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1 1. INTRODUCTION

The main defect in the current literature on the
Anderson transition is the ignorance of the upper crit�
ical dimension dc2 = 4, which is a rigorous conse�
quence of the Bogoliubov theorem on renormalizabil�
ity of φ4 theory [1, 2]. The problem of the Anderson
transition can be reduced (in a mathematically exact

manner) to one of the variants of φ4 theory [3–6],
2

which is nonrenormalizable for space dimensions d >
4. Therefore, the cutoff momentum Λ, corresponding
to the atomic length scale a, cannot be excluded from
the results. It rules out the existence of one�parameter
scaling [9], according to which the correlation radius
ξ is the only essential length scale. In the latter case,
any dimensionless quantity Q related to a finite system
of size L can be written as a function of ratio L/ξ,

(1)
which is the basis for all numerical algorithms. The
study of Q as a function of L and distance to the tran�
sition τ makes it possible to determine the critical
exponent ν of the correlation length (ξ ~ |τ|–ν).
Indeed, if two L�dependences for τ = τ1 and τ = τ2 are
calculated, then the scale transformation makes it
possible to determine the ratio of two correlation
lengths. Persisting this procedure for the sequence τ1,

1  The article was translated by the author.
2 Specifically, to the problem of two zero�component interacting

fields [4, 5]. The arguments on the deficiency of the replica
method [7, 8] are insignificant in the given context, since renor�
malizability can be analyzed at the diagrammatic level. Each dia�
gram of disordered systems theory can be obtained from a certain
diagram for φ4 theory by simple replacement of symbols [3].

Q F L/ξ( ),=

τ2, τ3, …, one can determine dependence ξ(τ) apart
from the numerical factor.

Relation (1) is invalid for d > 4, and a more general
form should be used:

(2)

For d = 4, the situation is more complicated and needs
additional study. In fact, the existence of logarithmic
factors like ln(L/a) leads to a relation of type (2). The
latter can be reduced to a function of one argument if
an appropriate choice of the scaling variables is made
[10, 11].

Currently, the following results exist for the Ander�
son transition in high dimensions: the data by Markos
for d = 4, d = 5 [12, 13], obtained from scaling in
quasi�one�dimensional systems; the data by Zhareke�
shev and Kramer for d = 4 [14], and those by Garcia�
Garcia and Cuevas for d = 5, d = 6 [15], obtained from
level statistics. All these results are based on relation
(1) and need reinterpretation due to the above argu�
ments.

In Sections 3 and 4, these results are compared
with the modified scaling for high dimensions
obtained in [10, 11] from Vollhardt and Wolfle’s self�
consistent theory of localization [17]. The latter gives
correct values of the upper critical dimension dc2 = 4
and the exponent ν = 1/2 for d > dc2, and at least is of
interest as a possible scenario. According to certain
arguments [18, 19], Vollhardt and Wolfle’s theory pre�
dicts the exact critical behavior and a lot of the numer�
ical results can be matched with it [10, 11, 20, 21]. This
paper supports the same tendency: all indicated
numerical data [13–15] can be matched with the the�

Q F L/ξ L/a,( ).=
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oretical scaling dependences. As a rule, the “experi�
mental” points lie on quasi�linear portions of the scal�
ing curves; this was interpreted as the dependence L1/ν

with ν ≈ 1 in the original papers. The actual critical
behavior suggests ν = 1/2, but the corresponding parts
of the scaling dependences are difficult to study in
numerical experiments due to their limited accuracy.

The widespread viewpoint that dc2 = ∞ [22–27] is
discussed in the next section.

2. SIGMA�MODELS AND dc2

The hypothesis that dc2 = ∞ is based on the follow�
ing arguments:

(a) In the approach based on the use of sigma�
models [16], there are no indications to the existence
of special dimensionality in the interval 2 < d < ∞ [22].

(b) Results s = ∞, ν = 1/2 for d = ∞ [23, 24] (s is the
critical exponent of conductivity) demonstrate the
validity of the Wegner relation s = ν(d – 2) for d = ∞,
and one can expect that this relation (and, conse�
quently, the one�parameter scaling picture [9]) is valid
for all d > 2.

We do not question the results s = ∞, ν = 1/2 for the
infinite�dimensional sigma�model, but there is the
problem of their correspondence with the initial disor�
dered system. For electrons in the random potential,
derivation of sigma�models is substantiated only for
dimensions d = 2 + � with � � 1; qualitatively, it can be
extended to � ~ 1 but not to d � 1. Extension of sigma�
models to higher dimensions is based on an artificial
construction corresponding to a system of weakly con�
nected metallic granules [22].

In each granule, only the zero Fourier component
of the matrix field Q is taken into account, while con�
nections between granules are supposed to produce
only slow variation of Q. The possibility that a cou�
pling between granules leads to induction of higher

Fourier components and almost complete destruction
of the sigma�model is not considered, while such a sit�
uation looks rather probable from the standpoint of

spatially homogeneous systems.
3
 

Let us explain the situation using the vector sigma�
model as an example. If a ferromagnet is described in
terms of φ4 theory, then the magnetic moment M of a
finite block can be considered as the Heisenberg spin
with a certain fluctuation of its modulus M. Neglecting
such longitudinal fluctuations (which can be rigor�
ously justified in dimensions d = 2 + �) by definition
corresponds to a sigma�model. For d = 3, the longitu�
dinal fluctuations have no qualitative effect and the

sigma�model seems applicable.
4
 However, when d

approaches to 4, the longitudinal fluctuations become
anomalously soft and this is the origin of the upper
critical dimension. If longitudinal fluctuations are
artificially suppressed (which is the case in sigma�
models), then it can lead to elimination of dc2.

In fact, one can use the sigma�model concept only
in the case when the distribution function P(M) of
modulus of M has a maximum at finite M (Fig. 1a).
With a decrease in temperature, such a maximum
arises as a result of the mean�field�type transition in
the spirit of the Landau theory. However, the corre�

3 In our opinion, it is practically evident. If field Q is indeed
slowly varying, then it remains almost constant inside the block
composed of several granules; it means validity of the Wigner–
Dyson statistics for this block [28]. In fact, for a coupling
strength corresponding to the Anderson transition, hybridiza�
tion of the block eigenfunctions is not complete (i.e. with equal
weights, like in the metallic phase) but partial (which is typical
of the critical region). Hence, the level statistics for the com�
posed system of several granules will significantly differ from the
Wigner–Dyson one.

4  In fact, it is possible to show (see [29], Section 3.1) that equiva�
lence of the sigma�model and φ4 theory in the sense of the criti�
cal behavior takes place for d < 4.

T > TL

M

P(M)

T < TL

Tsm

d

T

TL

dc2

(a) (b)

Fig. 1. (a) The sigma�model concept can be used only in the case when the distribution function P(M) of the modulus of M has
a maximum at finite M. Such a maximum occurs as a result of the mean�field type transition in the spirit of the Landau theory.
(b) Temperature TL at which a sigma�model occurs and critical point Tsm according to the sigma�model scenario as functions of
space dimensionality d. Solid and dashed lines show the real and fictitious phase transitions.
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sponding temperature TL does not signify the actual
phase transition, since the transverse fluctuations of M
destroy the long�range order. Long�range correlations
for transversal fluctuations arise at a lower temperature
Tsm. Therefore, with a decrease in temperature, first
(at point TL), a sigma�model arises, and secondly (at
point Tsm) the phase transition takes place according
to the sigma�model scenario. One can imagine that
with a change in d, dependences TL(d) and Tsm(d)
intersect at point dc2 (Fig. 1b). Hence, for d > dc2, the
phase transition occurs at the same point TL where a
sigma�model occurs, i.e., according to the Landau
scenario.

One can see that the sigma�model transition (at
point Tsm) is not achieved for d > dc2, if the properties
of the sigma�model correspond to the properties of the
real system. However, such transition can exist (as a
theoretical construction) and correspond to the ana�
lytical continuation from lower dimensions, if a
sigma�model is introduced artificially. In our opinion,
exactly such situation takes place in the Anderson
transition theory: the results s = ∞, ν = 1/2 for d = ∞
correspond to the formal sigma�model and not to the

initial disordered system.
5
 Direct analysis of the Bete

lattice (without use of sigma�models) yields s = 1, ν =
1/2 [30, 31], in correspondence with Vollhardt and
Wolfle’s theory.

In addition, let us discuss the paper [27], where the
conclusion that dc2 = ∞ is drawn from a modification
of the self�consistent theory. This paper is based on the
erroneous idea that the L�dependence for the diffu�
sion constant in the critical point DL ~ L2 – d signifies
the existence of the momentum dependence D(q) ~
qd – 2. In fact, the L�dependence arises not only from
spatial, but also from temporal dispersion, and for a
given function D(ω, q), it is determined by the relation

(3)

If a power law dependence on ω and q is accepted,
then the combination

(4)

ensures the correct behavior DL ~ L2 – d for any value of
exponent η [32]. If one repeats the construction of
[27] with an arbitrary value of η, then it is easy to test
that the Wegner relation s = ν(d – 2) is valid (for d <
dc2) only for η = d – 2, i.e., in the absence of spatial

dispersion.
6
 For the choice η = 0 made in [27], the

5 According to [19], the high�dimensional sigma�model is unsta�
ble to small perturbations of the general form, as a consequence
of the unusual result �(0, 0) ~ ξ [23] for the dielectric constant
�(ω, q); its difference from the natural result �(0, 0) ~ ξ2 indi�
cates the existence of the special dimension. It should be noted
that the physical sense of the upper critical dimension dc2 = 4
can be completely clarified for the problem of the density of
states [6].

6 Absence of spatial dispersion D(ω, q) is obtained in [19] by a
detailed analysis. Arguments relating the exponent η with multi�
fractality of wavefunctions [32] are logically defective [33].

DL D DL/L2 L 1–,( ).∼

D ω q,( ) ωη/dqd 2– η–∼

Wegner relation is violated and the main argument of
this paper (agreement with numerics) becomes ficti�
tious, since all numerical results are based on the one�
parameter scaling [9].

3. QUASI�ONE�DIMENSIONAL SYSTEMS

One of the popular numerical algorithms is based
on consideration of auxiliary quasi�one�dimensional
systems [34], whose correlation length ξ1D is always
finite. As a scaling parameter one can use the quantity
[10, 12]:

(5)

where ξ1D is the correlation radius of a quasi�one�
dimensional system. In numerical experiments, ξ1D is
estimated as the inverse of the minimal Lyapunov
exponent [34, 35], while a scaling relation of type (1)
is postulated for z1. In high dimensions, such a relation
is invalid and one should use the modified scaling sug�
gested in [10]. The theoretical scaling function y(x) is
determined by the equation

(6)

where variables y are x are defined as

(7)

for d > 4, and

(8)

for d = 4. Dependence y(x) consists of two branches
and is shown in Fig. 2. It is clear from (6)–(8) that the
usual scaling constructions are possible if quantity y is
considered as a function of the “modified length”
μ(L) = L(d – 1)/3 (d > 4) or μ(L) = L[ln(L/a)]–1/6 (d = 4).

z1 L/ξ1D,=

x2± 1
y
�� y2

,–=

y L
ξ1D

������ L
a
���⎝ ⎠

⎛ ⎞
d 4–( )/3

, x L
ξ
��� L

a
���⎝ ⎠

⎛ ⎞
d 4–( )/3

= =

y L
ξ1D

������ L
a
���⎝ ⎠

⎛ ⎞ln
1/3

, x L
ξ
��� ξ/a( )ln[ ]1/2

ξ/a( )ln[ ]1/6
������������������������= =

3

2

1

0 1 2 3 4 x

y

Fig. 2. Scaling function y(x) for an algorithm based on the
use of auxiliary quasi�one�dimensional systems, corre�
sponding to high dimensions.
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Figure 3a illustrates the numerical data by Markos
for d = 4 extracted from Fig. 61 of [12] and represented
as z1 (lnL)1/3 versus μ(L). The constant limit is
achieved for W = 33, which gives an estimate of the
critical point somewhat different from Wc = 34.3 in
[12]. Accepting y(W, L) – y(33, L) as y – yc, one can
put all numerical data on the theoretical scaling curve
by changing the scale along the horizontal axis
(Fig. 3b) if the common scale along the y axis is chosen
in the appropriate manner.

Figure 4a shows numerical data by Markos for d =
5 extracted from Fig. 61 of [12] and Figs. 4 and 5 of
[13], represented as z1L1/3 versus L4/3. The change of
the treatment procedure led to a significant shift of the

critical point, from Wc = 57.3 [12] to Wc = 53, and
made it close to the estimate Wc = 51.4 of [15]
obtained from level statistics (see Section 4). Accept�
ing y(W, L) – y(53, L) as y – yc, one can put all exper�
imental points on the theoretical scaling curve
(Fig. 4b).

In both cases, the main body of data lies on quasi�
linear portions y ~ x of the scaling curves and corre�
sponds to dependences z1 ~ L(lnL)1/3 for d = 4 and z1 ~
L for d = 5, which were interpreted in [12] as z1 ~ L1/ν

with ν ≈ 1. In fact, these data are consistent with the
predictions of Vollhardt and Wolfle’s theory, which
gives ν = 1/2; the corresponding dependence y – yc ~
x2 is valid only for small deviations from the critical

9

4 L(lnL)−1/6

y = z1(lnL)1/3

5 6 7 8 9 10

8

7

6

5

W = 37

W = 36

W = 35

W = 34

W = 33

W = 32

W = 31

d = 4

0 1 2 x

4

2

0

−2

d = 4

y − yc

(a) (b)

Fig. 3. (a) Numerical data by Markos for d = 4 (quasi�one�dimensional systems) extracted from Fig. 61 of [12]; figures near the
horizontal axis show the corresponding value of L. (b) Their comparison with the theoretical scaling dependence.
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4 L4/3

y = z1L1/3

5 6 7 8

W = 63 W = 60

W = 56

W = 54

W = 40

W = 32

d = 5

0 1 2 x

6

0

−10

d = 5

y − yc

W = 58

10

4

0

(a) (b)
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Fig. 4. Numerical data by Markos for d = 5 (quasi�one�dimensional systems) extracted from Fig. 61 of [12] and Figs. 4, 5 of [13]
(a); their comparison with the theoretical scaling dependence (b).
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point, which are comparable with the scattering of
experimental points.

To conclude the section, let us discuss the technical
moment related to the choice of scaling procedure.
The scaling constructions can be carried out in usual
or logarithmic coordinates, which is absolutely identi�
cal in the case of rigorous scaling. In actuality, loga�
rithmic scaling may not yield sufficiently smooth
matching of two “pieces” of the measured depen�
dence, since it rigidly fixes the origin of the L axis.
Scaling in usual coordinates allows a more smooth
matching of pieces due to small shifts along the hori�
zontal axis. Such shifts should be absent in the case of
exact scaling, but in practice they arise due to scaling
corrections. For example, the structure of scaling cor�
rections to relation (1) has the following form for small
τ [10]:

(9)

where 1/ν > ω1 > ω2 > …, α1 < α2 < …. In the accepted
interpretation of y – yc as y(W, L) – y(Wc, L), the term
in the second pair of brackets is excluded from consid�
eration. The expression in the first pair of brackets is
dominated by L1/ν for large L, while other terms are
dominant for small L: effectively, it shifts the origin of
the L axis. With variable L/ξ used instead of L, such a
shift becomes τ�dependent. If the numerical data are
sufficiently detailed to provide matching of pieces
from the smoothness condition, then such a procedure
makes it possible to account for the main scaling cor�
rections. For this reason, we use the usual and not log�
arithmic coordinates.

4. LEVEL STATISTICS

In the analysis of level statistics [11], the following
combination is of the main interest:

(10)

where σ is the root�mean�square fluctuation of the
number of levels N in the energy interval E = sΔ, where
Δ is the mean level spacing in a finite system, and σP is
a value of σ for the Poisson statistics. This quantity is
closely related to parameter A in the asymptotics of the
distribution function P(s)

(11)

of the distance ω = sΔ between nearest levels in the
large s limit. According to [11], quantity (10) is a func�
tion of variable x, which is defined as

(12)

(13)

y yc– τ A0L1/ν A1L
ω1 A2L

ω2 …+ + +{ }=

+ B1L
α1–

B2L
α2–

…+ +{ },

y σ2
/σP

2
,=

P s( ) As–( ), Aexp∼ σP
2
/σ2=

x s 1/4– L
ξ
��� L

a
���⎝ ⎠

⎛ ⎞
d 4–( )/4

, d 4,>=

x s 1/4– L
ξ
��� ξ/a( )ln[ ]1/2

L/a( )ln[ ]1/4
�������������������������, d 4.= =

Dependence y(x) in parametric form is given by the
equations

(14)

where the running variable u changes from u0 to infin�
ity. Parameters B and k1 are chosen according to the
procedure described in [11]; parameter u0 accounts for
the finiteness of s and disappears for s  ∞. The form
of Eqs. (14) is the same for all d ≥ 4, while the choice
of parameters depends on d.

In practice, the following quantity is used as a scal�
ing variable [14]:

(15)

or another quantity η [15], closely related to it:

(16)

y σ2

σP
2

����� k1u
1 k1 k1u+ +

k1 k1u+
�����������������������,ln= =

x2±
1 u+( )1/2 B u u0–( )–

u u0–( )1/2
������������������������������������������,=

J0
1
2
�� s2〈 〉 1

2
�� s2P s( ) sd

0

∞

∫= =

η
J0 J0W–
J0P J0W–
�����������������

J0 0.643–
0.357

�������������������,= =

1.0

0 1 2

y

0.8

0.6

0.4

0.2

yc

s � 1

1.0

0 1 2
x

0.8

0.6

ym

s ~ 1

yc

(a)

(b)

Fig. 5. Examples of scaling dependences y(x) for level sta�
tistics in high dimensions: (a) for s � 1 (u0 = 0) and (b) for
s ~ 1 (u0 = 22.3). The choice of parameters k1 = 0.0652,
B = 0.230 corresponds to numerical data for d = 4 [11].
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where indices W and P denote the values of J0 for the
Wigner–Dyson and Poisson statistics, J0W = 0.643,
J0P = 1.

Quantities J0 and η are regular functions of the
variable (10) for some s ~ 1 [11], so their small devia�
tions from the critical values are proportional to each
other:

(17)

Examples of dependences y(x) for s  ∞ (a) and s ~
1 (b) are presented in Fig. 5; they correspond to the
critical value Ac = 1.4 of parameter A in (11), which is
specific for d = 4 [14]. Parameter u0 in Fig. 5b is cho�
sen so as to provide the approximate symmetry of two
branches, discovered in numerical experiments by
Zharekeshev and Kramer [14] (Fig. 6a). These data

J0 J0c– η ηc– y yc.–∼ ∼

can be successfully matched with the theoretical
dependence (Fig. 6b).

The critical value yc (Fig. 5a) tends to unity with the
increase of d. Indeed, starting from the critical values
Ac = 1.4 (d = 4) [14], Ac = 1.17 (d = 5) [15], Ac = 1.13
(d = 6) [15] and following the procedure in [11], one
can obtain yc = 0.714 (d = 4), yc = 0.858 (d = 5), yc =
0.885 (d = 6). This tendency agrees with the theorem
[35, 36] that level statistics for the Bete lattice (corre�
sponding to d = ∞) has the Poisson form even in the
metallic phase.

With this observation, it is possible to obtain the
universal scaling function for high dimensions. Assum�
ing 1 – y � 1, one can expand the first equation (14) in
1/k1u and linearize the right�hand side of the second
equation (14) near the critical value uc. Then

(18)

where the appropriate choice of the common scale
along the x axis is made; signs + and – correspond to
the upper and lower branches of function F(x) shown
in Fig. 7; singularity at x = 1 is fictitious and lies
beyond the limits of applicability of (18). According to
(17), deviations of J0 and η from the critical values are
described by the same function.

Figures 8a and 9a show numerical data by Garcia�
Garcia and Cuevas [15] for d = 5 and d = 6, repre�
sented as a functional dependence on the modified
length μ(L) = Ld/4; they are in a good agreement with
the universal scaling function F(x) (see Figs. 8b, 9b).

In the cases of d = 5 and d = 6 (as opposed to d =
4), corrections related to the finiteness of s are insig�
nificant. Indeed, according to [14], the quantity J0 at
d = 4 runs the interval (0.64, 0.79) along the lower

y yc– constF x( ), F x( ) x2±

1 x2±
�����������,= =

1.0

4

J0

6 8

d = 4

W = 47

W = 27

W = 20

0 1 2 x

0.2

−0.1

y − yc

(a) (b)

10 12

W = 40

W = 36

W = 33

0.9

0.8

0.7

0.6

L(lnL)−1/4

0.1

0

d = 4

Fig. 6. (a) Numerical data by Zharekeshev and Kramer for d = 4 (level statistics) extracted from Fig. 4 of [14] and represented as
a functional dependence on the modified length J0(L) = L(lnL)–1/4; (b) their comparison with the theoretical scaling depen�
dence (Fig. 5b).

1

0 1 2 x

F(x)

0

−1

−2

Fig. 7. Universal scaling dependence for level statistics
corresponding to high dimensions.
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branch, and the interval (0.79, 1.00), along the upper
branch. According to [15], these intervals are (0.64,
0.92), (0.92, 1.00) for d = 5, and (0.64, 0.95), (0.95,
1.00) for d = 6. If the choice of u0 gives the same pro�
portion for the intervals (ym, yc) and (yc, 1) in Fig. 5b,
then 1 – yc ≈ yc – ym for d = 4 and 1 – yc � yc – ym for
d = 5, 6. In the latter case, the difference of ym from
zero is practically not manifested in the region of
applicability for (18).

For d > 4, Eqs. (14) define scaling of the form

(19)y σ2

σP
2

����� F Ld/4

ξa d 4–( )/4
�����������������⎝ ⎠

⎛ ⎞ ,= =

which for large ξ gives

(20)

i.e., derivative  at τ = 0 has a behavior of Ld/4ν

instead of L1/ν, corresponding to scaling of type (1).
Hence, the values of exponents ν = 0.84 (d = 5), ν =
0.78 (d = 6) obtained in [15] using (1) transform to ν =
0.67 (d = 5), ν = 0.52 (d = 6) if (19) is used. Therefore,
the results of [15] for d = 5, 6 become close to ν = 1/2
simply as a result of transfer to a correct scaling rela�
tion. The situation for d = 4 is analogous to that in
Section 3; i.e., the main body of data corresponds to
quasi�linear portions y ~ x ~ L(lnL)–1/4 of the scaling

y F̃ τ Ld/4ν

a d 4–( )/4ν
����������������⎝ ⎠

⎛ ⎞ yc CτLd/4ν …,+ += =

yτ
'

1.0

4

η(W, L)

6

d = 5

W = 70

0 1 2 x

η

(a) (b)

10

W = 60

W = 53
W = 51.5

0.8

0.6

L5/4

d = 50.4

0.2

W = 50

W = 47

W = 45

W = 40

1.0
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0.6

0.4

0.2

W = 55

Fig. 8. Numerical data by Garcia�Garcia and Cuevas for d = 5 (level statistics) extracted from Fig. 1 of [15] (a); their comparison
with the theoretical scaling dependence shown in Fig. 7 (b).

1.0

4

η(W, L)

5

d = 6

W = 110

0 1 2 x

η

(a) (b)

7

W = 90
W = 800.9

0.8

L6/4

d = 6

0.7

0.6

W = 70

W = 65

W = 60

1.0

0.9

0.8

0.7

0.6

W = 75

W = 100

Fig. 9. Numerical data by Garcia�Garcia and Cuevas for d = 6 (level statistics) extracted from Fig. 1 of [15] (a); their comparison
with the universal scaling dependence (b).
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curves, which was interpreted in [14, 15] as L1/ν with
ν ≈ 1. Such a situation is aggravated by the adopted
treatment scheme when the derivative over τ = W – Wc

is determined by expansion over W – Wc and fitting by
a polynomial of finite degree. In such a procedure, the
result is dominated by experimental points remote
from Wc, and linearity in x is retained even in the case
when data close to Wc demonstrate significant nonlin�
earity.

5. CONCLUSIONS

The paper proposes a new interpretation of existing
numerical data for the Anderson transition in high
dimensions: results for d = 4, 5 obtained from scaling
in quasi�one�dimensional systems and the results for
d = 4, 5, 6 obtained from level statistics. Such reinter�
pretation is necessary due to the absence of one�
parameter scaling [9] in high dimensions, which is a
consequence of nonrenormalizability of the theory. All
indicated numerical data appear compatible with the
theoretical scaling dependences obtained from Voll�
hardt and Wölfle’s self�consistent theory of localiza�
tion. It supports the same tendency observed in [10,
11, 20, 21]: on the level of raw data, Vollhardt and
Wölfle’s theory appears satisfactory, while the opposite
statements of the original papers are related to the
ambiguity of the treatment procedure. It gives new
arguments in favor of the viewpoint [18, 19] that Voll�
hardt and Wölfle’s theory predicts the exact critical
behavior.
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