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1 1. INTRODUCTION

The scaling theory of localization [1] is based on
consideration of the so called “Thouless number”

(1)

equal to the conductance GL = σLLd – 2 of the cubic
block of size L (σL is the conductivity and d is a dimen�
sion of space) in units of e2/�, or to the ratio of param�
eters JL and WL of the effective Anderson model, aris�
ing in the Thouless scaling construction (Fig. 1).
Equivalence of two representations in (1) follows from
the estimate of overlap integrals JL ~ �/τD through the
diffusion time τD = L2/DL, estimate of WL as the mean
level spacing ΔL ~ 1/νFLd and the use of the Einstein
relation σL = e2νFDL between the conductivity ΔL and
the diffusion constant DL (νF is the density of states at
the Fermi level).

The behavior of gL at large L is of the main interest:
if gL  ∞ then a system is in the metallic phase, since
eigenfunctions of blocks are hybridized with practi�
cally equal weights; if gL  0, then a system is an
Anderson dielectric (hybridization of the block eigen�
states is practically absent). The block of size nL can be
composed from nd blocks of size L, so gnL can be recal�

1 The article was translated by the authors.
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culated through a given gL as gnL = F(gL, n), which for
n  1 can be written in the differential form

(2)

i.e. in the form of the Gell�Mann–Low equation [2].
The asymptotic behavior of β(g)

(3)

follows from the evident relation GL = σ
∞

Ld – 2 in the
metallic phase and the estimate GL ∝ exp{–constL}

d gln
d Lln
���������� β g( ),=

β g( )
d 2, g � 1,–
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Fig. 1. The Thouless scaling construction. The infinite sys�
tem is composed of finite blocks of size L; if only the level
closest to the given energy E is retained in each block, the
effective Anderson model arises, with the overlap integral
JL and the scattering of site energies WL.
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for a dielectric. For d ≤ 2, the β(g)�function is always
negative indicating localization of all states. For d > 2,
it has a root gc, corresponding to the Anderson transi�
tion point with the power law behavior σ ∝ τs of the
conductivity against the distance τ to the critical point.

The qualitative considerations of the paper [1]
stimulated attempts to formulate them in a more
quantitative form. Conductance of finite systems
became a subject of a vivid discussion [3–14] (see a
review article [15]) resulted in establishing of the Lan�
dauer approach [5, 12] as an adequate way of descrip�
tion. This approach reduces the kinetic problem of
conductance to the quantum�mechanical scattering
problem.

The original Landauer formula for the strictly 1D
(one�channel) conductor follows from the simple
considerations. If the unit flux of electrons is incident
from the left to the sample under consideration
(Fig. 2a), then it is transmitted with probability T and
reflected with probability R = 1 – T (T is a transmis�
sion coefficient). The current through the system is
proportional to T, while the difference of chemical
potentials is determined by the difference of electron
density on the left (1 + R) and on the right (T), i.e.,

1 + R – T = 2(1 – T). Consequently the conductance
is proportional to T/(1 – T), and estimation of the
coefficient gives [5] 

(4)

A somewhat different result was obtained by Econo�
mou and Soukoulis [6] from linear response theory

(5)

Subsequent investigations established [12, 15], that
Eq. (4) corresponds to the four�probe, while Eq. (5) to
the two�probe measurement geometry (Fig. 2b): the
difference between them is determined by the contact
resistance 2π�/e2 between the reservoir and the ideal
conductor

(6)

Transition from one�dimensional to d�dimensional
sample requires consideration of the many�channel
scattering matrix shown at Fig. 2c: the plane wave of
the unit amplitude incident to the channel i generates
the transmitted and reflected waves with amplitudes tij

and rij in the channel j. The multi�channel generaliza�
tion of Eq. (5) has a form [3, 7, 11, 15]

(7)

Subtraction of the contact resistance in analogy with
(6) gives the numerical results [16] equivalent to the
Thouless definition [17], relating the conductance

with a reaction to boundary conditions.
2
 However,

multi�channel generalizations of Eq. (4) appear to be
ambiguous [3, 8, 11, 13], and the problem of correct
exclusion of the contact resistance remains open.

The previous discussion escapes of the fact that the
conductance of a finite system is a poorly defined
quantity. In a strict quantum mechanical description,
a finite system has a discrete spectrum and its ground
state corresponds to occupation of the lower levels

(Fig. 3a).
3
 If the ground state does not carry a current,

then a finite conductance is related with transitions to
excited states, which are separated by a finite gap Δ;

2 The Thouless definition provides the equivalence of two repre�
sentations (1). The overlap integral JL can be estimated as the
width of the band occurring from the given level in the result of
the periodic repetition of the block: it is determined by the
change from periodic to antiperiodic boundary conditions. The
Thouless definition is physically satisfactory but requires consid�
eration of distributions [17], being hardly formulated in terms of
average quantities. By this reason it practically is not used in
analytical theory.

3 For simplicity, we have in mind non�interacting electrons in the
random potential and consider one spin projection.

GLand
e2

2π�
�������� T

1 T–
����������.=

GES
e2

2π�
��������T.=

1
GLand

��������� 1
GES

������ 2π�

e2
�������� .–=

GES
e2

2π�
�������� tij

2
.

ij

∑=

(a)

(b)

(c)

1

R

T

UES

ULand

Sample
Reservoir Reservoir

Ideal conductor

1

rij

i

j j
tij

Fig. 2. (a) To derivation of the Landauer formula (4); (b)
The difference between Eqs. (4) and (5) is determined by
the fact, that voltage UES is measured between two reser�
voirs, while voltage ULand between two ideal leads; (c) The
many�channel scattering matrix.
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such transitions are absent in the limit of zero fre�
quency ω, and

(8)

It is curious, that in the Aharonov–Bohm geometry
(Fig. 3b) the ground state carries a current, if the mag�
netic flux φ through the ring�shaped sample is not
equal to the integer or semi�integer number of quanta
φ0 = �c/e [14]; in this case, a persistent current flows
through the system without external voltage and the
resistance RL is also zero,

(9)

(contradiction with Eq. (8) is avoided due to the pres�
ence of ImGL(ω)).

In fact, this problem is well�known: the formulas of
linear response theory are complemented by a pre�
scription that the entering them δ�functions should be
smeared out by the quantity γ, next the thermody�
namic limit L  ∞ is taken and only then  γ is set
to zero. In fact, such procedure transforms the discrete
spectrum into continuous density of states (Fig. 4).
For a finite system such a procedure becomes impos�
sible and attenuation γ should remain finite. The ques�
tion arises on the origin of this attenuation and its
dependence on parameters.

Attempts of discussing this question were made in
the papers [18–21], based on the “shell model” devel�
oped in nuclear physics for description of coupling
between a discrete spectrum of the “target” and a con�
tinuous spectrum of scattered particles [22]. Unfortu�
nately, the physics of the problem remain unclear in
these papers, because the σ�model formalism was
introduced at the early stage of consideration. In addi�
tion, the bare diffusion coefficient was considered as a
given constant, while it actually depends on the degree
of the openness of a system.

In derivation of the Landauer formulas [6–8, 15]
the indicated problem is avoided in a following man�
ner. The system under consideration is connected with
the ideal leads, which can be taken sufficiently mas�
sive; the spectrum becomes quasi�continuous and
attenuation γ can be tended to zero. Therefore, the

ReGL ω( ) 0, ω 0.=

ReRL ω( ) 0, ω 0

Landauer conductance corresponds to the composite
system “sample+external leads” and not to the system
under consideration. This point is especially clear
from the fact that the matrix elements entering the
Kubo formula are determined by integration over the
region of ideal leads.

The question arises, in what extent the formulas (4)–
(7) reflect the internal properties of the system. To
illustrate it more clearly, let introduce the potential
barrier between the sample and ideal leads. If the
height of the barrier tends to infinity, then the Land�
auer resistance grows unboundedly, while nothing
occurs with the system itself. Contrary, if the height of
the barrier tends to zero, then the boundary resistance
disappears but the system is dangerously affected by its
environment.

There is one more question. The infinite system is
fully characterized by the diffusion coefficient
D(ω, q), which generally possesses the temporal and
spatial dispersion. The conductance of a finite system
is evidently related to D(ω, q) but this relation is not
clear in the Landauer approach.

Therefore, the following points remain unclear at
the present time:

(a) exclusion of the reservoir contact resistance in
the many�channel case;

(b) relation of Eqs. (4), (5), (7) with internal prop�
erties of the system;

(c) relation of the Landauer conductance with the
diffusion coefficient D(ω, q) of an infinite system.

The answers to these questions are obtained below
in the framework of two approaches: (1) self�consis�
tent theory of localization by Vollhardt and Wölfle [23,
24], and (2) quantum�mechanical analysis based on
the shell model [18, 22]. Both approaches lead to the
same definition for the conductance of a finite system,

(a) (b)
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Δ

Fig. 3. In strictly quantum mechanical description, a finite
system has no conductance (a) and no resistance (b).
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Fig. 4. The discrete levels (a) acquire width γ due to a finite
lifetime (b). If the limit L  ∞ is taken before the limit
γ  0, the extended levels overlap strongly and form the
continuous density of states (c).
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closely related to the Thouless definition: it gives a new
strong argument in favour of the self�consistent theory.
Further, in the framework of this theory, we calculate
the Gell�Mann–Low functions β(g) for the space
dimensions d = 1, 2, 3 (Fig. 5). In contrast to the anal�
ogous calculation by Vollhardt and Wölfle [24], the
β(g)�function has no singularity in the fixed point gc.
The latter is related with the fact that the metallic and
localized phase are considered from the same stand�
point, so the conductance of a finite system has no sin�
gularity at the critical point: it is in agreement with the
general principles of the modern theory of critical
phenomena [25, 26].

The present theory has the following structure. A
finite system is topologically quasi�zero�dimensional
and its effective dimensionality is less than two. All
states of this system are formally localized and one can
introduce the finite correlation length ξ0D; it satisfies
the scaling relation

(10)

analogous to that for quasi�one�dimensional systems
[27–30]; ξ is the correlation length of the infinite d�
dimensional system. The diffusion coefficient has a
behavior typical for the dielectric phase,

(11)

and turns to zero in accordance with Eqs. (8), (9). The
above statements are valid only for closed systems. In
open systems the finite diffusion coefficient DL arises,
and the following result can be derived for the dimen�
sionless conductance

(12)

ξ0D

L
������ F L

ξ
���⎝ ⎠

⎛ ⎞ ,=

D ω 0,( ) iωξ0D
2

,–=

gL F1
ξ0D

L
������⎝ ⎠

⎛ ⎞ .=

Replacement of lnL by ln(L/ξ) in the Gell�Mann–
Low equation (2) allows to represent gL as a function
of L/ξ. The latter can be determined from Eqs. (10),
(12) and allows to reconstruct β(g).

The paper is organized as follows. In Section 2 we
discuss the early attempt of scaling by Vollhardt and
Wölfle [24] and formulate the main difference
between it and the present paper. In Section 3 the
correlation length ξ0D is discussed and the scaling
relation (10) is derived for d < 4. In Section 4 we con�
sider open systems and derive the result of type (12).
The same result is derived in Section 5 from the shell
model; its physical sense is clarified and dependence
on the measurement geometry is discussed. In Section
6 the length dependence of gL is presented in the clear
form and β(g)�functions for d = 1, 2, 3 are calculated.
Their expansion in powers of 1/g is compared with the
results of the σ�model approach [33, 34]; the use of
dimensional regularization in σ�models is found to be
in conflict with the physical essence of the problem. In
Section 7 the obtained results are compared with
numerical [31, 32] and physical [35, 53] experiments.
A situation in higher dimensions d ≥ 4 is discussed in
Section 8. In Section 9 we summarize and discuss the
consequences of the present study for the conductance
distribution, spatial dispersion of the diffusion coeffi�
cient and observation of the localization behavior
σ(ω) ∝ –iω.

2. SELF�CONSISTENT THEORY
AND SCALING

Self�consistent theory of localization by Vollhardt
and Wölfle theory is based on existence of the diffusion
pole in the irreducible four�leg vertex Ukk'(q), entering
the Bethe–Salpeter equation and playing the role of
the scattering probability Wkk ' in the quantum kinetic
equation. Using the estimate in the spirit of τ�approx�

imation, D ∝ , where  is averaging over
momenta, one can obtain the self�consistency equa�

tion [23, 24] which can be written in the form [30]
4
 

, (13)

(the limits of integration are written for the modulus
of q). Here E is the energy of the bandwidth order, W
is the amplitude of disorder, Λ is the ultraviolet cut�
off, Dmin is a characteristic scale of the diffusion con�
stant corresponding to the Mott minimal conductivity.

The metallic phase is possible for d > 2, when a
value of the basic integral

4 Equation of type (13) can be obtained by approximate solution
of the Bethe–Salpeter equation [23] or by detailed analysis of
spectral properties of the quantum collision operator [37]. The
possibility to neglect the spatial dispersion of the diffusion coef�
ficient was justified in [37].
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Fig. 5. Gell�Mann–Low functions β(g) for d =1, 2, 3
obtained in the present paper.
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(14)

is finite for m = 0. Specifying τ as a distance to a tran�
sition, one has

(15)

so the exponent of conductivity is unity. In the dielec�
tric phase one makes substitution D = –iωξ2, and
Eq. (13) determines the correlation length ξ; in partic�
ular, for d > 2

(16)

The attempt of using Eq. (13) for derivation of scal�
ing equations was made in [24] and contains two
ingredients.

1. Modification of the Einstein relation. According
to [24], the Einstein relation is modified in the local�
ized phase due to non�local effects and acquires the
additional exponential factor

(17)

To obtain this result, one considers the change of
the electron density ρ(x), induced by the scalar
potential ϕ(x),

(18)

where α(x – x') is polarizability

(19)

For a closed system, the diffusion current

 at the boundaries of the system

x = ±L/ is compensated by the electric current je(x) =
σLE, which allows to determine σL. Producing such
calculations for

(20)

one has

(21)

and

I m( ) d
dq
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2ξ
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������������–=

ϕ x( ) ϕ0 Ex,–=

ρ x( ) e2νF E L
2
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⎛ ⎞ L
2ξ
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⎛ ⎞sinhexp=
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L
2ξ
�����–⎝ ⎠

⎛ ⎞ x
ξ
��⎝ ⎠

⎛ ⎞coshexp ,

(22)

Accepting ϕ0 = ±E(L/2 + ξ), one obtains

(23)

in accordance with (16). It is easy to see that this result
is related with the unphysical response to the constant
potential ϕ0, which is a consequence of accepted
approximations; absence of self�consistency is espe�
cially clear for ϕ0 ≠ 0, when estimation of σL using

je(L/2) and je(–L/2) gives different results.
5

Of course, the correct consideration recovers valid�
ity of the Einstein relation. In the framework of the
self�consistent theory, σ(ω, q) and D(ω, q) are inde�
pendent of q [37], providing the local response in the
coordinate space; the relation between them has a
local character and cannot be modified due to restric�
tion of the system size. The absence of the factor
exp(–L/ξ) is catastrophic for the paper [24], since it
fails to obtain the result gL ~ exp(–constL) in the
localized phase.

2. Modification of the self�consistency equation.
For a finite system, equation (13) is modified by intro�
ducing the lower cut�off,

(24)

and rearranged by subtraction of the same equation
with L = ∞:

(25)

Since D
∞

 ~ τ in the metal and D
∞

 = 0 in the dielectric
phase, the diffusion coefficient DL of a finite system
acquires a singularity at the critical point. It is in con�
flict with general principles of the modern theory of
critical phenomena [25, 26], which allow a phase tran�
sition only in the thermodynamic limit L  ∞.

The present theory is also based on Eq. (13), while
indicated defects are removed in the following man�
ner. A finite system is topologically zero�dimensional
and all its states are formally localized, though the
effective correlation length ξ0D coincides with ξ only in
the deep of the localized phase (in the metallic regime,
ξ0D > L). As a result, D

∞
 turns to zero in both phases

5 In fact, the kernel α(x, x') should be constructed as a binary
expansion in eigenfunctions of the diffusion operator; for open
systems, integration in (18) should be taken over the whole
space.
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and Eq. (25) becomes almost satisfactory. The correct
result is obtained below,

(26)

and differs from (25) by replacement of the integral by
the discrete sum and concretization of the way of cut�
off: the latter is provided by the oscillating factor
exp(iq ⋅ x), which effectively restricts summation by
values  � 1/L. These modifications are crucial for
derivation of the result DL ~ exp(–L/ξ) in the local�
ized phase.

The application of the quasi�zero�dimensional
concept is not a pure theoretical construction, but
allows to distinguish the real behavior of open and
closed systems. Absence of singularities in small sys�
tems can be also verified experimentally. Therefore,
the present theory differs from [24] on the level of
observable consequences.

3. CORRELATION LENGTH
OF QUASI�ZERO�DIMENSIONAL SYSTEM

3.1. Dimensions 2 < d < 4

A finite system is considered as quasi�zero�dimen�
sional and its correlation length ξ0D can be studied in
analogy with the quasi�one�dimensional case [30]. In
a finite system, the basic integral (14) is replaced by
the discrete sum

(27)

where allowed values of q has a form 2πs/L, and s =
(s1, s2, …, sd) is the d�dimensional vector with integer
components si = 0, ±1, ±2, …. We accept the periodic
boundary conditions in all directions, which corre�
spond to the closed system (Section 4). The term with
q = 0 provides the divergency of I(m) at m  0 and
the system is always in the localized regime. It is con�
venient to make the following decomposition

(28)

where we separated the term with q = 0, and the rest of
the sum is rearranged by addition and subtraction of
the analogous sum with m = 0. The limit Λ  ∞ can
be taken in the second term I2(m) transforming it to
the form L2 – dH0(mL) (neglecting contributions
~m2Λd – 4). The third term I3(0) can be calculated at

DL DminΛ2 d– 1

Ld
���� iq x⋅( )exp

m2 q2+
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x L∼

,

q

∑=
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q

I m( ) 1
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∑ I1 m( ) I2 m( ) I3 0( ),+ +≡

L  ∞ by the change of summation by integration,

while for finite L it has a structure.
6
 

(29)

where we accepted a = Λ–1. Substitution of expres�
sions (28), (29) into the self�consistency
equation (13) gives

(30)

where definition τ = E2/W2 – b0 coincides with (15),
since b0 corresponds to the value I(0), calculated in the
integral approximation. According to (30), ξ0D is a reg�
ular function of τ. Expressing ξ through the correlation
length τ of the d�dimensional system (ξ–1/ν ~  = ±τ)
and omitting terms vanishing at a  0, one has

(31)

(32)

which is the desired scaling relation (10), consisting of
two branches (cd are positive coefficients introduced
in [30]). The asymptotical behavior of H(z)

(33)

is obtained noticing that H(z) at small z is determined
by the last term in (32), while for large z the sum over s
is approximated by the integral; the regular expansion
is possible near the root z*, corresponding to the criti�
cal point. At arbitrary z the sum over s can be calcu�
lated numerically, giving H(z) for d =3 shown in Fig. 6.
Introducing the variables

(34)

one has for dependence y(x) (Fig. 7)

(35)

6 It can be obtained using the α�representation (see Appendix)
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The constant b1 in (29) is not universal and depends on
the way of cut�off: a value b1 = –0.226 for a spherical
cut�off (  < Λ) is used below for d = 3, though in gen�
eral it should be considered as an adjustable parame�

ter.
7
 Corrections to scaling can be obtained from (30)

and have the same form as for quasi�one�dimensional
systems: it confirms universality of their structure
argued in [30].

3.2. Two�Dimensional Case

In two dimensions we have

(36)

and the scaling relation has the form

(37)

with the previous definition of H(z) (Fig. 6). Using the
asymptotic results

(38)

we have y = x for x � 1 and y ~ (lnx)1/2 for x � 1
(Fig. 7). Below we use the value b1 = 0.1780 obtained
for the spherical cut�off.

3.3. Dimensions d < 2

For d < 2, subtraction of the term with m = 0 is not
necessary and the limit Λ  ∞ can be taken immedi�

7 For the cubical cut�off (  < Λ) one has b1 = –0.0314.

q

qi

I3 0( ) 1
2π
����� L

a
���ln b1 …, E2
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������+ + 1

2π
����� ξ
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��,ln= =

1
2π
����� ξ

L
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⎛ ⎞ln H L
ξ0D

������⎝ ⎠
⎛ ⎞=

H z( ) 1/z2
, z � 1,

1/2π( ) z, z � 1,ln–⎩
⎨
⎧

=

ately in (27). The scaling relation has the form

(39)

and consists of one branch, since the function H(z) is
positive (Fig. 6). Its asymptotic behavior

(40)

is obtained analogously and gives y = x for x � 1 and y ~
x(2 – d)/2 for x � 1 (Fig. 7). In the 1D case the function
H(z) can be calculated exactly (see Eq. (118) below).

4. SITUATION IN OPEN SYSTEMS

4.1. Difference between Open and Closed Systems

Consider the effective diffusion equation

(41)

describing the electron distribution f(x, t). In an infi�
nite system the operator –∇2 has eigenfunctions

es(x) ~ exp(iqs ⋅ x) and eigenvalues λs = . In a finite

cd
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Fig. 6. Functions H(z) for d = 1, 2, 3.
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Fig. 7. Behavior of y = ξ0D/L versus x = ξ/L for d = 1, 2, 3.
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system es(x) and λs become non�trivial and determine
the evolution of the initial distribution f0(x)

(42)

The difference between open and closed systems can
be formulated on a very abstract level: in the first case,
the minimal eigenvalue λ0 is zero and corresponds to
the constant eigenfunction

(43)

while in the second case

(44)

In the first case one has from (42) at t  ∞

(45)

i.e. distribution f(x, t) tends to the constant limit,
equal to the average value of f0(x) in the coordinate
space; consequently, environment does not affect the
natural process of relaxation, and the total number of
particles is conserved. In the second case

(46)

i.e., distribution over x is stabilized, but its amplitude
is decreased due to escape of the particles through
boundaries of the system; by the same reason their
density near boundaries is less than in the center.

Consider examples. Let the 1D system is arranged
in the interval 0 ≤ x ≤ L. For boundary conditions of
the Bloch type

(47)

the allowed values of q has a form qs = (2πs + ϕ)/L with
integer s, so the system is closed at ϕ = 0, and maxi�
mally open at ϕ = π, i.e., for periodic and antiperiodic
conditions correspondingly. For the more realistic
boundary conditions

(48)

the system is closed for κ = 0 due to the absence of flow
through boundaries; the maximum openness is real�
ized at κ = ∞, i.e. for the zero boundary conditions.

4.2. Attenuation of Electron States and Finiteness
of the Diffusion Coefficient

In the open system, electrons can escape through
the boundaries and their eigenstates has a finite life�
time. It can be proved quite generally, that it provides
the finite diffusion constant in the static limit. Con�
sider the density correlator

(49)

f x t,( ) As Dλst–( )es x( ),exp

s

∑=

As f0 ex,( ).=

λ0 0, e0 x( ) const,= =

λ0 0, e0 x( ) const.≠>

f x t,( ) t ∞→ const f0〈 〉 ,= =

f x t,( ) t ∞→ A0e0 x( ) Dλ0t–( ),exp=

f L( ) f 0( )eiϕ=

f x' 0( ) κf 0( ), f x' L( ) κf L( )–= =

�ω r r'–( ) GE ω+
R r r',( )GE

A r ' r,( )〈 〉 ,=

where GR and GA are the retarded and advanced Green
functions. Eq. 49 can be rewritten identically

(50)

where  is the Berezinsky–Gor’kov spec�
tral density, whose Fourier transform is related with
polarizability α(ω, q) [37]

(51)

Using the definitions of kinetic coefficients and ana�
lytic properties of the response functions [38], it is easy
to show that [37]

(52)

where D(ω, q) is the observable diffusion coefficient. It
should be stressed, that this result has a general char�
acter and is not restricted by the metallic phase.

The finite lifetime of the electron states leads to a
replacement of infinitesimal quantities ±i0, entering
definitions of the retarded and advanced Green func�
tions, by ±iγ; analogous changes occur in (50). Repro�
ducing the indicated calculations, we come to conclu�
sion that the replacement

(53)

should be made in (52), both in the term –iω and in
D(ω, q). In the localized phase the following combina�
tion remains invariant

(54)

which has a simple physical sense: attenuation of
eigenstates was introduced for the permanent eigen�
functions, so the correlation length ξ characterizing
the latter is also unchanged. In the static limit
D(ω, q) is replaced by DL = 2γξ2, i.e., the finite diffu�
sion constant arises.

4.3. Modification of the Self�Consistency Equation

The result D(ω)  0 (Section 3) is valid for closed
systems, being directly related with the existence of the
allowed value q = 0; the self�consistency equation (13)
has a form

(55)

In the open system, the diffusion constant DL becomes
finite, but the correlation length remains unchanged:

�ω r r'–( ) � ω ' 1
E ω �– i0+ +
����������������������������d

∞–

∞

∫d

∞–

∞

∫=

× 1
E ω '– �– i0–
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ρ� �, ω+ r r'–( )
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Imα� ω q,( )

πe2ω
�����������������������.–=

�ω q( )
2πνF

iω– D ω q,( )q2+
����������������������������������,=

iω iω– 2γ,+–

iω–
D ω q,( )
��������������� iω–

iω–( )ξ2
���������������� iω– 2γ+

iω– 2γ+( )ξ2
���������������������������,=

E2
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������ Λ2 d– 1

Ld
���� 1

m2 q2+
��������������, m 1–

q

c( )

∑ ξ0D.= =
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(56)

The labels (c) and (o) indicate the closed and open sys�
tem, which have the different sets of allowed values of
q in the sum. Taking the difference of (55) and (56),
one obtains

(57)

which can be considered as a definition of the diffu�
sion coefficient for a finite system. This definition
contains essential freedom, since the choice of the
open and closed system is a subject of agreement. For

the Bloch boundary conditions
8
 (47) the natural eta�

lon choice are the systems with ϕ = 0 and ϕ = π,

(58)

where we came from DL to gL, accepting DminΛ2 – d =
1/�νF. We shall refer Eq. (58) as the “Thouless defini�
tion”, since gL is determined by the change from peri�

odic to antiperiodic boundary conditions.
9
 We accept

such a change along only one of coordinate axes,
remaining periodic conditions in other directions:
according to Section 5, it corresponds to the natural
experimental geometry.

The definition (58) provides the exponential
decrease of DL in the localized phase (see Appendix)

(59)

The origin of the exponential dependence can be
explained in the following manner. It is well�known
[39], that integration of quickly oscillating functions

(60)

involves the analytic properties of f(x). If f(x) has a
jump of the n�th derivative at the real axis, then f

ω
 ~

ω⎯n – 1; in particular, the case n = 0 corresponds usu�
ally to integration in finite limits. If f(x) is regular at
the real axis, then the integration contour is shifted to

8  In general, the factor L–d before the sum over q can be replaced
by the more complicated normalization factor (see Eq. (108)
below), which can give the power corrections in 1/L (if treated
inaccurately), and destroy the exponent in (59). Such problems
are absent for eigenfunctions in the form of plane waves, corre�
sponding to the Bloch conditions (47). The realistic boundary
conditions (48) are considered in Section 5.7.

9 Strictly speaking, the original Thouless definition deals with
the boundary conditions for the electron wave function, and not
for the effective diffusion problem. Probably, it is the most close
correspondence that can be established in terms of the averaged
quantities (see Footnote 4).
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1 d–( )/2

e mL–
.=

fω f x( )eiωx x, ω ∞,d

∞–

∞

∫=

the upper half�plane and the integral is exponentially
small,

(61)

The analogous situation takes place in approximation
of an integral by a discrete sum

(62)

which becomes clear after the use of the Poisson sum�
mation formula [40]:

(63)

The term with k = 0 corresponds to the integral (62),
while the main correction to it has an order of
exp(⎯ const/h). Two sums over q in Eq. 58 are equal in
the continual approximation; their difference is deter�
mined by the main effect of discreteness, which has
the order of exp(–constL) due to h ~ 1/L. The defini�
tion (58) can be written in the form of the scaling rela�
tion

(64)

where we introduced a vector t = (t1, t2, …, td), whose
components ti run integer values 0, ±1, ±2, … for i = 2,
…, d and semi�integer values 0, ±1/2, ±1, ±3/2, … for

fω const– ω⋅( ).exp∼

f x( ) xd
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Fig. 8. Functions HT(z), corresponding to the d�dimen�
sional “Thouless definition”, for d = 1, 2, 3: in the scale of
the figure all three curves coincide.
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i = 1. The function HT(z) is always positive (Fig. 8) and
has the asymptotic behavior

(65)

5. APPLICATION OF THE SHELL MODEL

The shell model was developed in nuclear physics
for description of coupling between the discrete spec�
trum of the “target” with a continuous spectrum of
scattered particles [22]; Iida et al. [18] suggested to use
it for consideration of the combined system “sam�
ple+external leads.” Below we illustrate this approach
using the simple models of solid state physics and then

come to consideration of the many�channel case.
10

 

5.1. Connection of Infinite and Finite Chains

Consider the model consisting of two chains, upper
infinite (N  ∞) and lower finite (Fig. 9a). We accept
for simplicity that the chains are described by the usual
Anderson model

(66)

though it is irrelevant for the most part of discussion;
the upper chain is supposed to be an ideal conductor
(�n = 0). As a perturbation, we include the overlap
integral V between the sites n0 and m0 of two chains
(Fig. 9a). The Hamiltonian matrix is block�diagonal
in the zero approximation, while perturbation creates
non�diagonal elements V in n0�th row and m0�th col�
umn and vice versa; so the matrix elements of the per�
turbation operator are

(67)

The matrix Dyson equation G = G0 + G0VG written in
components has a form

10 Section 5 contains derivation of Eq. (64) by the other method
and can be omitted by the reader interesting only in results.

HT z( )
1/z2

, z � 1,

1/π( ) z/2π( ) d 3–( )/2e z–
, z � 1.⎩

⎨
⎧

=

Jψn 1+ Jψn 1– �nψn+ + Eψn,=

Vnn ' V δnn0
δn 'm0

δnm0
δn 'n0

+( ).=

(68)

where Gnn' is the Green function of the perturbed sys�

tem and  is the initial Green function correspond�
ing to two independent chains. The index n runs values
1, 2, …, N corresponding to the first chain, and then
values N + 1, N + 2, …, N + M corresponding to the
second chain; the sites of the latter will be also numer�
ated by the index m. Equation (68) is easily solved: set�
ting n = n0 and n = m0 one obtains the closed system
for  and , and then its solution is substituted

into (68). The complete expression for Gnn' is rather
lengthy, so we give only its projection on subspace 1 of
the upper chain

(69)

and subspace 2 of the lower chain

(70)

Investigation of relations (69), (70) reveals the follow�
ing qualitative moments.

1. Effective scatterer. If we are interested only in
movement along the upper chain, then perturbation (67)
is equivalent to insertion of an impurity atom in the
point n0 (Fig. 9b), with the effective Hamiltonian

(71)

To prove this result, it sufficient to write down the
Dyson equation for the perturbation (71) and verify
that its solution coincides with (69).

2. Attenuation in the finite system. The initial
Green function of the lower chain has a form

(72)

Gnn ' Gnn '
0 Gnn0

0 VGm0n ' Gnm0

0 VGn0n ',+ +=
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0
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Fig. 9. (a) Weak connection V between two chains, and (b) the equivalent scheme in the subspace 1. (c) Two weak connections
between chains, and (d) the corresponding equivalent scheme. (e) Broken upper chain, and (f) effective transitions between its
parts.
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where �s and es(m) are its eigenvalues and eigenvectors.
In the vicinity of a level �s the sum is determined by
one term; its substitution to (70) gives

(73)

For the ideal chain  does not depend on n, and

(74)

where ν(E) is the density of states at the energy E.
Since relation (73) is valid for any level �s, and for
small V we can neglect the mutual influence of differ�
ent levels, then the effective Green function of the
lower chain can be written as

(75)

i.e., the discrete levels acquire a finite attenuation

(76)

The difference between  and �s has no qualitative
effect and can be neglected for small V.

3. Effective T�matrix. The combination entering (69),

(77)

is in fact the T�matrix of scattering [41]; by definition,
its substitution into the Born expression instead of the
perturbation V gives the exact scattering amplitude.
Considering it in the vicinity of a level �s, one finds
possibility to write it in the form

. (78)

It differs from the Born result T = V2  (following

from the concept of the effective scatterer) by replace�

ment of G0 by , i.e. by taking attenuation of states
into account.

5.2. Several Bonds between Chains

The simplest generalization of the model contains
several bonds between chains, connecting the pairs of
sites n0 and m0, n1 and m1, and so on (Fig. 9c). In this
case the perturbation operator is defined as

(79)

and the Dyson equation reads

(80)

Gmm '
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+( ),
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Gnn ' Gnn '
0=

+ Gnni

0 VGmin ' Gnmi

0 VGnin '+( ).

i

∑

Let n and n' belong to the upper chain; then  = 0

and (80) accepts the form

(81)

On the other hand, setting n = mi in (80)

(82)

and substituting in (81), we obtain

(83)

If only the upper chain is of interest, then the effective
perturbation Hamiltonian

(84)

can be used, i.e. the scatterers Wii are introduced in the
points ni and the additional overlap integrals Wij are
included between points ni and nj (Fig. 9d).

5.3. Broken Upper Chain

Let us remove the portion between n0 and n1 in the
upper chain (Fig. 9e). The above expressions formally

retain, if the initial Green function  is taken for the
broken chain. The equivalent scheme shows (Fig. 9f),
that transitions between the left and right parts of the
upper chain are possible only due to overlap integrals
W01 and W10, so the transmission coefficient is propor�

tional to .
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Fig. 10. (a) The modelling of the system “sample+external
leads”. Ideal one�dimensional chains are weakly con�
nected with the given d�dimensional system. (b) Effective
transitions between the chains corresponding to the many�
channel scattering matrix (see Fig. 2c).
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5.4. Many�Channel Case

Now introduce the model which has the immediate
interest (Fig. 10a): the lower chain is replaced by a

finite d�dimensional system, whose points  and

 are related with sites  and  of the ideal one�
dimensional chains. This model describes a situation,
when the given d�dimensional system is weakly con�
nected with the ideal leads.

Expressions (79)–(84) are formally applicable, if

the index ni runs values  and , while the index mi

runs values  and . Therefore, we can immedi�
ately introduce the equivalent scheme (Fig. 10b),
according to which the i�th lead on left and the j�th

lead on right are related by overlap integrals ,

, , . Comparing with the Landauer
many�channel scattering matrix (Fig. 2c), we see that
the amplitude tjs are determined by the quantities

,

(85)

where kF is the Fermi momentum. To derive this rela�
tion, one should write the effective Schroedinger
equation

(86)

and find the solution of the scattering problem: if a
wave of the unit amplitude is incident to the channel s,
then the amplitude in j�th channel can be written in
the form (k is a wavenumber)

(87)

It leads to the system of equations

(88)

whose iterations in  give (85). Substituting (85) in
the Landauer formula (7), one has
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(89)

This result corresponds to the Born approximation: to
obtain the complete result, one should find the many�
channel T�matrix.

5.5. T�matrix in the Many�Channel Case

If Φ(r) =  is a plane wave and Ψ(r) is a solution
of the scattering problem, then they are related by the
Lippmann–Schwinger equation [41]

(90)

which can be iterated as

(91)

Let us set G0 = G1 + G2, where G2 corresponds to the
system under consideration, and G1 to ideal leads; then
perturbation V relates only G1 and G2, while combina�
tions G1VG1 and G2VG2 turn to zero. Accepting that
states  and  belong to subspace 1, we have

(92)

By definition,  and  are related by the
S�matrix,  = S , and (92) gives

(93)

The T�matrix is introduced by the relation V  =
T  [41], so S = 1 + G0T, reducing to S = 1 + G1T in
the subspace 1; so

(94)

where the relation G2 = (E – H2)
–1 is used. The poles

of the T�matrix are determined by eigenvalues of the
operator H2 + VG1V, which can be found perturba�
tively

(95)

Using the specific form (79) of the matrix elements of
V, we have λs =  – iγs, where γs are determined by
expression

(96)

which is a natural generalization of (76). This result
can be also obtained by induction, including connec�
tions one after another and neglecting their influence

on .

GL
e2

2π�
��������4 kF

V4
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���� G
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i( )
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j( )

0 2
.
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2

=

eik r⋅
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Ψ| 〉 Φ| 〉
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S 1 G1VG2V 1
1 G1VG2V–
�����������������������.+=
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Φ| 〉

T VG2V 1
1 G1VG2V–
�����������������������=

=  V 1
E H2– VG1V–
�����������������������������V,

λs �s es〈 |VG1V es| 〉.+=
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,
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Below we are interested in the limit of small V. In
this case we can take into account only the qualitative
effect related with attenuation, neglecting influence of
perturbation on eigenfunctions and eigenvalues. In
the Born approximation, the T�matrix has a form
VG2V (see (94)) and has the poles at �s. Substitution of

�s for  – iγs corresponds to replacement of G0 by 
in expression (89)

(97)

where  is defined analogously to (75). Here we intro�
duced the longitudinal (x) and transverse (r⊥) compo�
nents of vector r, and summation occurs over the
points of connection with leads. Taking the average

value of the conductance, we can consider  as a
zero�frequency limit of the density correlator (49) and
use it in the form (52). Consequently, we have related
the Landauer conductance with the diffusion coeffi�
cient D(ω, q). Since (97) corresponds to the open sys�
tem, the replacement (53) is implied, leading to a
finiteness of the diffusion coefficient DL. Omitting
(here and later) irrelevant constant factors we have for
the dimensionless conductance

(98)

5.6. Conductance of a Finite System: Definition

Let a finite system has a form of the d�dimensional
cube connected to external leads, composed of Nc

ideal one�dimensional chains; one should differ the
“thin” and “bulk” contacts (Fig. 11). In the first case

all chains are connected to the spot of a size l � 

(where  is a characteristic scale where K(r, r')
essentially changes as a function of the transverse
coordinate r⊥), in the second case they are uniformly
distributed along the side of the cube. For the “thin”
contacts we can set r⊥ = 0 and write

(99)

In the metallic state  ~ L–d and according to
(96) attenuation of all states has the same order of
magnitude

(100)

�̃s G̃

GL
e2

2π�
��������4 kF

V4

J2
���� G̃ r r',( ) x ' x– L=

2
,

r⊥ r⊥',

∑sin
2

=

G̃

G̃
2

〈 〉

gL
V4

J4
���� J

DL

����� K r r',( ) x x '– L= ,

r⊥ r⊥',

∑=

K r r ',( ) 1

Ld
���� iq r r'–( )⋅[ ]exp

m2 q2+
��������������������������������� .

q

∑=

Lξ

Lξ

gL
V4

J4
����Nc

2 J
DL

�����K x x ',( ) x x '– L= .=

es m( ) 2

γ V2νFNcL d– V2

J2
����NcΔ,∼ ∼

where Δ is the level spacing. It is convenient to intro�
duce the parameter

(101)

having a sense of the effective transparency of an inter�

face. According to (99), gL contains a factor  in the
explicit form and dependence DL ∝ γ ∝ kb in the diffu�
sion constant, so gL ∝ kb. The proportionality coeffi�
cient can be estimated from the condition that for
kb ~ 1 attenuation γ is of the order Δ and according to
scaling theory (see Eqs. (1), (2)) the block of size L is
in the critical regime, i.e. gL ~ 1 and DL ~ JL2 – d:

(102)

This result is valid for kb � 1, when perturbation the�
ory is applicable. In the region kb � 1, one expects the
absence of the kb dependence, since γ � Δ and the
extended levels overlap strongly and form practically
constant density of states (Fig. 4). It is easy to see
(Fig. 12), that the conductance of the maximally open

kb
V2

J2
����Nc,=

kb
2

gL kbLd 2– K x x ',( ) x x '– L= .=

Fig. 11. The “thin” (a) and “bulk” (b) contacts attached to
the system.

gL

kb1

Fig. 12. Conductance gL of a finite system versus degree of
its openness.

l

(a)

(b)
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system is obtained from (102) at kb ~ 1.
11

 However, the
factor kb can be eliminated from (102) not only setting
kb ~ 1, but also taking the derivative at kb  0:

(103)

We accept (103) as a definition for the conductance of
a finite system: physically, it corresponds to the
extremely open system, but is formulated in terms of
almost closed systems. Due to the latter, such defini�
tion reflects the internal properties of the given system,
not disturbed by its environment. Simultaneously, it
provides the elegant solution of the contact resistance
problem (Section 1): in the small kb limit one can use
the two�probe formulas (5), (7) of Economou–Souk�
oulis type (due to tij  0) and there is no need in the
original Landauer formula (4) or its ambiguous multi�
channel generalizations [3, 8, 11, 13]. The allowed
values of q in the sum (98) for K(r, r') correspond to
the closed system and include the value q = 0, so gL

diverges at m  0 and the conductance of the ideal
system (ξ0D = ∞) appears to be infinite. It brightens
one of the widely discussed questions [15].

In the localized phase, transition from (99) to (103)
requires more complicated argumentation. The esti�
mate (100) for γ retains for L � ξ; according to it, con�

11 Physically, the most adequate estimate of gL for the extremely
open system corresponds to the plateau at kb � 1 in Fig. 12;
however, it is not reasonable to use very large values of kb, since
the “plateau” can in fact be a slow kb dependence due to influ�
ence of environment on the system. Note, that numerical mod�
elling [21] usually deals with the limit kb  ∞.

gL
open dgL kb( )

dkb

���������������
kb 0=

=

=  Ld 2– K x x ',( ) x x '– L= .

dition kb ~ 1 corresponds to the critical regime for the
block of size ξ. Let kb � 1; then the block of size ξ is in
the metallic state, and hence the layer of width ~ξ
around contacts is metallized (Fig. 13a). Let us
approximate this metallic region by the ideal conduc�
tor: then contacts shift into the deep of the system and
arouse metallization of the next layer of the width ~ξ
(Fig. 13b), and so on. It is easy to see that a condition
γ � Δ is valid at all length scales till size L. This picture
of successive metallization is valid for kb � 1, but
retains marginally at kb ~ 1: in this case the blocks of
size ξ are in the critical regime and the law of their
composition reduces to stationarity of gL, or DL ~ JL2 – d,
as in metallic phase. For kb � 1 metallization does not
occur and the condition γ � Δ is valid at all length
scales. One can see that the estimate (102) and the kb
dependence (Fig. 12) remain the same as in the metal�
lic phase.

5.7. Equivalence with the “Thouless Definition”

The allowed values of q in the sum (98) correspond
to the closed system. Assuming the latter to be a sys�
tem with periodical boundary conditions, it is natural
to accept its size to be L in the transverse direction and
2L in the longitudinal direction: then for  = L
the contacts are arranged at the opposite sides of the
cylinder, in which the system is effectively coiled.
Considering the 1D case for simplicity, we have

(104)

and separating odd and even s,

(105)

For the Bloch boundary conditions (47), the allowed
values are qs = (2πs + ϕ)/L and Eq. (105) contains the
difference of the terms with ϕ = 0 and ϕ = π, being
equivalent to the “Thouless definition” (58).

For the more realistic boundary conditions (48),
the eigenfunctions of the operator –∂2/∂x2 has a form
Assin(qsx + ψx) with

(106)

and the allowed values of qs are determined by equa�
tion

. (107)

x x '–

K x x ',( ) 1
2L
����� iqsL( )exp

qs
2 m2+

��������������������
qs

2πs
2L
�������=

s

∑=

K x x ',( ) 1
2L
����� 1

qs
2 m2+

��������������
qs

2πs
L

�������=
s

∑⎝
⎜
⎛

=

– 1

qs
2 m2+

��������������
qs

2πs π+
L

���������������=
s

∑ ⎠
⎟
⎞

.

As
2 2

L 2κ/ qs
2 κ2+( )+

����������������������������������, ψs qs/κ( ),arctan= =

qsL 2 qs/κ( )arctan+ πs, s 1 2 3 …, , ,= =

(a)

(b)

ξ

ξ

Fig. 13. A situation in the localized phase. The contacts
attached to the system arouse metallization of a layer of
width ~ξ around them (a). If the metallized region is
replaced by the ideal conductor, then the contacts shift
into the deep of the system and arouse metallization of the
next layer of width ~gL(L/ξ) (b).



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 115  No. 5  2012

CONDUCTANCE OF FINITE SYSTEMS AND SCALING IN LOCALIZATION THEORY 911

The expression for K(x, x') has a form

(108)

and for the closed system (κ  0) reduces to

(109)

We have transformed the product of sines into the dif�
ference of cosines and extended the summation to
negative s, using evenness in qs. Noting that cosqsL =
(–1)s, one can separate odd and even s and obtain the
result coinciding with (105) apart from the irrelevant
constant factor. The accepted limitation by one
dimension is not essential: the d�dimensional case
differs only by summation over transverse compo�
nents of q, which is the same for two terms of the dif�
ference (105).

Below we had in mind the case of the “thin” con�
tacts (Fig. 11a). For the “bulk” contacts (Fig. 11b) we
have instead (103)

(110)

If the one�dimensional chains are connected to each
site on the plane of the cube, then Nc = Ld – 1 and sum�

mation over r⊥,  removes the transverse components
of the vector q, so (110) reduces to the result for the 1D
case. We see that the natural definitions for the con�
ductance of a finite system are exhausted by d�dimen�
sional “Thouless definitions” (see Fig. 8). The intrin�
sic d�dimensional case is realized for the “thin” con�
tacts (Fig. 11a). The effective dimensionality is
diminished by the unity if one�dimensional chains are
connected along the line, which goes through the
whole plane of the cube. For the “bulk” contacts (see
Fig. 11b) the effective dimensionality is unity.

We should notice, that the physical considerations
define gL to the factor of the order of unity. Such
uncertainty is natural and related with an arbitrary
choice of the unit scale. Only ratios of conductances
are relevant, while the choice of the absolute scale if a
subject of convention.

We see that one of two scaling relations (10), (12)
(written as relation (64) in Section 4) can be obtain
from the pure quantum mechanical consideration
without use of the self�consistent theory of localiza�
tion. The second scaling relation can be also studied by
other methods: in this case, the quantity ξ0D should be
defined by Eq. (11), where D(ω, 0) is the diffusion
coefficient of the closed system.

K x x ',( )

=  As
2 qsx ψs+( ) qsx' ψs+( )sinsin

qs
2 m2+

������������������������������������������������������,

s 1=

∞

∑

K 0 L,( ) 1
L
��� qsL( )cos

qs
2 m2+

������������������
qs

πs
L
����=

.

s ∞–=

∞

∑=

gL
open Ld 2– 1

Nc
2

����� K r r ',( ) x x '– L= .

r
⊥

r
⊥',

∑=

r⊥'

6. DISCUSSION OF SCALING EQUATIONS

According to Sections 3, 4, dependence of gL on
L/ξ is represented in the parametric form

(111)

for 2 < d < 4, and

(112)

for d = 2; in d < 2 dimensions, representation (111)
holds with the upper sign and consists of one branch.
Using asymptotic behavior of H(z) (33), (38), (40) and
HT(z) (65), one obtains for the length dependence of
gL (Fig. 14) at d > 2:

(113)

where gc = HT(z*), B = cd (z*)/H '(z*). For d < 2 the
results for small and large gL are formally the same, but
the critical point gc is absent. For d = 2, the result in the
metallic phase gL = (1/2π)ln(ξ/L) can be represented
as a logarithmic correction to the Drude conductance
g0,  [1], with the asymptotics
(113) for gL � 1.

The Gell�Mann–Low function β(g) is determined
by the derivative d lng/d lnL (see Eq. (2)) and can be
written in the parametric form

(114)

cd
L
ξ
���⎝ ⎠

⎛ ⎞
d 2–

± H z( ), gL HT z( )= =

1
2π
����� ξ

L
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⎛ ⎞ln H z( ), gL HT z( )= =

gL

cd L/ξ( )d 2–
,  gL � 1,

gc B L/ξ( )d 2–
,  gL gc,±

1/π( ) L/2πξ( ) d 3–( )/2e L/ξ–
, gL � 1,⎩

⎪
⎨
⎪
⎧

=

HT'

gL g0 1/2π( ) L/a( )ln–=

g HT z( ), β g( ) d 2–( )
H z( )HT' z( )
HT z( )H ' z( )
�����������������������= =

Fig. 14. Conductance gL versus gL(L/ξ) for d = 1, 2, 3.
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for d ≠ 2, and

(115)

for d = 2. Since HT(z) is positive, while (z) and
H '(z) are negative (Figs. 6, 8), the β�function is nega�
tive for d = 2, and has a root for d > 2 due to the root of
H(z). The calculated β�functions for d = 1, 2, 3 are
shown in Fig. 5.

The expansions of H(z) and HT(z) in powers of z2

has a following form for d < 2

(116)

where

(117)

and vectors s and t are the same as in (28) and (64). In
the case d ≥ 2, the coefficient a0 is replaced by the
parameter b1, introduced in (29) and (36). In the case
d = 1, the coefficients a2n and  are expressed in
terms of the Riemann ζ�function or the Bernoulli
numbers [40] and can be obtained from the closed
expressions

(118)

following from (39) and (64) with the use of the Pois�

son summation formula.
12

 Using (116), one can find
the expansion of β(g) in powers of 1/g

(119)

(120)

The latter result can be compared with the expansion
obtained in the σ�model approach [33, 34]

(121)
which is written in terms of the variable t ~ 1/g. Recal�
culating (120) to the same form, one has

(122)

The first two coefficients coincide with (121), while
the third one depends on details of the gL definition,
since the parameter  is different for the “thin” and
“bulk” contacts (see Fig. 11). Such situation is well�

12 These results can be used for numerical calculations in higher
dimensions, in order to produce the analytic summation along
one of coordinate axes.

g HT z( ), β g( ) 1
2π
�����

HT' z( )
H' z( )HT z( )
�����������������������–= =

HT'

H z( ) 1/z2 a0 a2z2– a4z4 a6z6– …,+ + +=
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1

2π s( )2n 2+
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s 0≠
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ã2n
1–( )

2t1

2π t( )2n 2+
����������������������,

t 0≠

∑=

ã2n

H z( ) 1

2z z/2( )tanh
�������������������������, HT z( ) 1

z zsinh
�������������,= =

β g( ) d 2–( )
a0 ã0–

g
������������� …, d 2,≠+ +=

β g( ) 1
2πg
�������–
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2πg3
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β̃ t( ) 2t2– 0 t3 0 t4 12ζ 3( )t5– …,+⋅+⋅+=

β̃ t( ) 2t2– 0 t3 32π4 a2 ã2–( )t4 ….+ +⋅+=

ã2

known in the quantum field theory [42–44], where the
structure of expansion for the β�function is the same as
(121, 122): the first two coefficients are invariant,
while the rest depend on the renormalization scheme.
Transformation from one scheme to another corre�

sponds to the change of variables  = f(t), relating two
different definitions of the charge; expansion of f(t) in
the series and the proper choice of the coefficients
allows to transform (122) into (121) [43, 44]. The
function f(t) is well�defined in perturbation theory but
can be singular at t ~ 1, indicating that one of two
schemes is surely defective [44]. Since (122) corre�
sponds to the physical definition of gL, such problems
can refer only to the expansion (121). In the frame�
work of perturbation theory (121) and (122) are com�
pletely equivalent.

Such equivalence is destroyed in the space dimen�
sion d = 2 + �. The dimensional regularization used in
the σ�models corresponds to the β�function of the
form

(123)

i.e. the d dependence is present only in the first term of
1/g expansion. The exponent ν is determined by the
derivative of β(g) in the fixed point, and the corre�
sponding result [31]

(124)

is in conflict with (16). This fact is usually considered
as a proof that the Vollhardt and Wölfle theory cannot
be exact.

However, another interpretation is possible. Let us
assume (in accordance with [37, 45]), that the Voll�
hardt and Wölfle theory is correct: then the physical
reality consists in existence of the exact result ν = 1/�
for d = 2 + � and the non�trivial β�function for d = 2.
The latter is related with the physical essence of the
problem: the logarithmic behavior at g � 1 (see Eq. 3)
makes impossible for 1/g expansion to be truncated at
finite number of terms. Such physical reality is incom�
patible with the formalism of dimensional regulariza�
tion: according to (123), the exact result ν = 1/� is pos�
sible only for the trivial function β2(g) = A/g. Descrip�
tion of reality with such formalism should lead to
unsolvable problems. Exactly such situation takes
place in the modern theory: the Anderson transition
problem reduces to the σ�model in a certain approxi�
mation but the corresponding renormalization group
is unstable to high gradient terms [46, 47]. It is inter�
esting to carry out renormalization of σ�models with�
out the use of dimensional regularization: there are
indications that in this case the high�gradient catastro�
phe is absent (see discussion of [48] in the paper [47]).

t̃

β2 �+ g( ) � β2 g( ),+=

ν 1/� 9/4( )ζ 3( )�
2– …+=
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The latter asymptotics in (113) can be compared
with the exact results for the 1D case [49]

(125)

where α ∝ W2 for weak disorder. The effective correla�
tion length in the dependence exp(–L/ξ) is sensitive
to details of the averaging procedure and determined
only by the order�of�magnitude, in correspondence
with its physical sense. The same uncertainty exists in
the present theory, where ξ is defined by the relation
D(ω) = (–iω)ξ2 with the ambiguous choice of the
absolute scale for D(ω). Within such uncertainty, there
is no sense to discuss the precise form of the pre�expo�
nential dependence which corresponds to redefinition
of ξ by the factor 1 + O(lnL/L).

7. COMPARISON WITH NUMERICAL
AND PHYSICAL EXPERIMENTS

Behavior of gL versus L/ξ for d = 3 is compared
(Fig. 15a) with numerical results by Zharekeshev [32],
where gL was estimated as “acceleration” of levels Ks =
d2�s/dϕ2 at ϕ = 0 (ϕ is the parameter in the boundary
condition (47)), which is a possible variant of the
Thouless definition [17]. The agreement is satisfactory
in the metallic state and the vicinity of transition,

g〈 〉 π
2
�� αL/π( ) 3/2– e αL/4–

,=

gln〈 〉exp 4e αL/4–
,=

1/g〈 〉 1
2
��e2αL

,=

while there are expectable deviations in the localized
phase: they are related with the fact that theoretical
results correspond to ln , while numerical to

. According to (125), the difference of two situ�
ations corresponds to redefinition of ξ by the constant
factor, which reduces to the parallel shift in the loga�
rithmic scale of Fig. 15a.

Comparison of the same dependence with the
physical experiment [36] is possible under assumption
that L is replaced by the length Lin ∝ T–α, characteriz�
ing the inelastic processes. Unfortunately, there are no
grounds for α to be the same in the metallic and local�
ized phase, and it can have a slow drift as a function of
disorder. In Fig. 15b it was suggested that α is the
piecewise constant quantity, taking different values in
the metal and insulator. Such assumption does not
strongly affect the results in the critical region where
the length dependence of gL is rather slow. The latter
region is poorly presented in Fig. 15b, and in fact it
illustrates a situation not very close to the critical
point. On the other hand, the critical behavior
obtained in [36], is excellently described by the Voll�
hardt and Wölfle theory: the values s = 1.0 ± 0.1 for the
conductivity exponent and z = 2.94 ± 0.30 for the
dynamical exponent agree with the theoretical results
s = 1 and z = 3.

The length dependence of gL for d = 2 can be com�
pared (Fig. 16a) with the numerical data by Markos
[33]. There is a good agreement in the region W > 2,
while for weak disorder numerical results display a
strong violation of scaling: it can be related with the

g〈 〉
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Fig. 15. (a) Comparison of the theoretical scaling curves for d = 3 with numerical results by Zharekeshev (symbols) [34]. The gen�
eral form of the curves was determined without adjustable parameters, and only parallel shifts along two axes were made (the same
for two branches), corresponding to the choice of the absolute scales for gL and ξ. (b) Comparison of the same curves with the
experimental results for Si–P [36] under assumption L ∝ T–α, where α was chosen independently for two branches.
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protracted ballistic regime [33] or existence of the 2D
metal�insulator transition. The latter, according to
[29], occurs in roughly half cases and belongs to the
Kosterlitz–Thouless type, compatible with scaling
theory [1]. From viewpoint of the general analysis
[37], a situation at d = 2 is special and probably
reduces to the Vollhardt and Wölfle theory not in all
cases.

The theoretical β�function for d = 2 (Fig. 5) can be
compared with the empirical β�function (Fig. 16b)
obtained by Zavaritskaya [35] under assumption L 
Lin ∝ T–α. The use of the constant α allows to describe
a situation both for large and small g. Some deviations
are present only in the region g ~ 0.1, where the exper�
imental results are also ambiguous.

8. SITUATION IN HIGHER DIMENSIONS

8.1. Dimensions d > 4

For d > 4 we have for I2(m) in (28)

(126)

i.e., analytical calculation is possible (in the main
approximation) for arbitrary values of m and L–1.
Indeed, for m � L–1 the sum can be estimated by the
integral, which converges at the lower limit already for
m = 0, so finiteness of m gives only small corrections.
In the case m � L–1, the main effect of finite L is
related with absence of the term with q = 0, which can

I2 m( ) m2 cdΛd 4– O md 4– L4 d–,( )+{ },–=

be estimated as restriction  � L–1 in the integral
approximation.

Substitution into relation (126) reveals the possi�
bility to neglect b1 and leads to the scaling relation

(127)

in variables

(128)

where we redefined the scales of ξ0D and ξ, in order to
obtain the unit coefficients in (127). Scaling relations
(127), (128) contain the atomic scale a due to non�
renormalizability of theory [30]. The critical point
corresponds to y = 1, so that

(129)

and the small z asymptotics can be used for HT(z) (see
Eq. (64)). In the vicinity of transition we can replace

ξ0D/L by  and equations (127), (128) determine
the length dependence of gL; in particular, at the tran�
sition point

(130)

q

1

x2
���± y2 1

y2
���–=

y
ξ0D

L
������ a

L
���⎝ ⎠

⎛ ⎞
d 4–( )/4

, x ξ
L
��� a

L
���⎝ ⎠

⎛ ⎞
d 4–( )/4

,= =

ξ0D

L
������ L

a
���⎝ ⎠

⎛ ⎞
d 4–( )/4

, τ∼ 0,=

gL

gL
L
a
���⎝ ⎠

⎛ ⎞
d 4–( )/2

, τ∼ 0.=
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Fig. 16. (a) Comparison of the theoretical scaling curves for d = 2 with numerical results by Markos [33, Fig. 37]. The form of the
curves was determined without adjustable parameters, only parallel shifts along two axes were made. (b) Comparison of the the�
oretical β�function for d = 2 (Fig. 5) with the empirical β�function extracted from experiment [35] under assumption L ∝ T–α.
The open and dark symbols corresponds to the freshly cleaved surface of Ge and to bicrystals of Ge. 
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The physical sense of this result is clarified by the fact,
that it can be obtained from the self�consistency equa�
tion for an infinite system (following from relations of
Section 2)

(131)

if one replace D(ω)  DL, –iω  γ and accept γ
(for τ = 0) to be of the order of level spacing Δ ∝ L–d.
For d < 4 it gives gL = const, while for d > 4 it reduces
to (130).

8.2. Four�Dimensional Case

For d = 4 we have analogously

(132)

and two results differ by ln(mL), which in the actual
region reduces to the double logarithmic quantity.
Neglecting such quantities, we can obtain the scaling
relation (127) in variables

(133)

In the vicinity of transition we can replace ξ0D/L by

 and obtain

(134)

As was explained in [30], Eqs. (127), (133) allow to
produce the usual constructions of scaling curves, if
the quantity y is considered as a function of the “mod�
ified length” μ(L) = L[ln(L/a)]–1/4; then a change of
the scale for μ(L) allows to reduce all dependences for
τ > 0 and τ < 0 to two universal curves. It should be
emphasized, that the critical point cannot be deter�
mined for d ≥ 4 by the condition gL = const.

9. CONCLUSION

The present paper continues the line initiated by
the previous publication [30]: since there are serious
indications [37, 45] that the Vollhardt and Wölfle the�
ory predicts the correct critical behavior, it is desirable
to derive its consequences (as many as possible) and
compare them with the numerical and physical exper�
iments on the level of raw data. Such approach already
proved its value [30]: the results ν = 1.3–1.6, obtained
usually for d = 3 in numerical papers, can be explained
by the fact that dependence L + L0 with L0 > 0 is inter�
preted as L1/ν with ν > 1, while the raw data are excel�
lently compatible with the self�consistent theory. The
finite�size scaling relations for the conductance and
Gell�Mann–Low functions β(g) obtained in the

D ω( ) Aτ B iω–
D ω( )
�����������

1/2ν

,+=

I2 m( )
c4m2 Λ

m
���ln– O 1( ),   mL � 1,+

c4m2 ΛL( )ln– O 1( ), mL � 1+⎩
⎪
⎨
⎪
⎧

=

y
ξ0D

L
������ L/a( )ln[ ] 1/4–

, x ξ
L
��� L/a( )ln[ ]1/4

ξ/a( )ln[ ]1/2
������������������������� .= =

gL

gL L/a( )ln[ ] d 4–( )/2
, τ∼ 0.=

present paper are also in a good agreement with
numerical and physical experiments.

In the present paper, we have elaborated a new def�
inition for the conductance of finite systems, brighten�
ing the questions formulated in Section 1. It appears,
that both self�consistent theory of localization and the
quantum�mechanical analysis based on the shell
model lead to the same definition, closely related with
definition by Thouless. It gives one more serious argu�
ment in favour of the Vollhardt and Wölfle theory.
Expansion of the β�function in 1/g shows that there
are no contradictions on the perturbative level with the
results of the σ�model approach in two dimensions.
Further, in the case of validity of self�consistent the�
ory, the formalism of dimensional regularization is
incompatible with the physical essence of the prob�
lem. Probably, it is the reason both for the high�gradi�
ent catastrophe, and contradiction with the Vollhardt
and Wölfle theory in the space dimension d = 2 + �.

The new definition will probably resolve the prob�
lem of pathological singularities in the conductance
distribution [33], which cannot exist in finite systems.
Their observation in numerical studies [33] is probably
explained by the fact the considered system was not
sufficiently isolated from environment and the ther�
modynamic limit L  ∞ was effectively taken along
one of the coordinate axes.

The above approach suggests the simple argumen�
tation on the spatial dispersion of the diffusion coeffi�
cient. It is easily proved for the localized phase [37],
that D(ω, q) has a regular expansion in q2. However, it
does not exclude the appearance of non�integer pow�
ers of q at the critical point [50] due to possibility of
constructions

(135)
becoming singular in the ξ  ∞ limit. In a finite sys�
tem the role of ξ is played by ξ0D, which is regular at the
transition point; with such replacement, Eq. (135) is
valid in the metallic phase. However, the absence of
such dispersion in the metallic regime is easily estab�
lished from the kinetic equation. According to [37],
the following result is valid instead (135)

(136)

(with di independent of ξ), which reveals no patholo�
gies for replacement of ξ by ξ0D. It should be noted that

Wegner’s exact result D(ω, 0) ~  for the critical
point [51], following from (131) for τ = 0, cannot be
obtained in the case of essential spatial dispersion of
D(ω, q). It is interesting, that the recent experiments
on the spreading of wave packet [52] are in agreement
with the self�consistent theory and give no evidence of
the anomalous spatial dispersion.

The localization law for conductivity σ(ω) ∝ –iω
was predicted almost 40 years ago [53] but has never
been observed experimentally. The above analysis clar�
ifies that its observation is possible in the closed sys�

D ω q,( ) 1 ξ2q2+( )
η

,∼

D ω q,( ) iω–( )ξ2 1 d1q2 d2q4 …+ + +( )=

ω d 2–( )/d
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tems under approximately the same conditions as for
existence of the persistent current in the Aharonov–
Bohm geometry (Fig. 3) [54–56].

APPENDIX

Asymptotics of gL for mL  ∞

Consider the sum (27) for the Bloch boundary con�
ditions in all directions

(A.1)

and introduce the so called α�representation

(A.2)

Then

(A.3)

and the use of the Poisson summation formula [40]
transforms Sj(α) to

(A.4)

Then (A.3) takes a form

(A.5)

where a vector k = (k1, …, kd) is introduced and k ⋅ ϕ =

. The term with k = 0 is calculated exactly and

corresponds to the continual approximation. The
main effect of discreteness is determined by the terms
with  = 1, which can be calculated for mL � 1 in the
saddle�point approximation. Remaining only these
terms, one has

(A.6)

Taking the difference of two such expressions with
ϕ1 = 0 and ϕ1 = π,
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kjϕjj∑
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∑ .

(A.7)

we come to Eq. (59).
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