
ar
X

iv
:1

20
5.

41
97

v1
  [

co
nd

-m
at

.d
is

-n
n]

  1
8 

M
ay

 2
01

2 Reply to comment by P.Markos [arXiv:1205.0689]

I. M. Suslov

P.L.Kapitza Institute for Physical Problems, Moscow, Russia

We present another interpretation of the data by P.Markos and give a lot of new

illustrations for our conception. All existing numerical data look perfectly compa-

tible with predictions of the self-consistent theory of localization.

Our paper [1] contains the detailed predictions
of the self-consistent theory of localization for the
quantities which are immediately measured in nu-
merical experiments; it allows to make a comparison
on the level of the raw data, avoiding the ambiguous
treatment procedure. Such approach is motivated
by the different status of numerical results. The raw
data are obtained independently by different groups
and there is a certain consensus in this respect; it is
not reasonable to question these data. However, it is
possible to doubt numerical algorithms themselves,
which are not based on a firm theoretical ground.
Such approach is in the own interests of numerical
researches since their present-day results contradict
both experiment and the general theoretical princi-
ples. Self-consistent theory by Vollhardt and Wölfle
allows to justify (for the first time) one of the pop-
ular variants of finite-size scaling based on consid-
eration of auxiliary quasi-1D systems [2, 3] with a
finite transverse size L. This theory predicts also
the essential scaling corrections, so the scaling pa-
rameter has a behavior C(L + L0) with L0 > 0 in
the vicinity of transition, which can be practically
interpreted as CL1/ν with ν > 1. Consideration of
existing numerical data shows that there are no seri-
ous contradictions of the self-consistent theory with
the raw numerical data.

Of course, it does not prove a validity of the self-
consistent theory: deviations can be small but sig-
nificant, and a serious analysis is necessary. The
analysis of this kind is expected from the specialists
in numerical research, such as P.Markos. In fact, in
the comment [4] he makes no efforts to follow our
suggestions but restricts himself by the ”standard
scaling formulas”. First of all, there are no ”stan-
dard scaling formulas”, since corrections to scaling
certainly exist and no reliable procedure to deal with

them is available. Further, the conventional scaling
is certainly invalid for dimensions d > 4: it is a the-
orem [1]. Finally, we did not deny in [1] the possibil-
ity to fit the data by a simple power law dependence
but stressed ambiguity of such procedure. From this
point of view, FIGS. 2–5 in [4] have no relation to
the criticism of the paper [1].

3D system. In this case, P.Markos provides not
a very essential progress: he extends his results till
L = 34, while data up to L = 50 were discussed in
[1]. Our interpretation of 3D data is presented in
Fig. 1. The following points should be noted:
(a) The most interesting question is: does L0 re-

veal an essential drift when the range of L is ex-
tended? If we try to retain the estimate L0 = 5 ob-
tained in [1] for L ≤ 24, then the data for W = 16.5
and 16.6 are fitted well with such restriction.
(b) The data for W = 16 and W = 17 show cer-

tain deviations from the linear behavior but they are
not very impressive, since the scattering of points is
rather large.
(c) In fact, the data for W = 16 and W = 17

contain the effect of the W nonlinearity. If we sug-
gest ν = 1, then ξ ≈ 30 for |W − Wc| = 0.5 and
nonlinear effects are essential for L ∼ 30. Fig. 1 con-
firms this conclusion, since the data for W = 16
and W = 17 are not symmetric relative to the curve
W = 16.5. 1 Deviations from the linear behavior are
on the same level as violation of symmetry. It looks
rather probable that for the more narrow interval
(like W = 16.25÷ 16.75) fitting by the linear depen-
dence will be satisfactory. 2 This argumentation is

1 In fact, Fig. 1 roughly confirms that ξ ≈ 30, since devi-
ations of z1 from its critical value is of the order of unity (if
ν = 1.5 then ξ should be something like 150).

2 It is clear from FIG. 2 in [4] that the author has the in-
termediate data for Fig. 1. Why he does not show them?
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Figure 1: 3D data for z1 = 2L/ξ1D [4] and their fitting by dependence C(L+ L0).

Figure 2: The same, as in Fig. 1, with smaller L and higher accuracy (from the paper by Kramer et al [5]). For
small deviations from the critical point the data are fitted well by dependence C(L+L0). When deviations become
large, dependencies acquire essential curvature, while effective L0 changes significantly. Compare with Fig. 1.
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Figure 3: 5D data for z1 = 2L/ξ1D extracted from FIGS. 4, 5 in [4] (points) and their comparison with the scaling
relation (2) (solid lines).

supported by other numerical data (Fig. 2).

P.Markos has an illusion that the more compli-
cated procedure allows to obtain the higher accu-
racy. In particular, in treatment of the W de-
pendence he relies on the quadratic expansion in
W −Wc. In fact, one cannot exclude possibility that
the coefficient of the quadratic term is small and the
higher order corrections are essential. If different
nonlinear functions are allowed, the uncertainty will
be the same as for a simple linear fit in the more
narrow interval. In the latter case, it is impossi-
ble to obtain a nonlinear behavior for the derivative
s(L) = [z1(L)]

′

τ from the apparently linear depen-
dencies z1(L) (Fig. 2). With nonlinear treatment,
P.Markos was able to do it (see FIG. 3 in [4]).

Comparison in FIG. 3 of [4] is not honest, since
the dashed line does not correspond to predictions
of [1]. The predicted dependence is C(L + L0) and
not CL, so the straight line with the unit slope is
irrelevant. In fact, our concept works excellently in
the range L ≤ 20 (Fig. 2), where P.Markos shows
disastrous deviations.

5D model. In this section we read:

”Our data in FIG. 4 do not indicate any disconti-
nuity in the L dependence. Contrary, z1 is smooth
analytical function of both parameters, W and L.”

We do not predict any discontinuity, it is a fantasy
by P.Markos. It is clear from Eq.45 in [1]

τΛd−2 =
1

Ld−2

1

2mL
− cm2Λd−4

that mL ≡ z1 is a regular function of L and τ =
W −Wc. A singularity is developed only in the ther-
modynamic limit L → ∞, as in all scaling theories.
Modifications suggested for d > 4 correspond to the
usual scaling constructions, but in other variables

y =
ξ1D
L

( a

L

)(d−4)/3

, x =
ξ

L

( a

L

)(d−4)/3

. (1)

The scaling relation is found in the analytical form

±
1

x2
= y −

1

y2
, (2)

where the proper scales for ξ1D and ξ are chosen.
Fig. 3 shows the quantity z1L

1/3 ≡ 1/y as a function
of L. Its dependence on 1/x ∼ L4/3 has the same
form but the logarithmic scale should be changed
by the factor 4/3. The solid lines correspond to the
scaling relation (2). According to Fig. 3, the critical
point is Wc = 53 and not 57.5.
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Conclusion. In this section, the author provides
the additional argumentation:

”We also note that the same value of the critical
exponent was obtained from numerical analysis
of other physical quantities: mean conductance,
conductance distribution, inverse participation ra-
tio...”

In fact, two variants of scaling, (a) quasi-1D sys-
tems, and (b) level statistics, were discussed in [1].
The third variant, (c) mean conductance, is dis-
cussed in the recent paper [6]. The rest two variants,
(d) conductance distribution [7], and (e) inverse par-
ticipation ratio [8], are illustrated in Figs. 4 and 5.
One can see, that our conception is supported by
high-precision data with L ≤ 20 and by moderate-
precision data with L ≤ 50.

The final arguments are also not serious:

”This value of the critical exponent was recently
verified experimentally [11] and calculated analyt-
ically [12]”

The papers [11] deal with a quasiperiodic kicked ro-
tor, whose equivalence with the 3D Anderson model
is only a hypothesis essentially based on the questin-
able numerical data. 3 The real experiments on dis-
ordered systems [10, 11, 12] support the results of
the self-consistent theory.
The ”analytical” result [12] violates the Wegner

scaling relation s = ν(d−2), which is admitted by all
serious theoreticians. Its violation means incorrect-
ness of the one-parameter scaling hypothesis [13],
which is a basis for practically all numerical studies.

In conclusion, P.Markos does not see the central
idea of the paper [1] and continue to use the sophisti-
cated treatment procedure instead of direct compar-
ison on the level of raw data. If the latter is made,
all existing numerical data look perfectly compati-
ble with predictions of the self-consistent theory of
localization.
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Figure 4: Data for the conductance distribution [7] and their fitting by dependence C(L + L0). The scaling
parameter is the 0.17 percentile of distribution.

Figure 5: Data for the inverse participation ratio Iq with q = 5 extracted from Fig.2 in [8] and their fitting by
dependence C(L + L0). The essential change of L0 is visible for large deviations from the critical point. The
contribution −dq lnL (dq is a fractal dimension) corresponds to the critical point.
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