
restrictions on the relation between the scales m and Λ.
The dependence of g on Λ/m is increasing at gΛ < g*
and decreasing at gΛ > g* and approaches the constant
g* in the limit Λ/m  ∞ (see Fig. 7a). The depen�
dences of g on gΛ are shown in Fig. 7b; under the addi�
tional assumption

(56)

so that

(57)

it is clear that these dependences are monotonic
9
 and

have no pathologies.
However, if we suggest large Λ/m and neglect unity

in the square brackets in Eq. (54),

(58)

the situation changes and large g values are inaccessi�
ble for real g0; setting g0 = 1/t2, parametric representa�
tion (1) is represented in the form

(59)

where the trajectory in the t plate turns at t = 0 at the
right angle and ends at the Landau pole i[β2(Λ/m)�/�]
(see Fig. 8). Thus, the turn of the trajectory to the

9  In the general case, this is clear from Fig. 7a, where the curves
corresponding to different gΛ values do not intersect at finite
Λ/m values.
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gΛ = g*
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(b)
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g Λ/m > 1

Λ/m < 1

Λ/m = 1

g* gΛ

Fig. 7. Dependences of g on (a) Λ/m for various gΛ values
and (b) gΛ for various Λ/m values.

t

i[β2(Λ/m)�/�]1/2

Fig. 8. Topology of the trajectory in the t plane for d = 4 –
� with small � values according to Eq. (59).



460

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 111  No. 3  2010

SUSLOV

complex plane is not extraordinary and can easily
appear under natural assumptions; note that this turn
is not accompanied by any singularities of the β func�
tion. Equations (59) are valid only at g, g0 � 1 and nei�
ther the position of the turning point t = 0 (where
g0  ∞) nor the position of the pole (where g  ∞)
is known with certainty.

According to Eq. (58), g has a regular expansion in
the parameter g0(Λ/m)�, as in the diagrammatic calcu�
lations (see below), and, as a function of g0, varies at a
scale ~(m/Λ)� � 1 above which it approaches the con�
stant g*. This plateau holds to the scale g0 ~ 1, where
the differences of g0 from gΛ appear (see Eq. (61)), the
difference of the β function from Eq. (53) becomes
significant, and the mass renormalization regime
changes (see Eq. (35)); as a result, the transition to the
strong�coupling regime discussed in Sections 3 and 4
occurs.

2. In the framework of the diagrammatic tech�

nique, the expansion of g in g0 has the structure
10

(60)

At m = Λ, the relation of gΛ to g0 is obtained in the form

(61)

so that the relation gΛ ≈ g0 is valid only for small g0. The
dependence of g on gΛ is monotonic (see Fig. 7b),
whereas the character of the dependences of g on g0 is
determined by the function h(g0). If the function h(g0)
varies monotonically from zero to infinity with an
increase in g0, then the case shown in Fig. 5a occurs
and the trajectory t remains on the real axis. If the
function h(g0) is nonmonotonic, the case shown in
Fig. 5b occurs and the trajectories turn to the complex
plane. If the function h(g0) is finite in the limit g0 
∞, the singularity at t = 0 disappears and large g values
are reached only at complex t. The function h(g0) is

determined by the coefficients , which can be var�

10 The N�loop approximation involves the integrations with
respect to N momenta; each integration gives the factor k–�,
which reduces to Λ–� and m–� in the upper and lower limits,
respectively. For this reason, the N�loop contribution contains

the factor  multiplied by the N�order homogeneous poly�

nomial composed of Λ–� and m–�. Result (60) is obtained taking
into account the relation u0 = g0Λ

� after the appropriate group�
ing of the terms and the separation of the powers of � from the
coefficients for the correspondence in the limit �  0 with the
usual logarithmic expansion.

u0
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∑ h g0( ),≡+=
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0

ied by changing the lattice or using another regulariza�
tion method.

The upper limit of the integration with respect to
the momentum in the diagrammatic calculations at
d < 4 is usually accepted as infinity; in this case, the
term (Λ/m)–� in the square brackets in Eq. (60) can be
omitted. As a result, Eq. (60) is represented in the form

(62)

and the relation of gΛ to g0,

(63)

differs from Eq. (61). This difference is most pro�
nounced for small � values: according to Eq. (61)
(which does not contain �), the relation gΛ ≈ g0 is valid
up to g0 ~ 1, whereas Eq. (63) corresponds to the result
gΛ = g0/(1 + g0/g*) (following from Eq. (58)) and the
dependence is saturated at g0 ~ �. It should be empha�
sized that the transition from Eq. (61) to Eq. (63) does
not involve any serious features: for d < 4 (after mass
renormalization), the integrals converge at high
momenta and it is physically insignificant whether the
upper integration limit is taken as infinite or large but
finite. Nevertheless, the relation of the renormalized
charge to the bare charge changes drastically. This cer�
tainly does not mean the same changes in the observ�
ables, but indicates the possibility of two description
methods.

(i) In the first description method that corresponds
to Eq. (62) and is possible only at d < 4, the passage to
the limit Λ  ∞ is performed at an early stage and the
perturbation series in g is constructed in the form that
does not contain information on a cutoff. These series
have real coefficients and provide real values of the
observables with the usual summation methods [23].
The results independent of the cutoff cannot be
matched with the lattice expansions discussed in Sec�
tions 3 and 4 and the passage of the trajectory t to the
complex plane looks natural.

(ii) In the second description method that corre�
sponds to Eq. (60) and is the only possible method at

d = 4 (i.e., in the actual field theory),
11

 the explicit
regularization method is implied. In this case, the
renormalization�group functions, Green’s functions,
etc. after renormalization have finite limits in the limit
Λ  ∞, but depend on details of cutoff (since the
definition of the charge depends on these details); this

11 It is also more natural in the condensed matter physics, where
the cutoff certainly exists and the continual limit is possible only
when it does not provide pathologies.
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dependence is expected to disappear only in the
observables. In this description method, the trajectory
t can remain on the real axis at least for some regular�
ization procedures.

An example of small � values clearly shows that the
complex�valued bare charge g0 is not attributed to any
pathologies and has no physical meaning.

3. In the framework of expansion (62), the relation
between g and g0 is completely determined by the β
function and can be analyzed in the general form.
Integrating the Gell�Mann–Low equation,

(64)

and setting

(65)

it is easy to verify that the left�hand side of Eq. (64) is
a regular function of g and g ≈ (Λ/m)�gΛ ≈ (Λ/m)�g0 for
small g values. If the relation between gΛ and g0 is
defined so that

(66)

then g is a regular function of the parameter g0(Λ/m)�

as is required by expansion (62). At g  g*, Eq. (66)
provides

(67)

and the turn to the complex plane occurs at the point
t = 0 at the angle

(68)

so that the complex t values correspond to significantly
complex (rather than simply negative) g0 values. In this
case, the entire picture is qualitatively the same as for
small �: in particular, the dependences of g on g0 and
Λ/m are the same and correspond to the lower curve in
Fig. 7a, it approaches the constant value g* in the limit
g0  ∞, which is usually considered as the strong�
coupling limit of the ϕ4 theory [30].

Thus, in the renormalization scheme that is com�
monly accepted in the theory of phase transitions [12]
and corresponds to expansion (62), the turn to the
complex plane is inevitable and a singularity at t = 0 is
absent. These properties does not contradict
Section 3, because the definition of the bare charge in
this scheme (see Eq. (63)) is different from that used in

�F g( )–{ }exp Λ
m
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ω–

t2ω/�= =

χ π
2
�� �

ω
���,=

the lattice version of the functional integrals (see
Eq. (61)).

7. SITUATION WITH ANOMALOUS 
DIMENSIONS

According to Section 6, the passage of the trajec�
tory t in the complex plane or on the real axis is deter�
mined by the renormalization scheme, i.e., is associ�
ated with the description method that has no physical
meaning. The results for the asymptotic behavior of
β(g) confirm this point of view: they are the same for
the singularities at t = 0 and at the complex point tc (cf.
Eqs. (48) and (13)). Results (48) for the functions η(g)
and η2(g) are different from the respective results in
Eqs. (13), but the anomalous dimensions have physi�
cal meanings only near the stationary point of the
renormalization group g*, whereas far from this point,
they are technical constructions meaningful only in a
particular scheme. Indeed, the functions η(g) and
η2(g) are determined by the Z factors, which are phys�
ically meaningless by definition, because they are not
involved in observables. The singular behavior of the Z
factors is manifested in observables only owing to a
specific situation near the critical point. Let us illus�
trate this for the function η(g).

As is known in the theory of phase transitions, the

vertex  (the inverse renormalized propagator) at

m2 > 0 has a regular expansion at small p and a singular
behavior at large p,

(69)

The regular expansion with arbitrary coefficients α1,
α2, … satisfies the renormalization�group equations;
hence, α1 = α2 = … = 0 can be taken and the regular
solution m2 + p2 can be chosen at arbitrary p. The

result (p) ~ p2 – η is the single solution only at

m2 = 0 (at the transition point) and its validity for
p � ξ–1 at finite m2 requires additional reasons: it does
not contradict the regular expansion if the coefficients
α1, α2, … are appropriately chosen and ensure the
asymptotic behavior p2 – η at large p. For the case under
consideration, η = 0 in one description method and
indicates that the regular solution m2 + p2 exists at
any p. However, this solution is always allowable and
does not contradict the value η = 2 obtained in the
other description method. Note that the instanton cal�
culations by Polyakov [31] (see also [32]) can be
treated [21] as the solution of the one�dimensional ϕ4

theory in the limit g0  ∞; the result obtained for the
pair correlation function,

ΓR
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corresponds to (p) = m2 + p2 in the momentum
representation.

Let us give a more formal consideration based on

the Callan–Symanzik equation
12

(70)

where μ is the arbitrary momentum scale, τ ∝  is

the distance to the transition, and γm(g) = 2 – ν–1(g) =
η(g) – η2(g). Its general solution for finite p and τ can
be represented in the form

(71)

where F(x, y) is an arbitrary function. Under the
assumption that the functions η(g) and ν(g) are con�
stant in the g range of interest, the expression

(72)

is obtained, where the function A(g) in view of
Eqs. (65) and (56) has the form

(73)

To obtain the finite solution in any of three limits
(when A(g) tends to zero or infinity), it should be con�
structed so that the dependence on A(g) disappears.
For p = 0 or τ = 0, F(0, y) ~ yα with α = ν(2 – η) and
F(x, 0) ~ xβ with β = 2 – η, respectively; thus, the
known results

(74)

12 In the initial renormalization scheme corresponding to Eqs. (7)
and (8), the Callan–Symanzik equation has a right�hand side
[20, Sect. VI.A] and is inconvenient for the analysis. Here, only
the possibility of the equivalence of the situations with η = 0 and
2 is demonstrated and a more convenient scheme [20, Sect,
VI.C] is used where the tilde marks another method of the
renormalization of Γ(0, 2).

ΓR
0 2,( )

∂
∂ μln
���������� β g( ) ∂

∂g
���� γm g( ) ∂

∂ τln
��������� η g( )–+ + Γ̃R

0 2,( )
0,=

δm0
2

Γ̃R
0 2,( )

p τ,( ) μ2 gη g( ) 2–
β g( )

����������������d∫⎩ ⎭
⎨ ⎬
⎧ ⎫

exp=

× F p
μ
�� gd

β g( )
���������∫exp τ

μ2
���� gd

ν g( )β g( )
������������������∫exp,⎝ ⎠

⎛ ⎞ ,

Γ̃R
0 2,( )

p τ,( ) μ2A g( )η 2–=

× F p
μ
��A g( ) τ

μ2
����A g( )1/ν,⎝ ⎠

⎛ ⎞

A g( ) gd
β g( )
���������∫exp=

=  

~g 1/�–
, g 0

~ g g*–( )1/ω
, g g*

~g
1/β

∞, g ∞.⎩
⎪
⎨
⎪
⎧

Γ̃R
0 2,( )

0 τ,( ) τν 2 η–( )
,∼

Γ̃R
0 2,( )

p 0,( ) p2 η–∼

are obtained. In the general case, F(x, y) ~ xβyα with
β = ν(2 – η – α) can be accepted, so that

(75)

is a solution at arbitrary α. In the general case, the
solution can have the form of the superposition of
functions of form (75); in particular, for the regular
expansion in p2,

(76)

.

With  = (τ/μ2)νη, m2 = μ2(τ/μ2)2ν, and A0 = A1 = 1,
Eq. (76) is represented in the form

(77)

i.e., the regular solution is possible for arbitrary η
value, as was mentioned above. Thus, the limits η 
0 and η  2 can really correspond to the same phys�
ical situation.

The results for zero momenta such as m2 ~ τ2ν and

(0, τ) ~ τν(2 – η) are constructive only near the
critical point, when the relations of the observables to
the renormalization�group charges can be linearized
and the distance to the transition, τ, is determined by
the linear deviation of the controlling parameter from
the critical value. Far from the transition point, such
relations do not contain significant information,
because the distance to the transition can be deter�
mined by different methods.

8. CONCLUDING REMARKS

The main reason against complex bare parameters
is based on the representation of the S matrix in terms
of the Dyson T exponential, according to which the
bare Hamiltonian should be Hermitian for the unitar�
ity of the theory.

The real situation is more complicated, as is clear
from the Bogoliubov axiomatic construction of the S
matrix [9]. According to this construction, the most
general form of the S matrix is given by the T exponen�
tial of i�, where � is the sum of the bare action and
the sequence of “integration constants,” which are
determined by quasi�local operators. In the regular�
ized theory, the integration constants can be taken as
zero and, thus, it is possible to return to the Dyson
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form of the S matrix. However, in the process of renor�
malization, these constants are treated as nonzero and
chosen from the condition of the absence of diver�
gences; then, these constants are included into the
action by changing its parameters. For this reason, the
S matrix for the truly continual theory is determined
by the renormalized action, whereas the bare Hamil�
tonian and Schrödinger equation are ill�defined; from
this point of view, the complex�valued bare parameters
are of no significance.

Some remaining questions concern the regularized
theory, when both the bare and renormalized
Lagrangians are meaningful and contradictory con�
clusions concerning the unitarity of the theory are
possible. A similar situation was discussed for the

exactly solvable Lee model [3] for which
13

(78)

and the bare charge g0 is complex at large values of the
renormalized charge g (see Fig. 9). According to [4],
the Lee model is physically unsatisfactory for g > gc

owing to the presence of states with a negative norm
(ghost states); however, Bender et al. [5, 6] recently
showed that the problem of ghost states can be solved
and the Lee model is an acceptable physical theory.
The main idea of work [5] is that the analytic continu�
ation of the parameters of the Hamiltonian to the
complex plane should be accompanied by the modifi�
cation of the scalar product for the corresponding Hil�
bert space,

(79)

and the bare Hamiltonian with the appropriate choice

of the operator  is Hermitian in terms of the new sca�

13 Cf. the Landau–Abrikosov–Khalatnikov formula for quantum
electrodynamics [29].

g2 g0
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1 g0
2
/gc

2+
�����������������=

f g,( ) f * x( )g x( ) x f g,( )Gd∫ f Ĝg,( ),= =

Ĝ

lar product. As a result, all of the states of the Lee
model have a positive norm and the S matrix is unitary.
A similar procedure should exist in the general case in
order to eliminate the indicated contradiction.

The definition of the charge is ambiguous owing to
the ambiguity of the renormalization scheme [11],
which is associated with the arbitrariness of the inte�
gration constants in the Bogoliubov construction;
consequently, the complex�valid bare charge g0 has a
relative meaning. The singularities of parametric rep�
resentation (1) at t = 0 and at the complex point tc can
be transformed to each other by redefining the bare
charge g0. For this reason, the result of this work for the
β function coincides with that obtained in [1] using
absolutely different reasons.

Note that the result obtained for the asymptotic
behavior of the β function has a simple meaning. With
the use of Eqs. (9) and (39), it is possible to write

(80)

For the dependence g ∝ md, the result β(g) = dg trivi�
ally follows from definition (8) for the β function. Its
validity in the asymptotic region is ensured under the
following conditions: (i) the limit m  ∞ can be

reached for the constant ratio K4K0/  and (ii) this
limit is possible owing to change only in m0 (with
unchanged g0 and Λ values). These conditions are eas�

ily satisfied near the zero of  in the complex plane.
For the singularity at t = 0, the indicated conditions
are not satisfied, but their weakened forms are valid:
change in m0 can ensure change in m under the condi�

tion K4K0/  = const in a certain wide range and this
range can be shifted towards larger values by varying t
(see Section 4). Thus, the dependence g ∝ md can be
composed from pieces by choosing a certain decreas�
ing sequence t1 > t2 > t3… (see Fig. 10).

g mdK4K0
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Fig. 9. Renormalized charge squared versus the bare
charge squared in the Lee model.

g

m

t1 t2

t3
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Fig. 10. Dependence g ∝ md for the singularity at the point
t = 0 can be composed of pieces.
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The objection is possible against the proposed
scheme due to the fact that functional integrals are
used in the “unphysical” regime ξ � a. However (from
the conservative point of view), in principle, one can
object to the lattice interpretation of the functional
integrals, as well as to any other regularization

method.
14

 The main reason in favor of the applicabil�
ity of such an approach is the possibility of removing
all of the attributes of the bare theory from the physical
results, but this reason can also be applied to the pro�
posed scheme, at least concerning the results given by
Eqs. (48). The bare theory is an auxiliary construction
and any “physical” requirements to it are redundant.
At the same time, conditions (44) can be strengthened
and the passage to the following limit can be per�
formed:

t  0, κ  ∞, tκ = const. (81)

In this case, the passage to Eq. (42) does not require
any approximations, but Eq. (42) holds the strict
equivalence with the ϕ4 theory under a special choice
of the bare parameters, which ensures the conserva�
tion of the form of the Lagrangian in the process of
renormalizations. At tκ � 1, result (42) satisfies all of
the physical requirements and corresponds to the evi�
dently correct theory; at tκ � 1, this result is a strict
analytic continuation of this theory. Finally, in the
condensed matter physics, the lattice Hamiltonian is
an admissible microscopic Hamiltonian and can be
used in any regime. Correspondingly, results (48) are
certainly valid in the theory of phase transitions.

Let us briefly discuss the dependence of the results
on the configuration of the overlap integrals Jx. In fact,
the exclusion of Jx in the general form is not necessary;
these integrals can rather be chosen so that the lattice
spectrum �(p) is maximally close to the square spec�
trum. The result of such a procedure is known and cor�
responds to the approximation of almost free electrons
in the theory of solids. In this case, the “empty lattice”
limit rather than the continual limit a  0 corre�
sponds to the correct field theory.

To conclude, it is worth noting that the upper esti�
mate (“triviality bound”) for the mass of the Higgs
boson based on the triviality of the ϕ4 theory [33] is
groundless. In the case of the asymptotic behavior
β(g) ~ g, the Landau pole is absent and internal limita�
tions on the applicability of the Standard Model
implied in this estimate really do not exist.
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