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The Berezinskii localization law σ(ω) ∝ −iω for frequency-dependent

conductivity was never questioned, but never observed experimental-

ly. We discuss several possibilities for observation of this law and

the experimental difficulties arising at this way.

The localization law σ(ω) ∝ −iω for frequency-
dependent conductivity was predicted by Berezinskii
in 1973 [1] for one-dimensional disordered systems.
Ac- cording to self-consistent theory by Vollhardt
and Wölfle [2], this law is valid in the localization
phase for systems of arbitrary dimension d. In the
recent paper [3] of the present author the same law
was established for systems of finite size L at the
arbitrary extent of disorder. The latter is a conse-
quence of the fact that a finite system is topologically
zero-dimensional, and its effective dimensionality is
less than lower critical one (dc1 = 2).

The Berezinskii law was never questioned in the
theoretical community, and simultaneously it was
never observed experimentally. The reason for it
was clarified in the paper [3]: the Berezinskii law
is valid in closed systems, while the most of actual
systems are open. In open systems, replacement
−iω → −iω + γ occurs (where γ is inelastic damp-
ing) and the law σ(ω) ∝ −iω transforms into the
usual metallic behavior.

A possibility of realization of closed systems be-
came clear after observation of the persistent cur-
rent in disordered systems (in the Aharonov–Bohm
geometry) [4, 5, 6], predicted in the paper [7]. In
fact, the persistent current is a consequence of the
Berezinskii law, leading to dissipativeless conduc-
tance. Its observation is possible, when a size L
of the disordered ring is small in comparison with
the inelastic length Lin, depending on temperature
T . The typical scales in the indicated experiments
were L ∼ 1µm, T ∼ 100mK. If one accepts that
Lin ∝ T−2, then a system is closed for L <∼ 10nm in
the helium region (T ∼ 1K).

Let discuss several experimental situations, where

observation of the Berezinskii law is possible.

1. The first variant is the island film of a disor-
dered metal lying on the dielectric substrate (Fig.1).
We suppose for clearance that all islands are of the
same size L, which increases monotonically in the
course of the film deposition 1. Then for L<∼Lin the
Berezinskii law is valid (Fig.1,a), while in the op-
posite case L >∼ Lin the usual metallic conductivity
takes place (Fig.1,b). A transition from one regime
to another can be provided by the change of L or
the temperature.

At first glance, the described experiment is sim-
ple. However, there is a bottleneck in it. It is clear
from relation ε ∼ iσ/ω, that the law σ ∝ −iω corre-
sponds to the frequency-independent dielectric per-
meability ε, so a disordered system is an ordinary
dielectric. The properties of the film in the Berezin-
skii law regime are the same as those of the dielectric
substrate, hence the former gives a negligible contri-
bution to conductivity in background of the latter.
The width of the film is by 6–7 orders less than the
width of substrate, but the corresponding smallness
can be partially compensated by a large value of the
film permittivity ε1 in comparison with its substrate
value ε0. By the order of magnitude, ε1 ∼ ξ2/a2

0

(where ξ is the localization length for wave functions,
and a0 is the atomic space) and saturates by a value
L2/a2

0 for large ξ. If the metallic film is weakly dis-
ordered 2, then for L ∼ 10nm its permittivity ε1 can

1 In fact, there is a distribution of islands in size, which
shifts in the large L region in the course of deposition.

2 The films are weakly disordered in the case of ”simple”
metals (such as Mg, Al, Sn), which are well-described by the
pseudopotential theory [8]; a small pseudopotential provides
weak scattering even in the amorphous state. Contrary, the
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Figure 1: In the case of the island metallic film, the Berezinskii law is observable when the island size L is
small in comparison with the inelastic length Lin (a), while in the opposite case the metallic behavior is
valid (b).

exceed ε0 by 3–4 orders.
The experimental procedure looks as follows. The

experiment is carried out in citu and begins with a
measurement of the frequency and temperature de-
pendencies of the substrate conductivity, with saving
results in the file. Then a small amount of metallic
atoms is deposited, and again conductivity is mea-
sured and saved; again deposition is made an so
on. Proceeding by small steps, one should reach a
regime, when the film contribution is clearly seen in
the substrate background. Then the actual measure-
ments can be made.

2. The second example is a nanocomposite sys-
tem [9, 10], which is a dielectric sample with the
metallic granules embedded in it (Fig.2). The vol-
ume fraction p of a metal can be rather large and
its effect should be easily observable, being of the
order of unity. However, a ”hidden rock” is present
here. Let exploit the formula from the Landau and
Lifshitz book [11]

ε̄− ε0
ε0

= p
3(ε1 − ε0)
2ε0 + ε1

≈ 3p− 9p
ε0
ε1

, (1)

which is valid for a small concentration of spherical
granules: it gives the average permittivity ε̄ for the
system of Fig.2,a in terms of its values for a dielec-
tric (ε0) and a metal (ε1). Since ε1 À ε0, then the
main contribution 3p is an uninteresting constant,
while the useful effect, depending on ε1, is deter-
mining by two small parameters p and ε0/ε1. As a
result, the problem of a reference arises, i.e. a ne-
cessity to have the identical sample without metallic

films of the transition metals are usually strongly disordered.

granules. Fortunately, such a problem is absent for
a specific technology [9, 10], when nanocomposites
are produced on the base of a porous glass, whose
pores are filled by metallic granules; so the same
sample can be measured in absence and in presence
of granules. It is useful to note that for the system
of Fig.2,a (in contrast to that of Fig.1) the strongly
disordered metal is desirable, in order to increase the
ratio ε0/ε1.

3. Derivation of Eq.1 is based on a solution of a
well-known problem on a dielectric ball in the ex-
ternal electric field [11]. The analogous problem is
solvable for an ellipsoid with arbitrary ratios of its
semi-axes a, b, c [11], and generalization of (1) is
possible for granules of ellipsoid form:

ε̄− ε0
ε0

= p
ε1 − ε0

Aε0 + Bε1
, (2)

where A = 1−B, and

B =
abc

2

∫ ∞

0

dx

(x + a2)3/2(x + b2)1/2(x + c2)1/2
,

(3)
if the electric field E is directed along the axis a.

In reality, the metallic granules are not strictly
spherical in the case of Fig.2,a. For modelling of such
situation, one can suggest that granules are ellipsoids
with fluctuating ratios of semi-axes. Then for ε1 À
ε0 one has

ε̄− ε0
ε0

≈ p
〈
B−1

〉− p
〈
B−2

〉 ε0
ε1

(4)

(〈. . .〉 is averaging over fluctuations), so the structure
of Eq.1 is preserved but the coefficients are changed.
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Figure 2: A nanocomposite system with spherical (a) and needle-shaped (b) metallic granules embedded
in a dielectric.

Parameter B decreases when a becomes greater
than b and c. In the limit of strongly oblong ellipsoid
(a À b ∼ c) one has B → 0 and Eq.2 takes a form

ε̄− ε0
ε0

= p
ε1 − ε0

ε0
, (5)

i.e. optimal conditions for observation correspond
to the needle-shaped granules (Fig.2,b). In this case
one can provide a sufficient smallness of p (which
is necessary for validity of Eq.2 and a transparent
interpretation of the experiment) and its compensa-
tion by a large parameter ε1/ε0. As a result, effect
is of the order of unity or even more. Such systems
can be fabricated on the base of chrysotile asbestos,
which is a stack of the parallel nanotubes [12] with
a typical pore diameter 5nm; since the length of the
granules should be essentially greater 3, one is in-
duced to work in the millikelvin range of tempera-
tures.

4. In relation with the latter, let indicate one ex-
otic possibility. If a vessel with superfluid helium
is rotated, then a set of the parallel vortices arises.
If metallic atoms are injected in helium, they are
localized at the vortex cores and form nanowires
[14]. Regulating the length of the latter, one can cre-
ate the desired system (Fig.3). A concentration of
the metallic phase is strongly restricted in this case
(p<∼10−12), but at sufficiently low temperatures one
can deal with large L scales and, as a consequence,
with enormous values of permeability ε1.

3 This length can reach 1mm [13].

Figure 3: An exotic realization of system represented
in Fig.2,b. If a vessel with superfluid helium is ro-
tated, then a set of the parallel vortices arises, and
the injected metallic atoms are localized on the vor-
tex cores.
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Analogously, parameter B tends to zero in the case
of pancake-shaped granules (a ∼ b À c), if their
plane is oriented along the electric field; this case
is also described by formula (5). In particular, it
is valid in the situation of Fig.1, where the volume
concentration p is inevitably small.

In conclusion, the Berezinskii law is observable
in principle, but the experimental difficulties are
present in all considered situations. The latter is
rather natural, since in the opposite case this law
would be discovered long ago.

The author is indebted to S. V. Demishev,
E. Yu. Koroleva, P. I. Arseev, E. B. Gordon,
F. A. Pudonin for useful discussions.
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