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Abstract—Using the well-known “algebra of multifractality,” we derive the functional equation for anoma-
lous dimensions Δq, whose solution Δ = χq(q – 1) corresponds to strict parabolicity of the multifractal spec-
trum. This result demonstrates clearly that a correspondence of the nonlinear σ-models with the initial dis-
ordered systems is not exact.
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Recently there has been a great interest to multi-
fractal properties of the wave functions, arising at the
Anderson transition point (see a review article [1]).
They are exhibited in the anomalous scaling

(1)

for the inverse participation ratios

(2)

where Ψ(r) is a normalized wave function of an elec-
tron in the random potential for a finite system, having
a form of the d-dimensional cube with a side L. In the
metallic phase Ψ(r) extends along the whole system
and |Ψ(r)|2 ~ L–d from the normalization condition, so
Pq ~ L–d(q – 1). At the critical point (see (1)), instead of
the geometric dimension d a set of fractal dimensions
Dq arises, whose difference from d is determined by
anomalous dimensions Δq.

It was noted in [1] that a knowledge of anomalous
dimensions Δq allows to establish the behavior of arbi-
trary n-point correlators

(3)

but the specific results were presented only for n = 2.
It is shown below, that consideration of the n > 2 case
leads to a functional equation for Δq, whose solution
corresponds to a strictly parabolic character of the
multifractal spectrum. The analysis exploits a possibil-
ity to represent correlator (3) in the form of the single

product of the |ri – rj| powers, which can be justified in
the small qi region and in fact always arises as a conse-
quence of the matching conditions (see the text
around Eq. (23) and below).

The result for n = 1 follows from Eqs. (1), (2):

(4)

For n = 2 we have, assuming a power law dependence
on r12 = |r1 – r2|,

(5)

where the normalization constant A and the exponent
α can be established using the so called “algebra of
multifractality” [1, 2]. For r12 ~ L, the functions Ψ(r1)
and Ψ(r2) are statistically independent,2 so the cor-
relator (5) reduces to the product

(6)

which is estimated using (4). For r12 = 0, a divergency
in (5) is cut off at the atomic scale a,

(7)

1 The article was translated by the author.
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and Eqs. (6), (7) lead to the results

(8)

in accordance with [1, 2].
For the case n = 3 we write analogously (rij =

|ri ‒ rj|)

(9)

and find A, α, β, γ using the algebra of multifractality.
If all rij ~ L, then

(10)

while for r12 = 0, r13 ~ r23 ~ L we have a result

(11)

Analogous relations are valid in cases r13 = 0, r12 ~ r23 ~
L and r23 = 0, r12 ~ r13 ~ L. Finally, for r1 = r2 = r3 one
gets

(12)

so we have five relations for four quantities A, α, β, γ:

(13)

which cannot be satisfied for an arbitrary form of Δq.
For solubility of (13) a self-consistency condition
should be fulfilled

(14)

which is a functional equation for Δq. It is easy to verify
that Eq. (14) is satisfied for the spectrum Δq = aq2 +
bq, and in fact it is the only possible form. Indeed, set-
ting q1 = q, q2 = q3 = δ, one has

(15)
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and expansion to the second order in δ gives

(16)

where we have used the condition Δ0 = 0 derived from
Eqs. (1), (2). Since  is simply a constant, one can
integrate (16) and obtain an arbitrary quadratic poly-
nomial in q, which reduces to a form Δq = aq2 + bq, if
the equality Δ0 = 0 is exploited. In the absence of sin-
gularities on the q-axis, one can use another relation
Δ1 = 0 obtained from Eqs. (1), (2) and arrive to the
final form3

(17)

The positiveness of χ follows from inequality  ≤ 0,
where τq = Dq(q – 1) [1].

In the case of the general n-point correlator we
accept

(18)

and obtain analogously to the preceding

(19)

Rewriting the product (18) in the form clarifying its
dependence on ri, n and ri, n – 1

(20)

and setting rn – 1 = rn, one has

(21)

which should be consistent with the result for the (n –
1)-point correlator, obtained from (18) by replace-

3 In fact, for validity of (17) one needs the absence of singular
points in the interval (0, 1), which is confirmed by numerical
experiments for dimensions d = 2, 3, 4. In the general case, one
should use the form Δq = aq2 + bq in each interval of regularity,
so dependence Δq may consist of several parabolic or linear
pieces. There are indications that such variant is realized in high
dimensions.

Δ = Δ0
'' '',q

Δ0
''

Δ = χ − χ >( 1), 0.q q q

τ''
q

α

<

⎛ ⎞
〈 Ψ Ψ Ψ 〉 = ⎜ ⎟

⎝ ⎠
∏1 22 2 2

1 2| ( )| | ( )| ...| ( )|
ij

nq q q
n

iji j

LA
r

r r r

− + + + +Δ +Δ + +Δ

+α = Δ − Δ − Δ

1 2 1 2( ... ) ...~ ,
.

n q q qn

i j i j

d q q q

ij q q q q

A L

−

α α− −

= = + =
αα− − −

−= = = +

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
× ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

∏ ∏ ∏

∏ ∏ ∏

,

, 1

1 1

,1 1 1
2 3 2

, 11 1 1

ij i n

iji n

n n n

ij i ni j i i

n n n

i n iji i j i

L L
r r

L L
r r

( )
−

−
−

+
−

αα +α− − −α

−= = = +

〈 Ψ Ψ Ψ 〉

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏ ∏

1 2 1

, 1 ,
1,

2 2 2 2
1 2 1

2 3 2

, 11 1 1

| ( )| | ( )| ...| ( )|

~ ,

n n

iji n i n
n n

q q q q
n

n n n

i n iji i j i

L L LA
a r r

r r r



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 123  No. 5  2016

STRICT PARABOLICITY OF THE MULTIFRACTAL SPECTRUM 847

ments n → n – 1 and qn – 1 → qn – 1 + qn. A self-consis-
tency condition reduces to the equality

(22)

which is analogous to (14) and satisfied for the para-
bolic spectrum. We see that a functional form (17)
provides self-consistency of results (18), (19) for arbi-
trary n-point correlators.

Above we have accepted that correlator (3) is deter-
mined by a single product of the rij powers. Generally,
the right hand side of (18) may contain less singular
terms determined by exponents , whose sum is less
than a sum of αij. If certain  are greater than αij, then
the given analysis becomes invalid. The absence of
such terms can be established for sufficiently small qi.
Indeed, expansion of (18) over qi with Δq = aq2 + bq
shows that for validity of (19) one should set

(23)

These relations are valid for n = 2, if the power law
dependence is accepted in (5), and then they auto-
matically hold for arbitrary n, justifying representa-
tion (18). If additional terms are present in (18), then
relations analogous to (23) can be fulfilled only in the
presence of certain relations between the exponents αij

and . It is clear from Wilson’s many-parameter
renormalization group that the main scaling and cor-
rections to it4 originate from different sources and
appear to be independent; so existence of strict rela-
tions between αij and  looks improbable.5 Thereby,
for sufficiently small qi there are no additional terms in
(18), so the spectrum is strictly parabolic in a certain
vicinity of q = 0 and can be analytically continued to
any interval, not containing singular points.6 The lat-
ter reservation is essential, because existence of singu-
lar points looks rather probable (see below).

4 The arbitrary choice of qi allows to neglect the exceptional situa-
tions when the sum of αij is equal to the sum of , and separate
the main contribution from corrections to it.

5 Such relations are possible in conformal theories, which possess
deep internal symmetry. However, relation (9) for n = 3 is exact
in conformal theories [3].

6 For finite L, analiticity of Pq and Δq follows from definition (2)
according to the theorem on analyticity of integrals depending
on a parameter (see, for example the book [4]). In the limit L →
∞ there is a possibility of isolated singular points due to the rea-
sons analogous to the Stokes phenomenon (a change of topol-
ogy for the steepest descent trajectories); such singularities are
discussed in Section II.C.7 of the paper [1].
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The structure of correlators used in the paper can
be justified using the well-known operator product
expansion [3]

(24)

which allows to produce successive diminishing of the
order of the correlator

(25)

and represent it as the sum of products of the coeffi-
cient functions (ri – rj). The latter naturally have a
power-law behavior at the critical point, leading to
representation of correlators as sums of products com-
posed from the rij powers. Such representation is not
unique, because a pair of operators in (24) can be cho-
sen in different ways, and the result depends on suc-
cession the operators are chosen in the course of
reducing of the correlator. It gives the functional
relations between (ri – rj), which allow to transfer
from one representation to another. One can trace on
example of conformal theories [3], how to obtain the
representation containing the product of all rij in the
leading term; such representation is implied in the
present paper.

Existence of such representation is not related with
specificity of the conformal theory. Indeed, let con-
sider the case n = 3 as an example. Suggesting that ri is
close to rj, we apply the operator product expansion to
the pair of operators (i, j) and retain the leading terms
in rij; then the following results are obtained for the
correlator K{ri}:

(26)

The correct form of functions fi cannot be established,
because the corresponding two arguments are indis-
tinguishable in this limit. For coinciding arguments
these functions have a power law behavior, which is
partially related with the first, and partially with the
second argument:

(27)

If all three configurations are different, then the oper-
ator product expansion contains three essentially dif-
ferent terms with the same sum of exponents (it is clear
from consistency of expressions for coinciding rij).
Such degeneracy is natural in the case q1 = q2 = q3; for
unequal exponents it arises inevitably in the course of
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symmetrization over rij. However, in the present paper
(in opposite to [8]) we consider configurations {qi} of
the general position; then such degeneracy is not sup-
ported by symmetry and looks completely improbable.
Hence, we deal with one and the same configuration
in (27), i.e.

(28)

in correspondence with Eq. (9). The exponents α, β, γ
are inevitably determined by the second formula in
(19); setting all rij ~ a, or rij ~ L, in Eq. (28) gives two
extra relations, so all Eqs. (13) are reproduced. It is
clear from this reasoning that a strict validity of (9) is
not necessary for our analysis, because this relation
arises effectively due to matching conditions for three
formulas (26).

The parabolic spectrum (17) corresponds to the
logarithmically normal distribution for the amplitudes
|Ψ(r)|2 [5]. If the latter distribution is accepted axiom-
atically, then (17) is valid for arbitrary q. The statement
of [1] on impossibility of such a situation refers to the
lattice models, where inequality |Ψ(r)|2 ≤ 1 holds due
to discreteness of the coordinate r (the equality
|Ψ(r0)|2 = 1 corresponds to localization at the single
site r0). This inequality leads to restriction α ≥ 0 for the
definitional domain of the singularity spectrum f(α)
and impossibility of the decreasing behavior for τq =
Dq(q – 1);7 as a result, dependence τq saturates by a

7 The function f(α) is related with τq via the Legendre transforma-
tion τq = qα – f(α), q = f'(α). In particular, f(α) = d – (α –
α0)2/4(α0 – d) with α0 = d + χ for the spectrum (17).

−α −β −γ
12 13 23{ } ~ ( ) ( ) ( )iK r r rr

constant  for q > qc, where qc is a certain singular
point. These restrictions are inessential for continuous
models, where the parabolic spectrum is possible for
arbitrary q.

Nevertheless, one cannot exclude the existence of
singular points, since the algebra of multifractality is
certainly violated for large positive qi. Indeed, setting
q2 = 1 in (5) and integrating over r2, one can easily test
that results (8) are valid only for α ≤ d, which corre-
sponds to q1 ≤ d/2χ for the spectrum (17). Violation of
algebra is a consequence of quick decreasing of func-
tions |Ψ(ri)  at large distances from their “centers”,
so they become statistically independent at a scale of rij
lesser than L.

In the approach based on the use of nonlinear
σ-models [6], parabolicity of the spectrum takes
place for the spatial dimension d = 2 +  in the lowest
orders in  [1, 6], but is violated on the four-loop
level. This situation is not unexpected: derivation of
σ-models is justified only for small , and the ques-
tion on their exact correspondence with the initial
disordered systems always remained open. In partic-
ular, strong doubts arose in relation with the upper
critical dimension [7]. The paper [8] suggests expla-
nation why deficiency of σ-models for the orthogo-
nal ensemble arises just on the four-loop level.8 In
the “minimal” σ-model used by Wegner, one is
restricted by the lower (second) powers of gradients,
which corresponds to neglecting the spatial disper-
sion of the diffusion coefficient D(ω, q). In the first
three orders in  this approximation is self-consis-
tent, while self-consistency fails on the four-loop
level. As a result, one should add the terms with
higher gradients which leads to instability of the
renormalization group due the “gradient catastro-
phe” [9]. To remove instability one should include
the additional counter-terms, which leads to essen-
tial modification of the σ-model Lagrangian and
inevitable revisiting of all four-loop contributions.
The latter may eliminate a discrepancy with self-con-
sistent theory by Vollhardt and Wölf le [10], or its
refined version [11].

A surprising accuracy of Wegner’s one-loop result
[6] (corresponding to (17) with χ = ) in application to
the d = 3 and d = 4 cases was reported in a lot of
numerical experiments [12–16], though detectable
deviations were also declared (Figs. 1–3). For exam-
ple, a position of the maximum for the singularity
spectrum f(α) (which is α0 = d +  in the one-loop
approximation [1, 6]) was estimated as α0 = 4.03 ±
0.05 [12], α0 = 4.048 ± 0.003 [15]9 for d = 3 and α0 =

8 For the unitary ensemble, the paper [8] gives the simple and
completely rigorous proof of the σ-model deficiency based on
inequality for Δq.

9 Estimation of errors in the paper [15] arouses serious doubts (see
Footnote 12 in [8]).
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Fig. 1. Singularity spectrum f(α) for the Anderson model
with box (○), Gaussian (□), and binary (△) distributions
[13]. The dashed line shows the one-loop Wegner result.
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6.5 ± 0.2 [12] for d = 4. A value α0 corresponds to the
maximum of the distribution function for ln|Ψ|2,
where numerical data are the most reliable, while their
accuracy becomes worse near the tails of distribution
(Figs. 1, 2). In whole, the parabolic form of the spec-
trum is confirmed on the level of 10%. As demon-
strated in Section 5 of the paper [8], convergence of
correlators (3) to the thermodynamic limit is
extremely slow, and a systematic error for fractal
dimensions can reach tens of percents. Therefore, the
observed deviations from parabolicity (Fig. 3) are
surely within expectations.

In the regime of the integer quantum Hall effect,
the spectrum is parabolic on the level of 10–3 and there
are theoretical arguments in favor of exact parabolicity
[17–19] based on the relation with the conformal field
theory. Nevertheless, small significant deviations were
reported in [16]. Such tiny deviations are unnatural,
since there are no small parameters in the system. In
our opinion, these deviations are related with slow
convergence to the thermodynamic limit L → ∞,
though analysis of [8] is not directly applicable here.10

The above considerations are not applicable to the
so called PRBM model [1], where strong deviations
from parabolicity are obtained analytically and con-
firmed by numerical simulations. This model corre-
sponds to disordered systems with power-law correla-
tions of a random potential. It is clear from the exam-
ple of ferromagnets with long range interaction, that
such models possess a lot of pathological properties,
which are revealed in different aspects and demand a
special analysis for detection. In the present case,

10The same point of view was expressed by M.R. Zirnbauer (pri-
vate communication), since deviations from parabolicity
detected in [20] were found to be related with finite-size effects.

there is unclear question on the possibility to consider
wave functions as statistically independent at some
scale, if the random potential is strongly correlated in
the whole system. This question should be answered to
establish validity of the “algebra of multifractality”
(see Footnote 2).

In conclusion, the use of the algebra of multifrac-
tality [1, 2] leads to the parabolic spectrum of anoma-
lous dimensions and clearly demonstrates that a corre-
spondence of the σ-models with the initial disordered
systems is not exact.
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