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The correct definition of the conductance of finite systems implies a connection to the system
of the massive ideal leads. Influence of the latter on the properties of the system appears to
be rather essential and is studied below on the simplest example of the 1D case. In the log-
normal regime this influence is reduced to the change of the absolute scale of conductance,
but generally changes the whole distribution function. Under the change of the system length
L, its resistance may undergo the periodic or aperiodic oscillations. Variation of the Fermi
level induces qualitative changes in the conductance distribution, resembling the smoothed
Anderson transition.

1. Introduction and main results

The correct definition of the conductance of finite
systems is not a trivial issue, which was a subject of
the vivid discussion at early 1980-ties [1]–[9] (see the
review article [10]). The reason of controversy was
related to a fact that the conductance of finite sys-
tems is an ill-defined quantity. It is a consequence
of the specific feature of the linear response formu-
las: the δ-functions, contained in them, should be
extended to the width Γ, which should be tended to
zero only after the thermodynamic limit transition;
such procedure is surely impossible in finite systems.
To avoid this difficulty, the rather elegant trick was
suggested [3]: the finite system is connected to the
ideal leads (Fig.1), which are suggested to be suffi-
ciently massive, so the thermodynamic limit is prac-
tically taken in these leads. Such construction solves
the problem of interpretation of the Kubo formula
but creates new problems: the corresponding defini-
tion of conductance refers to the composite system
”sample+ideal leads”, and its relation to the initial
system remains the open question. In order to clarify
a situation, one can introduce the semi-transparent
interfaces between the system and the ideal leads
[11]. Influence of the latter on the properties of the
system is surely essential near the Anderson transi-
tion [12], but was discussed in [11, 12] only on the
abstract level. In fact, this influence can be a subject
of the constructive analysis, which is demonstrated
below on the simplest example of 1D systems.
In theoretical papers, one usually suggests the ex-

istence of the unique Fermi level, while a difference
between the sample and ideal leads is determined
by the absence of the random potential in the lat-
ter case (Fig.2,a). Practically, such situation is not
very realistic: usually, in the experimental device the
connecting leads are produced from a good metal
with the large Fermi energy (so impurities are effec-
tively screened), while the typical disordered system
is a semi-metal or a doped semiconductor, where ef-
fects of disorder are strikingly manifested (Fig.2,b).
Nevertheless, the difference from the former case
(Fig.2,a) does not look essential and is usually ig-
nored in theoretical papers. However, the use of the
foreign leads becomes inevitable, if the Fermi level
in the system corresponds to the forbidden band of
the ideal crystal (Fig.2,c), where allowed states arise
only due to a random potential. In this case, the at-
tempt to make the connecting leads from the same
material without impurities will end by a confusion:
”the ideal leads” will not conduct at all.

An explicit introduction of the ideal leads
(Fig.2, b, c) is realized with a help of the edge trans-
fer matrices (Sec.2) and sets the interesting physi-
cal problem: producing small variation of the Fermi
level (not essential for the ideal leads), one can
transfer from the quasi-metallic regime in the al-
lowed band (Fig.2,b) to the fluctuational states in
the deep of the forbidden band (Fig.2,c). In the
course of it, the conductance distribution of the 1D
system undergoes the qualitative changes resembling
the smoothed Anderson transition.
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Figure 1: The correct definition of the conductance of finite
systems implies a connection of the massive ideal leads. For
the discussion of influence of the latter, one can introduce the
semi-transparent boundaries [11].

If g is the dimensionless conductance (conduc-
tance G of the system of size L in quantum units
e2/h), then the distribution P (ρ) of dimensionless
resistance ρ = 1/g is described by the following evo-
lution equation

∂P (ρ)

∂L
= α

∂

∂ρ

[
ρ(1+ρ)

∂P (ρ)

∂ρ

]
, (1)

derived in the number of papers [13]–[18] and consid-
ered as sufficiently universal. However, more general
equation was suggested in [12] for 1D systems

∂P (ρ)

∂L
= α̃

∂

∂ρ

[
−γ(1+2ρ)P (ρ) + ρ(1+ρ)

∂P (ρ)

∂ρ

]
,

(2)
which is reduced to (1) in the random phase approx-
imation. The latter approximation is sufficiently
good for the deep of the allowed band and the ”natu-
ral” ideal leads (Fig.2,a), which is usually suggested
in theoretical papers (see references in [19, 20]),
while the situation in the forbidden band is consid-
ered infrequently [21, 22, 23] and only on the level
of wave functions. The main argument of the paper
[12] was based on the fact, that a finite value of the
parameter γ arises in the case of semi-transparent
boundaries (Fig.1), even if the random phase ap-
proximation is applicable to the system under con-
sideration.
Still more general evolution equation arises for the

explicitly introduced ideal leads (Sec.7)

∂P (ρ)

∂L
= α̃

∂

∂ρ

[
−γ1(1+2ρ)P (ρ)−

−2γ2
√
ρ(1+ρ)P (ρ) + ρ(1+ρ)

∂P (ρ)

∂ρ

]
,

(3)
which is reduced to (2) in the regions of small and
large L, where the typical values of ρ are small and
large correspondingly (then γ = γ1 in the first case
and γ = γ1 + γ2 in the second one), so equation (3)

Figure 2: (a) In the theoretical papers one usually suggests
that a difference between the sample and ideal leads is de-
termined by the absence of a random potential in the latter
case; (b) Practically in the experiment the connecting leads
are produced from a good metal with the large Fermi energy;
(c) Explicit introduction of the ideal leads is inevitable, if the
Fermi level corresponds to the forbidden band of the ideal
crystal.

is analogous to equation (2) with variable γ. A pos-
sibility of the γ variation in the course of evolution
was allowed in [12] from the very beginning and is
systematically studied in Sec.3. The limiting value of
γ for large L is determined by internal properties of
the system under consideration and does not depend
on ideal leads. Its behavior as function of E/W 4/3

is shown in Fig.3, where E is the Fermi energy mea-
sured from the lower band edge and W is the ampli-
tude of a random potential (all energies are measured
in units of the hopping integral of the 1D Anderson
model, see Eq.14 below). One can see that the pa-
rameter γ is always finite but accepts small values
in the deep of the allowed band, in accordance with
the random phase approximation. Hence, finiteness
of γ is determined by the internal properties of the
system and introduction of semi-transparent bound-
aries [12] is not actual.

In the plane (E ,W 2) one can distinguish three
characteristic domains (Fig.4): quasi-metallic (|γ| ≪
1), strongly localized (γ ≫ 1) and ”critical” (γ ∼ 1).
If the energy E is varied for a fixed value of W ,
the distribution of conductance changes qualitatively
and demonstrates something like the smoothed An-
derson transition. The true phase transition arises
in the limit W → 0, where γ → 0 and γ → ∞ in the
metallic and localized phase correspondingly, while
the width of the critical region (γ ∼ 1) tends to zero.

Let now discuss the dependence of results on the
properties of the ideal leads. We begin with a sim-
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Figure 3: Parameter γ in equation (2), corresponding to the
limit of large L, as function of the energy E, counted from the
lower edge of the initial band.

Figure 4: In the plane (E,W 2) one can distinguish three
characteristic regions: quasi-metallic (|γ| ≪ 1), strongly lo-
calized (γ ≫ 1) and ”critical” (γ ∼ 1). If the energy E
is changed for a fixed amplitude W of the random poten-
tial, then the conductance distribution undergoes qualitative
changes resembling the smoothed Anderson transition. In the
limit W → 0 the true phase transition arises.

ple example, in order to demonstrate the existence
of a subject for discussion. Removing the random
potential in the situation of Fig.2,c, one has a sim-
ple quantum mechanical problem on the tunneling
through the potential barrier [24]. Calculating the
amplitudes of transmission (t) and reflection (r), one
can find the Landauer resistance ρ = |r|2/|t|2 of the
system

ρ =
1

4

(
k

κ
+
κ

k

)2

sh2κL , (4)

where k is the Fermi momentum in the ideal leads,
and κ is the decrement of decay of the wave functions
under the barrier. The ρ dependence on L is deter-
mined by the parameter κ, i.e. internal properties
of the system, while the proportionality coefficient
depends on k, i.e. the properties of the ideal leads.

This result contradicts to a physical intuition, so
let us consider its interpretation. Our physical intu-
ition was formed on the usual Ohmic regime, when
the resistance ρ is proportional to the system length
L or the number of scatterers n; hence, each scat-
terer gives the additive contribution to resistance.
However, there exists the localization regime, where
ρ depends on L exponentially, so ln ρ ∝ L ∝ n and
each scatterer gives the multiplicative contribution
to resistance. Since the ideal leads do not provide a
dissipation, their contribution to resistance is related
only with interfaces, and has a multiplicative char-
acter in the exponential regime. The latter changes
the common coefficient in (4), which can vary from
unity (for k = κ) till infinity.

Generally, the contribution of interfaces is not ad-
ditive, nor multiplicative, and a situation is not triv-
ial (Sec.8). In addition, the conductance of a finite
system is a strongly fluctuating quantity [25, 26], and
one should consider its distribution function. De-
pendence of the latter on the boundary conditions
is manifested already in the metallic regime, where
it can be investigated both analytically [27, 28], and
numerically [29].

Dependence of the conductance distribution of 1D
systems on the properties of ideal leads is discussed
in details in Sec.6. Let us declare several simple
statements.

1. For large L the distribution P (ρ) is log-normal,
and contains the limiting value of the parameter γ
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at L→ ∞:

P (ρ) =
1

ρ
√
4πt

exp

{
− [ln ρ− (2γ+1)t]2

4t

}
, t = α̃L .

(5)
It is a solution of Eq.2 for large ρ, when 1+2ρ ≈ 2ρ,
ρ(1 + ρ) ≈ ρ2. The parameters α̃ and γ can be
established (Sec.5) using the exponents of growth
for the second and fourth moments of the transfer
matrix elements (Sec.4); they are determined by the
internal properties of the system and do not depend
on the ideal leads. The latter affect only the absolute
scale of conductance.

2. In the deep of the forbidden band (Fig.2,c)
the latter statement remains valid beyond the log-
normal regime: the ideal leads do not affect the form
of the distribution P (ρ), but change the absolute
scale of ρ,

P (ρ) → AP (Aρ) , A = 1/∆2
2 , (6)

where the parameter ∆2 is defined below in Eq.9.

3. In the critical region, the situation is more com-
plicated: the ideal leads change only the absolute
scale of conductance, but the A value in Eq.6 is dif-
ferent in the log-normal regime and in the range of
not very large L. In the latter case for the ”natural”
leads (Fig.2,a) one has the following distribution

P (ρ) =
1

Γ(γ+1)

ργ exp {−ρ/t}
tγ+1

, (7)

which is a solution of Eq.2 for small ρ, when 1+
2ρ ≈ 1, ρ(1+ρ) ≈ ρ. In the critical region one has
γ = −1/2, while the parameter A in Eq.6 takes a

value 1/ (∆2−∆1)
2
, where ∆1 and ∆2 are defined in

Eq.9.

4. The situation is even more complicated in the
deep of the allowed band, where the ideal leads affect
the whole distribution function in the range of not
very large L. If for the ”natural” leads (Fig.2,a) one
has distribution (7) with γ = 0, then for the foreign
leads (Fig.2,b) its form is essentially modified: in
particular, the universal distribution appears in the
formal limit L→ 0: 1

P (ρ) =
1

π

√
1

ρ(ρc−ρ)
Θ(ρc−ρ) , (8)

1 It should be stressed, that the limit L → 0 is indeed
formal, since the results (7) and (8) are restricted by the con-
dition L >∼ 1/κ.

whose evolution with L is demonstrated in Fig.5,a
and Fig.5,b; the latter differ by the values of param-
eters

∆1 =
1

2

(
k

κ
− κ

k

)
, ∆2 =

1

2

(
k

κ
+
κ

k

)
. (9)

Parameters (9) are defined for the forbidden band,
but acquire the same form in the allowed band, if
one set formally k̄ = κ for the Fermi momentum k̄
of the system under consideration; they are bounded
by the relation

∆2
2 −∆2

1 = 1 , (10)

which is of vital significance for conservation of prob-
ability. Below we suggest for convenience that ∆1 is
a free parameter, variating from −∞ till ∞, while
the positive parameter ∆2 is defined by Eq.10.
In 1D systems, the mean value of ρ is usually

not representative, but nevertheless is observable
(Sec.8). Its evolution allows a complete description
for arbitrary L and gives a clear demonstration for
the influence of the ideal leads. As function of L,
both mean of ρ, and its higher moments can exhibit
incommensurate oscillations, which provide the ape-
riodic character of oscillations for the resistance ρ in
the specific sample (Fig.8).

2. Different types of transfer matrices

The use of transfer matrices is the natural ap-
proach to investigation of 1D systems. The most
convenient variant is the transfer matrix T in the
wave representation, which relates the amplitudes of
waves on the left (Aeikx +Be−ikx) and on the right
(Ceikx +De−ikx) of a scatterer:(

A
B

)
= T

(
C
D

)
. (11)

It is determined by the transmission (t) and reflec-
tion (r) amplitudes and in the presence of the time-
reversal invariance allows the following parametriza-
tion [1]

T =

(
1/t −r/t

−r∗/t∗ 1/t∗

)
=

( √
ρ+1 eiφ

√
ρeiθ√

ρ e−iθ
√
ρ+1 e−iφ

)
,

(12)
where ρ = |r/t|2 is the Landauer resistance [2]. For
the successive arrangement of scatterers their trans-
fer matrices are multiplicated. For a weak scatterer,
the matrix T is close to the unit one, which allows
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Figure 5: Evolution of the distribution P (ρ) in the metallic regime for (a) the weak (∆2
1 = 0.1) and (b) strong (∆2

1 = 10)
difference of the Fermi levels in the given sample and the ideal leads. The dashed line shows the distribution (7) with γ = 0.

to derive the differential evolution equations for its
elements and the Landauer resistance ρ.
For the energy in the forbidden band wave func-

tions on the left (Aeκx + Be−κx) and on the right
(Ceκx +De−κx) of a scatterer are given by a super-
position of the increasing and decreasing exponents
and can be related by the pseudo-transfer matrix(

A
B

)
= T

(
C
D

)
=

(
t11 t12
t21 t22

) (
C
D

)
,

(13)
for which parametrization (12) is not valid and its
relation with ρ is not evident. The elements of the
matrix T are real and its determinant is equal to
unity, as in the case of (12).
At last, one can introduce the transfer matrix in

the coordinate representation, as can be illustrated
for the 1D Anderson model, describing by the dis-
crete Schroedinger equation

Ψn+1 +Ψn−1 + VnΨn = EΨn , (14)

where E is the energy counted from the band center,
and the hopping integral is set to be unity. Rewriting
(14) in the form(

Ψn+1

Ψn

)
=

(
E − Vn −1

1 0

) (
Ψn

Ψn−1

)
, (15)

and making n iterations, one can obtain(
Ψn+1

Ψn

)
= τ

(
Ψ1

Ψ0

)
=

(
τ11 τ12
τ21 τ22

) (
Ψ1

Ψ0

)
,

(16)
where the matrix τ is a product of n matrices of type
(15).
Three matrices T , T , τ are determined by the in-

ternal properties of the system, and have their merits
and drawbacks (Fig.6). These matrices do not al-
low to obtain the differential evolution equation for
ρ, applicable for all energies. Indeed, the matrix T
possesses the necessary properties, but immediately
applicable only in the allowed band; in the forbidden
band its role is played by the pseudo-transfer matrix
T , which has no direct relation with ρ. The matrix τ
is applicable for all energies, but has no direct rela-
tion with ρ and is not close to the unit one for a weak
scatterer. The matrices T and τ consist of the real
elements, which has some technical advantages 2.
To overcome these difficulties, let introduce the

”external” matrix T̃ , which takes into account the
presence of the foreign leads (Fig.2,b) and is related
with the ”internal” matrix T of the system with the

2 In particular, the analysis of fourth moments for matri-
ces with the complex elements looks rather hopeless, since it
demands diagonalization of the matrix of large size.
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Figure 6: Merits and drawbacks of different transfer matrices.

help of the ”edge” matrices Ta and Tb:

T̃ = TaTTb =

(
a a1
a1 a

)(
T11 T12
T21 T22

)(
b b1
b1 b

)
,

a =
1

2

(
1 +

k̄

k

)
, a1 =

1

2

(
1− k̄

k

)
, (17)

b =
1

2

(
1 +

k

k̄

)
, b1 =

1

2

(
1− k

k̄

)
.

The edge matrices have a simple sense: for example,
Ta relates the amplitudes of waves on the left of the
interface (Aeikx + Be−ikx) and on the right of it
(A1e

ik̄x +B1e
−ik̄x). One can see that Ta Tb = 1, i.e.

the edge matrices are are mutually inverse.
For the energy in the forbidden band (Fig.2,c) the

explicit introduction of ideal leads is inevitable, and
is also realized with the help of the edge matrices,
transforming the pseudo-transfer matrix T to the
true transfer matrix T̃

T̃ = Ta T Tb =

(
a a∗

a∗ a

)(
t11 t12
t21 t22

)(
b b∗

b∗ b

)
,

a =
1

2

(
1 +

κ

ik

)
, b =

1

2

(
1 +

ik

κ

)
. (18)

Relations (18) can be obtained from (17) by the
change k̄ → −iκ.
The use of the edge matrices allows also to relate

T̃ and τ

T̃ =
1

2i sin ka0

(
1 −e−ika0

−1 eika0

)
·

·
(
τ11 τ12
τ21 τ22

) (
eika0 e−ika0

1 1

)
, (19)

where a0 is the lattice constant for the model (14).
One can see that the explicit introduction of the
ideal leads corresponds to the linear transformation
of matrix elements. A linear transformation does
not change the exponents of growth for the second
and fourth moments, which are determined by the
internal properties of the system and do not depend
on the ideal leads (Sec.4). As should be clear from
Fig.6, the matrix T̃ possesses all necessary proper-
ties, but depends on the ideal leads; the latter can
be consider as a drawback, but in fact it reflects the
objective reality.

3. Succession of point scatterers

The coefficients α̃, γ1, γ2 of equation (3) are not
necessary constant and can variate in the course of
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evolution. To gain an insight into the character of
this evolution, let consider a succession of point scat-
terers. For definiteness, let have in mind the Ander-
son model (14) near the band edge, where it cor-
responds to discretization of the usual Schroedinger
equation.
One can easily verify that the point scatterer with

the potential V δn0 is described by the transfer ma-
trix(

1− iϵ −iϵ
iϵ 1 + iϵ

)
, where ϵ =

V

2ka0
. (20)

If two scatterers with amplitudes V0 and V1 are ar-
ranged at the distance L, then the transfer matrix
arises(

1− iϵ0 −iϵ0
iϵ0 1 + iϵ0

) (
e−ikL 0
0 eikL

)
·

·
(

1− iϵ1 −iϵ1
iϵ1 1 + iϵ1

)
. (21)

At last, if the scatterers with amplitudes
V0,V1,V2, . . .,Vn are arranged at the points 0,
L1, L1 + L2, . . ., then the corresponding transfer
matrix has a form

T (n) = Tϵ0 Tδ1 Tϵ1 Tδ2 Tϵ2 . . . Tδn Tϵn , (22)

where

Tϵs =

(
1− iϵs −iϵs
iϵs 1 + iϵs

)
, ϵs =

Vs
2ka0

,

Tδs =

(
e−iδs 0
0 eiδs

)
, δs = kLs . (23)

If the number of scatterers is increased by unity, one
has the recurrent relation

T (n) = T (n−1)

(
un vn
v∗n u∗n

)
, (24)

un = (1− iϵn) e
−iδn , vn = −iϵn e−iδn .

For convenience we set ϵ0 = 0, in order to use the
unit matrix as the initial condition for T (0). If all ϵn
are small, then for not very large n one can retain
two first orders in vn; producing direct multiplica-
tion of matrices, one has

T
(n)
11 = u1u2 . . . un +

n−1∑
i=1

n∑
j=i+1

u1u2 . . . ui−1vi ·

·u∗i+1 . . . u
∗
j−1v

∗
juj+1 . . . un ,

T
(n)
12 =

n∑
i=1

u1u2 . . . ui−1viu
∗
i+1 . . . u

∗
n (25)

and T21 = T ∗
12, T22 = T ∗

11.
In the Anderson model (14), a scatterer is present

at each site of the lattice, so all δs are equal, δs =
ka0. Expressions (25) can be reduced to the form

T
(n)
11 =

√
1 + S2

1 + S2
2 e

−iS−inδ , T
(n)
12 = S1 − iS2 ,

(26)
where in the main order in ϵ

S =
n∑

s=1

ϵs , S1 =
n∑

s=1

ϵs sin (n−2s)δ ,

S2 =
n∑

s=1

ϵs cos (n−2s)δ . (27)

Accepting as usually for the Anderson model

⟨Vn⟩ = 0 , ⟨V 2
n ⟩ =W 2 , (28)

one has the zero means for all sums in (27), while
for the second moments

⟨S2⟩ = 2⟨S2
1⟩ = 2⟨S2

2⟩ = ϵ2n ,

⟨SS1⟩ ∼ ⟨SS2⟩ ∼ ⟨S1S2⟩ ∼ ϵ2 , (29)

where ϵ2 = W 2/4k2a20. Above expressions are valid
under condition

1/δ ≪ n≪ 1/ϵ2 , (30)

where the left inequality provides the large num-
ber of oscillations of sine and cosine in sums (27),
while the right inequality is necessary for neglection
of higher orders in ϵ. For large n, all sums (27) are
normally distributed and practically uncorrelated, so
their mutual distribution function has a form

P (S, S1, S2) ∼ exp

{
− S2

2nϵ2
− S2

1

nϵ2
− S2

2

nϵ2

}
. (31)

Using the relations ρ = S2
1 + S2

2 , φ = −S − nδ, one
has the mutual distribution for the elements of the
transfer matrix (12)

P (ρ, φ, θ) ∼ exp

{
− (φ+ nδ)2

2nϵ2
− ρ

nϵ2

}
. (32)

It should be clear, that for δ ≫ ϵ2, i.e. in the deep of
the allowed band, the phase θ becomes completely
random on the scale n ∼ 1/δ. Stochastization of
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the phase φ occurs on the scale n ∼ 1/ϵ2, but its
uniform distribution arises already on the scale 1/δ
due to regular variations. In fact, stochastization of
θ is sufficient for applicability of the random phase
approximation and disappearance of γ, since the evo-
lution equation for P (ρ) contains only the combina-
tion ψ = θ − φ (see Sec.7). Solution of Eq.2 for
small ρ has a form (7), which agrees with (32) for
γ = 0 and t = ϵ2n; the latter relations follow from
Eq.93 of Sec.7. For large n the exponential growth
of the elements Tij is determined by the product
|u1||u2| . . . |un| ≡ ewn , which is contained in all terms
of (25), as well as in the higher order terms. The
quantity wn has the mean value ϵ2n/2, which (in
view ρ = |T12|2) agrees with the result a = ϵ2 for the
parameter a in the log-normal distribution (Sec. 5).
Neglected terms do not give contributions O(ϵ2) in
the mean of wn, but change its variance.
Above considerations are valid in the deep of the

allowed band for the ”natural” ideal leads (Fig.2,a).
The forbidden band is described by the transfer ma-
trix T̃ (n) = Ta T (n) Tb, where the pseudo-transfer
matrix T (n) is determined by the above relations
with the change k → −iκ; in particular

T (n) = T (n−1)

(
un vn
v∗n u∗n

)
, (33)

un = (1 + ϵn) e
−δn , vn = ϵn e

−δn ,

ϵn = Vn/2κa0 , δn = κLn ,

where the star indicates not the complex conjuga-
tion, but a change of signs for ϵn and δn. With this
modification, relations (25) remain formally valid;
extracting the factor u∗1u

∗
2 . . . u

∗
n ≡ exp (wn) from all

sums, one obtains

T (n) =

(
e−w̃n − ew̃nS1S2 ew̃nS1

−ew̃nS2 ew̃n

)
, (34)

S1 =

n∑
s=1

ϵse
−2sδ , S2 =

n−1∑
s=0

ϵn−se
−2sδ ,

where w̃n differs from wn by the contribution O(ϵ2)
with a zero mean, while S1 and S2 are given in the
main order in ϵ. Substitution to (18) gives for the
phase variables

tgφ = −∆1 −∆2(S1 + S2) ,

ctgθ = (S1 − S2)/∆2 , (35)

where ∆1 and ∆2 are defined in (9). Having in mind
that under condition (30)

⟨S2
1⟩ = ⟨S2

2⟩ = ϵ2/4δ , ⟨S1S2⟩ ≈ 0 , (36)

we see that fluctuations of φ and θ are restricted and
do not increase with n. The case k = κ is special,
since ∆1 = 0 and ∆2 = 1, so

φ = −(S1 + S2) , θ = π/2 + (S2 − S1) , (37)

and the variable ψ = θ−φ does not have an essential
evolution, being localized near π/2 for all n <∼ 1/ϵ2.
As shown in Sec.7, this property remains valid for
n>∼ 1/ϵ2. For large n the exponent ew̃n provides the
growth of elements tij and correspondingly ρ ∼ e2w̃n ;
the quantity 2w̃n has the mean (2δ − ϵ2)n and the
variance 4ϵ2n, in agreement with Eq.56 of Sec.5.
Let come to the critical region, determined by the

condition δ ≪ ϵ2. Then for sufficiently small n one
can set δs = 0 in Eq.23 and obtain

T (n) =

(
1− iS −iS
iS 1 + iS

)
, S =

n∑
s=1

ϵs , (38)

where S has the Gaussian distribution analogously
to (31). The mutual distribution for ρ, φ, θ is given
by the relation

P (ρ, φ, θ) =

∫
dS

1√
2πnϵ2

exp

(
− S2

2nϵ2

)
·

· δ
(
ρ− S2

)
δ (φ+ arctgS) δ

(
θ +

π

2

)
(39)

and integration over φ and θ gives the result

P (ρ) =
1
√
ρ

1√
2πnϵ2

exp
(
− ρ

2nϵ2

)
, (40)

which agrees with (7) for γ = −1/2, t = 2nϵ2; the
latter follows from Eq.93 of Sec.7, if ψ is localized
near ±π/2. Such localization is indeed valid for
small ρ, when φ ∼ √

ρ ≪ 1, θ = −π/2, and (40)
is a solution of Eq.2. However, the result (40) re-
mains valid in the more wide interval n<∼ (ϵ2δ2)−1/3

(Sec.8), when ρ ∼ nϵ2 can be large; in this case φ
is localized near ±π/2, while sinψ becomes small in
agreement with the results for the log-normal regime
(Secs.5, 7).

4. Evolution of moments

According to (33), the elements of the pseudo-
transfer matrix in the forbidden band obey the evo-
lution equations

t
(n)
11 = unt

(n−1)
11 +v∗nt

(n−1)
12 , t

(n)
12 = vnt

(n−1)
11 +u∗nt

(n−1)
12 ,
(41)
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and the analogous equations for t
(n)
21 and t

(n)
22 ; it is essential that t

(n−1)
ij do not contain ϵn and are statistically

independent of un, vn. Introducing the notations for the second moments

z
(n)
1 =

⟨[
t
(n)
11

]2⟩
, z

(n)
2 =

⟨
t
(n)
11 t

(n)
12

⟩
, z

(n)
3 =

⟨[
t
(n)
12

]2⟩
, (42)

one can obtain the system of the linear difference equations with constant coefficients z
(n)
1

z
(n)
2

z
(n)
3

 =

 1− 2δ + ϵ2 −2ϵ2 ϵ2

ϵ2 1− 2ϵ2 ϵ2

ϵ2 −2ϵ2 1 + 2δ + ϵ2


 z

(n−1)
1

z
(n−1)
2

z
(n−1)
3

 , (43)

whose solution is sought in the exponential form, z
(n)
i ∼ λn [30]; it is easy to see that λ is an eigenvalue of

the matrix (43). Setting λ = 1 + x, one has the equation for x

x
(
x2 − 4δ2

)
= 8ϵ2δ2 . (44)

We have in mind the limiting transition

δ → 0 , ϵ→ 0 , δ/ϵ2 = const , (45)

which is actual near the band edge of the ideal crystal, where one can neglect the effects of commensurability
[32, 33] complicating the analysis; correspondingly, we retain the terms of the first order in δ and the second
order in ϵ in the matrix (43).
Analogously we set for the fourth moments

z
(n)
1 =

⟨[
t
(n)
11

]4⟩
, z

(n)
2 =

⟨[
t
(n)
11

]3
t
(n)
12

⟩
, z

(n)
3 =

⟨[
t
(n)
11

]2 [
t
(n)
12

]2⟩
,

z
(n)
4 =

⟨
t
(n)
11

[
t
(n)
12

]3⟩
, z

(n)
5 =

⟨[
t
(n)
12

]4⟩
, (46)

and obtain the system of difference equations
z
(n)
1

z
(n)
2

z
(n)
3

z
(n)
4

z
(n)
5

 =


1− 4δ + 6ϵ2 −12ϵ2 6ϵ2 0 0

3ϵ2 1− 2δ − 3ϵ2 −3ϵ2 3ϵ2 0
ϵ2 2ϵ2 1− 6ϵ2 2ϵ2 ϵ2

0 3ϵ2 −3ϵ2 1 + 2δ − 3ϵ2 3ϵ2

0 0 6ϵ2 −12ϵ2 1 + 4δ + 6ϵ2




z
(n−1)
1

z
(n−1)
2

z
(n−1)
3

z
(n−1)
4

z
(n−1)
5

 , (47)

Accepting z
(n)
i ∼ λn and setting λ = 1 + x, we have the equation for x

x
(
x2 − 4δ2

) (
x2 − 16δ2

)
= 24ϵ2

(
7δ2x2 − 16δ4

)
. (48)

Curiously, equations (44) and (48) can be obtained, if one composes the product of diagonal elements
of matrices (43), (47) and retains the terms of the second order in ϵ. Indeed, non-diagonal elements
give contributions O(ϵ4) and higher, whose concellation can be foreseen beforehand. Since ϵ2 = W 2/4δ2

(see Sec.3), the combinations ϵ2, ϵ4, ..., ϵ10 and δ2ϵ4, δ2ϵ6 contain singularities at δ → 0, whose absence is
evident from the evolution equations for the coordinate transfer matrix (see Appendix 1); only combinations
δ2ϵ2 and δ4ϵ2 are allowable, which enters in Eqs.44, 48. 3 In the deep of the allowed or forbidden band,
the possibility of restriction by diagonal elements allows to establish the exponents of growth for higher
moments and verify their accordance to the log-normal distribution.

3 We have listed all possible combinations. Indeed, a change of the δ sign in (43), (47) leads to the analogous matrices,
which can be transformed to the initial form, if the components of columns are renumerated in the inverse order; so the
odd powers of δ do not appear. Since we consider the limit δ ∼ ϵ2 → 0 (see Eq.45), then only combinations δ2nϵ2m with
4n + 2m ≤ 6 for (43) and 4n + 2m ≤ 10 for (47) are possible; among them only combinations with n ≥ m do not have
singularities for δ → 0.
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Figure 7: The positive root of the first (x2) and sec-
ond (x4) equation (49) against the energy E .

For the Anderson model (14) one can set δ2 = −E ,
4ϵ2δ2 =W 2, where E is the energy counted from the
lower band edge; correspondingly, equations (44),
(48) can be rewritten in the form

x
(
x2 + 4E

)
= 2W 2 (49)

x
(
x2 + 4E

) (
x2 + 16E

)
= 42W 2x2 + 96W 2E .

Equations (49) were derived for E < 0, but can be
analytically continued to arbitrary E due to regu-
larity in E . These equations can be derived also us-
ing the coordinate transfer matrix (see Appendix 1),
which is applicable for arbitrary E and does not re-
quire the analytical continuation. One of the roots
for each of equations (49) remains positive for all
physical values of parameters; it has the maximal
real part between all roots of the equation and deter-
mines the exponent of growth for the second (x2) or
fourth (x4) moments. Behavior of x2 and x4 against
E/W 4/3 is shown in Fig.7.
It is not difficult to obtain the asymptotic results

for x2 and x4. In the deep of the forbidden band
(δ ≫ ϵ2) we have from (44), (48)

x2 = 2δ + ϵ2 , x4 = 4δ + 6ϵ2 . (50a)

To come into the allowed band, one makes the re-
placements δ → iδ, ϵ → −iϵ in Eqs.44, 48, and in
the deep of the band (δ ≫ ϵ2) finds the results

x2 = 2ϵ2 , x4 = 6ϵ2 . (50b)

In the critical region (δ ≪ ϵ2) one has

x2 = 2
(
ϵ2δ2

)1/3
, x4 = 2

(
21ϵ2δ2

)1/3
. (50c)

In terms of E and W we can write

x2 = 2|E|1/2 +W 2/4|E| ,

x4 = 4|E|1/2 + 3W 2/2|E| for − E ≫W 4/3 ,

x2 =
(
2W 2

)1/3
, x4 =

(
42W 2

)1/3
for |E| ≪W 4/3 ,

(51)

x2 =W 2/2E −W 6/32E4 ,

x4 = 3W 2/2E + 27W 6/64E4 for E ≫W 4/3 ,

where the latter result is given with higher accuracy.

5. Parameters of the log-normal distribution

For large L = na0 the distribution P (ρ) is log-
normal

P (ρ) =
1

ρ
√
2πbn

exp

{
− (ln ρ− an)2

2bn

}
, (52)

as was established in many papers ([1], [13]–[18],
[21]–[24]) for partial cases, and follows most gen-
erally from the modified Dorokhov–Mello–Pereyra–
Kumar equation [31]; in the presence of foreign leads
it is derived in Sec.7. The moments of the distribu-
tion (52) can be easily found, ⟨ρm⟩ = eamn+bm2n/2.
Since ρ is determined by the expression, quadratic in
the transfer matrix elements, the parameters a and
b can be established by comparison with the growth
of the second and fourth moments

⟨ρ⟩ = ean+
1
2 bn = C1e

x2n ,⟨
ρ2
⟩
= e2an+2bn = C2e

x4n . (53)

It is easy to see that

a = 2x2 −
1

2
x4 , b = x4 − 2x2 , (54)

while for the parameter γ in (5)

γ =
a

b
− 1

2
=

3x2 − x4
x4 − 2x2

. (55)

Substitution of the asymptotic expressions (50) gives

a = 2δ − ϵ2 , b = 4ϵ2 (forbidden band)

a = ϵ2 , b = 2ϵ2 (allowed band) (56)

a = 1.24
(
ϵ2δ2

)1/3
, b = 1.52

(
ϵ2δ2

)1/3
(critical region)
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The use of asymptotic forms (51) gives for the pa-
rameter γ in (5)

γ =


2|E|3/2/W 2 , −E ≫W 4/3

0.316 , |E| ≪W 4/3

−33W 4/32E3 , E ≫W 4/3

, (57)

while the parameter α̃ is related with b according to
α̃ = b/2a0.
As shown in Sec.2, introduction of the foreign

leads results in the linear transformation for the ele-
ments of the transfer matrix, which does not change
the exponents x2 and x4 for the second and fourth
moments. By this reason, the latter do not depend
on the properties of the ideal leads, as well as pa-
rameters a, b, γ. The ideal leads affect only the
coefficients C1 and C2 in Eq.53, which change the
absolute scale of ρ and the origin of n.

6. Dependence of P (ρ) on the ideal leads

According to (12) the elements of the transfer ma-
trix T obey the relations T22 = T ∗

11, T21 = T ∗
12, fol-

lowing from the time reversal invariance; so it is suf-
ficient to consider the elements

T11 = x+ iy , T12 = z + iω . (58)

If the mutual distribution P (ρ, φ, θ) is known for the
parameters of the matrix (12), then the distribution
of x, y, z, ω is composed according to the rule

P1(x, y, z, ω) =

∫
dρ dφ dθ P (ρ, φ, θ) ·

· δ
(
x−

√
1 + ρ cosφ

)
δ
(
y −

√
1 + ρ sinφ

)
·

· δ (z −√
ρ cos θ) δ (ω −√

ρ sin θ) . (59)

Setting ρ = r2, 1+ρ = R2 and introducing decom-
position of unity under integration

1 =

∫
dR2δ

(
R2 − r2 − 1

)
, (60)

it is easy to find the relation between P1(x, y, z, ω)
and P (ρ, φ, θ):

P1(x, y, z, ω) = P
(
z2 + ω2,Arctg

y

x
,Arctg

ω

z

)
·

· 4δ
(
x2+y2−z2−ω2−1

)
. (61)

Inversely, if the distribution P1(x, y, z, ω) is known,
then it always contains the delta function

P1(x, y, z, ω) = P̃ (x, y, z, ω) · 4δ
(
x2+y2−z2−ω2−1

)
.

(62)

and the distribution of ρ, φ, θ is given by the relation

P (ρ, φ, θ) =

= P̃
(√

1+ρ cosφ,
√
1+ρ sinφ,

√
ρ cos θ,

√
ρ sin θ

)
.

(63)
A transformation of the matrix T under the

change of the ideal leads is given by relations (17),
(18), which are rather tremendous, but can be writ-
ten in the compact form. As clear from the stated
above, the case k = κ is special for a situation in
the forbidden band: it corresponds to the maximal
transparency of interfaces (see Eq.4), while the phase
ψ = θ − φ is localized near π/2 for all L (Sec.3). If
the values of parameters for k = κ are marked with
a bar, then the relation (18) can be rewritten in the
form

x= x̄, y=∆2ȳ−∆1ω̄, z= z̄, ω=−∆1ȳ+∆2ω̄, (64)

or inversely,

x̄=x, ȳ=∆2y+∆1ω, z̄=z, ω̄=∆1y+∆2ω, (65)

where ∆1 and ∆2 are defined in Eq.9. The elements
T̄11 = x̄ + iȳ and T̄12 = z̄ + iω̄ correspond to the
momentum κ and are determined by the internal
properties of the system, while information on the
ideal leads (i.e. the Fermi momentum k) contains in
∆1 and ∆2.
The case k = k̄ is special for a situation in the

allowed band (Fig.2,a). Marking by a bar the values
of parameters, corresponding to this case and set-
ting formally k̄ = κ, one can verify that the relation
between Tij and T̄ij is also given by Eq.64, 65. If the
distribution function P̄ (ρ, φ, θ) (determined by the
internal properties of the system) is known for two
indicated special situations, then (61) gives corre-
sponding distribution P̄1(x̄, ȳ, z̄, ω̄), while the change
of variables (65) gives P1(x, y, z, ω), and then (63)
gives the required distribution P (ρ, φ, θ), depending
on the ideal leads:

P (ρ, φ, θ) = P̄ (ρ′, φ′, θ′) ,

ρ′ = ρ cos2 θ +
(
∆1

√
1+ρ sinφ+∆2

√
ρ sin θ

)2
,

tgφ′ =
∆2

√
1+ρ sinφ+∆1

√
ρ sin θ

√
1+ρ cosφ

,

tg θ′ =
∆1

√
1+ρ sinφ+∆2

√
ρ sin θ

√
ρ cos θ

. (66)

In the forbidden band we have for k = κ

P̄ (ρ, φ, θ) = P̄ (ρ)δ(φ)δ
(
θ − π

2

)
, (67)
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where the delta functions should be broaden to the width of order ϵ. If we neglect this widening, then

P (ρ, φ, θ) =
1

∆2
2

P̄

(
ρ

∆2
2

)
δ
(
θ − π

2

)
· δ
(
φ+ arcsin

∆1

∆2

√
ρ

1+ρ

)
(68)

and integration over φ and θ gives the result (6), i.e. ideal leads do not change the form of P (ρ) and only
renormalize the absolute scale of conductance.
In the deep of the allowed band for k = k̄ (Fig.2,a) the distribution P̄ (ρ, φ, θ) does not depend on the

phase variables 4

P̄ (ρ, φ, θ) =
1

(2π)2
P̄ (ρ) =

1

(2π)2 t
exp

(
−ρ
t

)
, (69)

and P̄ (ρ) is determined by Eq.7 with γ = 0. For the foreign leads (Fig.2,b) the distribution of ρ is given
by the integral

P (ρ) =
1

(2π)2 t

π∫
−π

dφ

π∫
−π

dθ exp

{
−ρ+ S(ρ, φ, θ)

t

}
, (70)

where
S(ρ, φ, θ) = ∆2

1(1+ρ) sin
2 φ+ 2∆1∆2

√
(1+ρ)ρ sinφ sin θ +∆2

1ρ sin
2 θ . (71)

Calculation of the integral (see Appendix 2) gives the following results.
In the case ∆2

1 ≪ 1, two regions are actual, t≪ ∆2
1 and t≫ ∆2

1; in the first of them

P (ρ) =



√
1

π∆2
1t

exp
(
− ρ

2t

)
, ρ <∼ t

1

π

√
1

ρ(ρc−ρ)
, t <∼ ρ , ρc−ρ >∼

(
t∆2

1

)1/2
1

2π2

√
π

2ρ (t∆2
1)

1/2
Γ(1/4) , |ρc−ρ|<∼

(
t∆2

1

)1/2
1

π
√
AB

exp

(
−Sc

t

)
, ρ−ρc >∼

(
t∆2

1

)1/2

, (72)

where

Sc =
(
∆1

√
1+ρ−∆2

√
ρ
)2

Θ(ρ− ρc) , ρc = ∆2
1 ,

A = 2∆1

√
1+ρ

(
∆2

√
ρ−∆1

√
1+ρ

)
, B = 2∆1

√
ρ
(
∆2

√
1+ρ−∆1

√
ρ
)
, (73)

and the main probability corresponds to the second result in (72). In the region t≫ ∆2
1 one has

P (ρ) =


1

t
exp

(
−ρ
t

)[
1− ∆2

1

2t
− ∆2

1ρ

t
+

∆2
1∆

2
2ρ(1+ρ)

2t2

]
, ρ(1+ρ)<∼ t2/∆2

1

1

π
√
AB

exp

(
−Sc

t

)
, ρ(1+ρ) >∼ t2/∆2

1

, (74)

and the normalization integral is determined by the first asymptotics. Evolution of the distribution for
∆2

1 ≪ 1 is shown in Fig.5,a. At small t it reduces to the smearing of singularities of the distribution (8),

4 For this, strictly speaking, one should average (32) over the n variations of order 1/δ.
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while in the limit of large t the value P (ρ) at ρ = 0 tends to one of the distribution P̄ (ρ) and the whole
form of the distribution is close to the latter.
In the case ∆2

1 ≫ 1, three regions are actual, t ≪ 1, 1 ≪ t ≪ ∆2
1 and t ≫ ∆2

1. In the first of them one
has results

P (ρ) =



√
1

π∆2
1t

exp
(
− ρ

2t

)
, ρ <∼ t

1

π

√
1

ρ(ρc−ρ)
, t <∼ ρ , ρc−ρ >∼

(
t∆2

1ρ
)1/2

1

2π2

√
π

2ρ (t∆2
1ρ)

1/2
Γ(1/4) , |ρc−ρ|<∼

(
t∆2

1ρ
)1/2

1

π
√
AB

exp

(
−Sc

t

)
, ρ−ρc >∼

(
t∆2

1ρ
)1/2

, (75)

which are analogous to (72) and correspond to smearing of singularities of the distribution (8); the main
probability corresponds to the second asymptotics. In the region 1 ≪ t≪ ∆2

1 we obtain

P (ρ) =



√
1

π∆2
1t

exp
(
− ρ

2t

)
, ρ <∼ 1

1

π2

√
π

ρ∆2
1t

ln ρ , 1<∼ ρ <∼ t

1

π2

√
π

ρ∆2
1t

ln t , t <∼ ρ <∼∆2
1/t

1

2π2

√
π

ρ∆2
1t

ln
∆2

1t

ρ
exp

(
−Sc

t

)
, ∆2

1/t <∼ ρ <∼∆2
1t

1

π
√
AB

exp

(
−Sc

t

)
, ρ >∼∆2

1t

(76)

while in the region t≫ ∆2
1

P (ρ) =



1

t
exp

(
−ρ
t

)[
1− ∆2

1

2t
− ∆2

1ρ

t
+

∆2
1∆

2
2ρ(1+ρ)

2t2

]
, ρ <∼ t/∆2

1

1

π2

√
π

ρ∆2
1t

ln
∆2

1ρ

t
, t/∆2

1
<∼ ρ <∼ t

1

2π2

√
π

ρ∆2
1t

ln
∆2

1t

ρ
exp

(
−Sc

t

)
, t <∼ ρ <∼∆2

1t

1

π
√
AB

exp

(
−Sc

t

)
, ρ >∼∆2

1t

(77)

In both cases the main probability is related with two last asymptotic results. The characteristic feature
of (76) and (77) is existence of the quick exponent (exp(−ρ/2t) or exp(−ρ/t)) for small ρ and the slow
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exponent exp(−ρ/∆2
1t) for large ρ, while the power

law behavior P (ρ) ∝ ρ−1/2 is valid for intermediate
ρ, apart of the logarithmic corrections. Evolution of
the distribution for ∆2

1 ≫ 1 is shown in Fig.5,b.
In the above discussion we had in mind that re-

sults depend on |∆1| (which can be tested by the
change φ → φ + π in Eqs.70, 71) and ∆1 can be
consider as positive without the loss of generality.
In addition, we assumed that the distribution (69)
is given axiomatically and did not discuss its condi-
tions of applicability: it allows to understand better,
how P (ρ) is transformed due to ideal leads. In fact,
the distribution (69) corresponds to solution of equa-
tion (2) only for ρ <∼ 1, which restricts the physical
actuality of (76), (77) by the condition ρ <∼∆2

1.
In the log-normal regime, arising for t ≫ 1, one

should take P̄ (ρ) in the form (5) with γ = 0. Since
the typical values of ρ are large, we can set ρ′ =
ρK(φ, θ) in Eq.66, where

K(φ, θ) = cos2 θ + (∆1 sinφ+∆2 sin θ)
2
. (78)

Substitution to (5), (66), (69) gives

P (ρ, φ, θ) =
1

(2π)2
1

ρK
√
4πt

exp

{
− (lnKρ− t)2

4t

}
≈

≈ 1

(2π)2
1

ρ
√
4πt

exp

{
− (ln ρ− t)2

4t

}
·

·
[
1

K
− 2(ln ρ− t) lnK

4tK

]
, (79)

where expansion in 1/t is produced, using the fact
that (ln ρ− t) ∼

√
t for the bulk of the distribution.

Integrating over φ and θ, we set

π∫
−π

dφ

2π

π∫
−π

dθ

2π

1

K(φ, θ)
≡ 1

K0
,

π∫
−π

dφ

2π

π∫
−π

dθ

2π

lnK(φ, θ)

K(φ, θ)
≡ lnK1

K0
. (80)

Then conservation of probability requires the condi-
tion K0 = 1, under which P (ρ) can be written in the
form

P (ρ) =
1

(2π)2
1

ρ
√
4πt

exp

{
− (lnK1ρ− t)2

4t

}
. (81)

The equality K0 = 1 is indeed valid, as one can
verify by a direct calculation of the integral. We see

Figure 8: Parameter K1 as function of ∆1.

that the ideal leads do not change the parameters
of the log-normal distribution and only renormalize
the absolute scale of ρ, which is determined by the
parameter K1 (Fig.8):

K1 =

{
1−∆2

1/2 , ∆1 ≪ 1
const/∆2

1 , ∆2
1 ≫ 1

, (82)

where the constant is numerically close to 4.
In the critical region for sufficiently small n we can

begin with Eq.38, which determines the distribution
P̄ (ρ, φ, θ) in the form (39). A transformation of vari-
ables (64) results in the change S → S(∆2−∆1)
in (38),(39) and renormalization (6) of the absolute
scale of conductance with A = 1/(∆2−∆1)

2.

7. Evolution equation for P (ρ) in the
presence of the ideal leads

According to Sec.3, the transfer matrix T for a
succession of point scatterers and the ”natural” ideal
leads (Fig.2,a) has a form (22); the corresponding
parameters ϵs will be denoted as ϵ̄s. In the presence
of foreign leads (Fig.2,b) the system is described by
the transfer matrix T̃ = TaTTb. Inserting the prod-
uct TbTa = 1 between each two multipliers of (22),
one has

T̃ (n) = T̃ϵ0 T̃δ1 T̃ϵ1 T̃δ2 T̃ϵ2 . . . T̃δn T̃ϵn , (83)

where

T̃ϵs = Ta Tϵs Tb , T̃δ = Ta Tδ Tb . (84)

In the allowed band the difference between T̃ϵs and
Tϵs is reduced to renormalization ϵ̄s → ϵs = ϵ̄sk̄/k,
which has a simple physical sense. Let represent
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the initial system (Fig.9,a) as a succession of similar
scatterers (Fig.9,b), creating the potential well for
each point scatterer with the width tending to zero.
Then the parameter ϵ̄s = Vs/2k̄a0, defined for the
Fermi momentum k̄ of the system, is replaced by
the parameter ϵs = Vs/2ka0, containing the Fermi
momentum k in the ideal leads. As for T̃δ, it is the
transfer matrix of the potential barrier, separating
two point scatterers in Fig.9,b:

T̃δ =

(
cos δ − i∆2 sin δ i∆1 sin δ

−i∆1 sin δ cos δ + i∆2 sin δ

)
≈

≈
(

1− i∆2δ i∆1δ
−i∆1δ 1 + i∆2δ

)
, (85)

where ∆1 and ∆2 are determined by Eq.9, if one set
k̄ = κ. The situation in the forbidden band (Fig.2,c)
differs only by the fact, that the height of barriers in
Fig.9,b prevails the Fermi level, while T̃δ is obtained
from Eq.85 by the replacement of k̄ by iκ

T̃δ =

(
chδ − i∆1shδ i∆2shδ
−i∆2shδ chδ + i∆1shδ

)
≈

≈
(

1− i∆1δ i∆2δ
−i∆2δ 1 + i∆1δ

)
. (86)

Let describe the potential barrier by the transfer ma-
trix of the general form

T̃δ =

(
A B
B∗ A∗

)
=

( √
1+∆2eiα ∆e−iβ

∆eiβ
√
1+∆2e−iα

)
,

(87)
close to the unit one (α, ∆ ≪ 1); it has eigenvalues
e±δ, where δ2 = ∆2 − α2. According to (83), T̃ (n)

can be expressed as T̃ (n−1) multiplied by T̃δT̃ϵn . Ac-
cepting T̃ (n−1) in the form (12), one has

T̃
(n)
12 =

√
1+ρ eiφ(B+iϵC)+

√
ρ eiθ(A∗−iϵC∗) , (88)

where C = B−A. Squaring the modulus of (88), we
have the value of ρ̃, corresponding to T̃ (n)

ρ̃ = ρ+D
√
ρ(1+ρ) + ϵ2(1+2ρ) , (89)

where

D = 2∆cos (ψ+β)− 2ϵ sinψ − 2ϵ2 cosψ , (90)

ψ = θ − φ , (91)

and we retained the terms of the first order in δ and
the second order in ϵ. Expression (89) is analogous

Figure 9: The physical sense of the ϵs renormalization con-
sists in representation of the initial system (a) as a succession
of similar scatterers (b). In the latter case the potential well
is created for each point scatterer, whose width tends to zero.

to Eq.(A.2) of the paper [12] and subsequent calcula-
tions follow to Appendix A of this paper. As a result,
we obtain Eq.3 with parameters (we set a0 = 1)

α̃ =
1

2
D2 , γ1α̃ = ϵ2 − 1

2
D2 , γ2α̃ =

1

2
D , (92)

and substitution of (90) gives

α̃ = 2ϵ2sin2 ψ , γ1α̃ = ϵ2
(
1− 2sin2 ψ

)
,

γ2α̃ = ∆cos (ψ+β)− ϵ2cosψ , (93)

where β = −π/2 in the actual case; another values
of β occur in the presence of the δ-function potential
on interfaces.
Equation (3) with parameters (93) allows to an-

alyze the special situations with ϵ = ϵ̄, actual for
Sec.6. In the deep of the allowed band and k = k̄
we have ∆1 = 0 and ∆ = 0 (see (85),(87)); in the
case of the uniform distribution for ψ, Eq.93 gives
α̃ = ϵ2, γ1 = 0, γ2 = 0, in agreement with the re-
sults of Secs.4, 5. Hence, the uniform distribution
for ψ obtained in Sec.3 for n <∼ 1/ϵ2 retains also for
n >∼ 1/ϵ2. In the deep of the forbidden band and for
k = κ one has ∆1 = 0 and ∆ = δ (see (86),(87));
the results α̃ = 2ϵ2, γα̃ = δ, obtained in Secs.4, 5,
agree with (93), if localization of ψ near π/2 is ac-
cepted; such localization was established in Sec.3 for
n<∼1/ϵ2 and retains for n>∼1/ϵ2. In the critical region

∆1 ≈ ∆2 and ∆ ∼ δ, so the results α̃ ∼
(
ϵ2δ2

)1/3
,

γ = γ1 + γ2 ∼ 1 of Sec.4, 5 agree with (93) in the
case of localization of ψ in the region of small val-

ues ∼
(
δ/ϵ2

)1/3
, in accordance with the analysis of

Sec.3.

8. Evolution of the mean value of ρ.
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Evolution of ⟨ρ⟩ allows a complete description and illustrates the influence of the ideal leads for the
arbitrary system length L. The relation T̃ (n) = T̃ (n−1)T̃δT̃ϵn has the following form in terms of the matrix
elements

T̃
(n)
11 = (1+ iα− iϵn) T̃ (n−1)

11 +(−i∆+ iϵn) T̃
(n−1)
12 , T̃

(n)
12 = (i∆− iϵn) T̃ (n−1)

11 +(1− iα+ iϵn) T̃ (n−1)
12 , (94)

where we linearized in α, ∆ and set β = −π/2. Introducing notations for the second moments

z
(n)
1 =

⟨∣∣∣T̃ (n)
11

∣∣∣2⟩ , z
(n)
2 =

⟨
T̃

(n)
11 T̃

(n)∗
12

⟩
, z

(n)
3 =

⟨
T̃

(n)∗
11 T̃

(n)
12

⟩
, z

(n)
4 =

⟨∣∣∣T̃ (n)
12

∣∣∣2⟩ , (95)

we have the system of difference equations
z
(n)
1

z
(n)
2

z
(n)
3

z
(n)
4

 =


1 + ϵ2 i∆− ϵ2 −i∆− ϵ2 ϵ2

−i∆+ ϵ2 1 + 2iα− ϵ2 −ϵ2 −i∆+ ϵ2

i∆+ ϵ2 −ϵ2 1− 2iα− ϵ2 i∆+ ϵ2

ϵ2 i∆− ϵ2 −i∆− ϵ2 1 + ϵ2




z
(n−1)
1

z
(n−1)
2

z
(n−1)
3

z
(n−1)
4

 , (96)

whose solution is exponential, z
(n)
i ∼ λn, and λ is an eigenvalue of the matrix; substitution λ = 1+x leads

to the equation
x
[
x
(
x2 + 4α2 − 4∆2

)
− 8ϵ2(∆− α)2

]
= 0 , (97)

which has the solution x = 0 and three nontrivial roots. The latter coincide with roots of Eq.44 and do
not depend on the ideal leads, since δ2 = ∆2 − α2 and

8ϵ2(∆− α)2 = 8ϵ2δ2 (∆2 −∆1)
2
= 8ϵ̄2δ2 = 2W 2 . (98)

Finding the eigenvectors of matrix (96), we have the general solution for z
(n)
i

z
(n)
1

z
(n)
2

z
(n)
3

z
(n)
4

 = C0


−1
0
0
1

 +
3∑

i=1

Ci


1

e2(xi)
e3(xi)

1

 exp (xin) , (99)

where x1, x2, x3 are nontrivial roots of (97), and

e2(x) =
Ax+ B
p(x)

, e3(x) =
A∗x+ B∗

p(x)
,

A = 2ϵ2 − 2i∆ , B = 4α∆+ 4iϵ2(α−∆) , (100)

p(x) = x2 + 2ϵ2x+ 4α2 .

Choosing the unit transfer matrix as the initial condition, we have z
(0)
1 = 1, z

(0)
2 = z

(0)
3 = z

(0)
4 = 0, which

allows to establish the coefficients Ci. Since z
(n)
4 gives immediately ⟨ρ⟩, then

⟨ρ⟩ = −1

2
+

(x2−x3) p(x1)
2Q

ex1n − (x1−x3) p(x2)
2Q

ex2n +
(x1−x2) p(x3)

2Q
ex3n , (101)

where
Q = x21 (x2−x3)− x22 (x1−x3) + x23 (x1−x2) . (102)

The result (101) has the general character, since no approximations were made in its derivation. For large
n one of the exponents is dominated, and a situation is multiplicative (Sec.1). For small n the exponents
can be extended in the series, recovering the Ohmic regime ρ ∝ n.
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In the localized regime (δ ≫ ϵ̄2), the nontrivial
roots of Eq.97 have a form

x1 = 2δ + ϵ̄2, x2 = −2ϵ̄2, x3 = −2δ + ϵ̄2, (103)

and

⟨ρ⟩ = −1

2
+

∆2
2

4

(
ex1n + ex3n

)
− ∆2

1

2
ex2n . (104)

For large n the term ex1n is dominated, confirming
renormalization of ρ by the factor ∆2

2, indicated in
Eq.6; the change of the n origin (see the end of Sec.5)
is essential only for n <∼ 1/δ.
In the metallic regime one makes the change δ →

iδ, ϵ→ −iϵ and considers the limit δ ≫ ϵ̄2; then

x1 = 2ϵ̄2, x2 =−ϵ̄2+2iδ , x3 =−ϵ̄2−2iδ , (105)

and

⟨ρ⟩ = −1

2
+

∆2
2

2
e2ϵ̄

2n − ∆2
1

2
e−ϵ̄2n cos 2nδ , (106)

which for the ”natural” leads (when ∆1 = 0) gives
the well-known result [1, 2, 15, 16, 17]

⟨ρ⟩ = 1

2

(
e2ϵ̄

2n − 1
)
. (107)

For finite ∆1, the oscillations arise whose period
is determined by the de Broglie wavelength (since
2nδ = 2k̄L). Their origin is clear, since for ϵ̄ = 0 the
Landauer resistance ρ is determined by the transfer
matrix (85) of the potential barrier,

ρ = ∆2
1 sin

2 k̄L , (108)

which becomes transparent, if the system length
corresponds to the semi-integer number of the de
Broglie wavelengths (analogously to blooming in op-
tics). For finite ϵ̄, the oscillations become attenu-
ating, but remain completely observable: the mean
value of ρ is representative in the metallic regime,
since its fluctuations are relatively small.
In the critical region (δ ≪ ϵ̄2) one has

x1 = 2
(
ϵ̄2δ2

)1/3
, x2 = x1e

2πi/3, x3 = x1e
−2πi/3,
(109)

and

⟨ρ⟩ = 1

6

[
ex1n + 2e−x1n/2 cos

(√
3

2
x1n

)
− 3

]
+

+
ϵ2

3x1

[
ex1n − 2e−x1n/2 cos

(√
3

2
x1n+

π

3

)]
+

(110)

+
2α2

3x21

[
ex1n − 2e−x1n/2 cos

(√
3

2
x1n− π

3

)]
.

If the critical region is approached from the allowed
band, then the ”natural” ideal leads can be used
(Fig.2,a), when ϵ = ϵ̄ and the second term is domi-
nated in Eq.110. Expansion in x1n gives ⟨ρ⟩ = ϵ2n
in agreement with the transfer matrix (38), and es-
tablishes its range of applicability as n <∼ 1/x1.
The result (110) remains finite in the limit k̄ → 0,

when

ϵ2

3x1
=

(
2W 2

)2/3
24k2a20

,
2α2

3x21
=

2k2a20

3 (2W 2)
2/3

,

x1 =
(
2W 2

)1/3
. (111)

Analogously to (106), the attenuating oscillations
take place, whose amplitude depends essentially on
the Fermi momentum k in the ideal leads: it is of the
order of unity for ka0 ∼W 2/3 (when three terms in
Eq.110 are of the same order), but increases for small
k (when the second term is dominated), as well as
for large k (when the third term is prevailed). The
period of the oscillations is determined by the ampli-
tude of the random potential, while the phase shift
changes from π/3 till −π/3 when k is increased.
In fact, the observable picture is more compli-

cated. In the critical region fluctuations of ρ are
large, and the form of the distribution function es-
sentially depends on the several first moments 5.
Meanwhile, the higher moments of ρ are also oscil-
lating with the period of the same order: it is related
with the complex roots of Eq.48 and analogous equa-
tions for higher moments 6. As a result, the com-
plicated interference of incommensurate oscillations
occurs, so the resistance ρ of the specific sample un-
dergoes aperiodic oscillations. Such oscillations were

5 Let us remind that the Fourier transform of P (ρ) gives

the characteristic function F (t) =
⟨
eiρt
⟩
, which is the gen-

erating function of moments, F (t) =
∑∞

n=0
(it)n ⟨ρn⟩ /n!. If

all moments of the distribution are known, then one can con-
struct F (t), while P (ρ) is given by the inverse Fourier trans-
form.

6 Comparison of (44) and (48) shows that the periods of
oscillations for ⟨ρ⟩ and ⟨ρ2⟩ differ by a factor 211/3. As
clear from Sec.4 (see Footnote 3), the right hand side of
the equation for x may contain only combinations δ2nϵ2m

with n ≥ m, of which only δ2nϵ2n ∼ W 2n remain finite
in the δ → 0 limit. Since for x ∼ δ ∼ ϵ2 all terms of
the equation have the same order of magnitude, the expo-
nent of growth x for ⟨ρn⟩ at δ = 0 satisfies the equation
x2n+1 = c1δ2ϵ2x2n−2 + c2δ4ϵ4x2n−5 + . . . , whose nontrivial

roots are of order
(
δ2ϵ2

)1/3
independently of n.
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Figure 10: The conductance G(B) of the thin Au wire [34]
in the magnetic field B undergoes the ”universal” fluctuations
of order e2/h due to a change of the impurity configuration
[25, 26]. Fluctuations of G(B) and G(B+∆B) are statistically
independent, if ∆B exceeds a certain characteristic scale [25,
26]. In spite of the random character, the fluctuation picture
is completely reproducible and reflects the specific realization
of the random potential (”magnetic fingerprints”).

observed in the magneto-resistance of thin wires [34]
(Fig.10) and have the close relation to the above dis-
cussion: the magnetic field, perpendicular to a wire,
creates the quadratic potential along it, which effec-
tively restricts the length of the system; so variation
of the magnetic field is analogous to the change of
L. In principle, Fig.10 is explained by the theoreti-
cal results of the papers [25, 26], but we are unaware
on attempts of description of the oscillations them-
selves.

Fig.11 shows the experimental results of the pa-
per [35], which demonstrate a possibility of obser-
vation of the entire distribution function of ρ or G,
as well as its moments. Independent impurity con-
figurations in the thin wire of Si-doped GaAs were
created by the periodic warming till the room tem-
perature, and then averaging over 50 configurations
were made. The results for the first two moments
of G indicate that the distribution function is not
stationary, but undergoes systematic variations, in
agreement with the above arguments.

9. Conclusion

The massive ideal leads which should be intro-
duced for the correct definition of the conductance
of finite systems have the essential influence on the
properties of the given sample. In the present pa-
per it was demonstrated on the simplest example of
1D systems. In the log-normal regime, this influ-
ence is reduced to the change of the absolute scale

Figure 11: Evolution of the first two moments of the con-
ductance G of the thin Si-doped GaAs wire under the change
of the magnetic field [35].

of conductance, but generally changes the whole dis-
tribution function. Under the change of the system
length L, the system resistance may undergo the
periodic or aperiodic oscillations. Variation of the
Fermi level induces the qualitative changes in the
conductance distribution, resembling the smoothed
Anderson transition.
The Economou–Soukoulis definition of conduc-

tance [3] refers to the composite system ”sam-
ple+ideal leads”, while its relation to the system un-
der consideration remains the open question. For
its solution, the introduction of semi-transparent
boundaries between the system and the ideal leads
was suggested in [11]. In the limit of the weakly
transparent boundaries, one has the universal equa-
tions, independent of the way how the contact re-
sistance of the reservoir is excluded [10] (since all
formulas of the Landauer type [2, 5, 6, 8, 9] re-
duces to the variant by Economou–Soukoulis [3, 4]),
which can be then extrapolated to transparency of
order unity. Such definition refers surely to the given
sample and provides the infinite conductance for the
ideal system. However, the absolute scale of conduc-
tance is defined only in the order of magnitude; this
point is not very significant (only the ratio of con-
ductances has a physical sense), but creates certain
difficulties in comparison with other results. As clear
from the present paper, the absolute scale of conduc-
tance depends on the ideal leads, and in any case is
a conditional quantity. To avoid its uncertainty, one
should give information on the properties of leads:
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for example, one can accept the ”Gold Standard” and recalculate all results to the leads made of gold.
According to Eq.2, the conductance distribution of an 1D system is determined by two parameters α̃L

and γ. Such two parameter description is the natural consequence of the one-parameter scaling hypothesis
[36], according to which the properties of a d-dimensional cubical system of size L are completely determined
by the ratio L/ξ, where ξ is the correlation length. Composing the quasi-1D system of size Ld−1Lz from
the cubical blocks of size L, one comes to conclusion that its conductance depends on the properties of
one block (L/ξ) and a number of blocks (Lz/L). For L = a0 the quasi-1D system becomes strictly one-
dimensional, but is also described by two parameters. One-parameter scaling in 1D systems is realized in
the deep of the allowed band (when equation (1) is valid) and approximately retains in the critical region 7;
its violation in the forbidden band is rather natural due to violation of the condition ξ ≫ a0. Necessity
of the two-parameter description of 1D systems was discussed in the paper [37] (see also [21]–[24])) and
recently it was actively used for description of the conductance distribution near the Anderson transition
[12, 38] in the framework of the Shapiro scheme [18].
Evolution of the distribution function P (ρ), as well as its moments, can be studied experimentally in

the spirit of the paper [35], where different impurity configurations in the given sample were created by its
warming to sufficiently high temperature.

Appendix 1. Evolution of moments for the coordinate transfer matrix

For the coordinate transfer matrix the following evolution equations are valid

zn+1 = (E − Vn)zn + yn , yn+1 = −zn , (A.1)

where zn = τ
(n−1)
12 , yn = τ

(n−1)
11 with the initial conditions z1 = 0, y1 = 1, or zn = τ

(n−1)
22 , yn = τ

(n−1)
21

with the initial conditions z1 = 1, y1 = 0. For the second moments one has z2n+1

zn+1yn+1

y2n+1

 =

 E2 +W 2 2E 1
−E −1 0
1 0 0

  z2n
znyn
y2n

 , (A.2)

and suggesting their exponential behavior λn with λ = 1 + x, obtains the equation for x

x3 − x2(E2 − 4)− x(E2 − 4) =W 2(2 + 3x+ x2) (A.3)

Setting E2 − 4 = 4δ2, W 2 = 4ϵ2δ2 and taking the limit δ → 0, ϵ → 0, δ/ϵ2 = const, one can verify that
(A.3) coincides with (44).
Analogously, for the fourth moments one has a system of equations

z4n+1

z3n+1yn+1

z2n+1y
2
n+1

zn+1y3n+1

y4n+1

 =


E4 + 6E2W 2 4E3 + 12EW 2 6E2 + 6W 2 4E 1
−E3 − 3EW 2 −3E2 − 3W 2 −3E −1 0
E2 +W 2 2E 1 0 0

−E −1 0 0 0
1 0 0 0 0




z4n
z3nyn
z2ny

2
n

zny3n
y4n

 (A.4)

Suggesting that the moments behave as λn with λ = 1 + x, we have the equation for x

−x5 + x4(E2 + 1)(E2 − 4) + x3(E2 − 4)
(
−E4 + 5E2 + 1

)
− x22E2(E2 − 4)2 − xE2(E2 − 4)2+

+W 2
[
−6E2(E2 − 4)− 15xE2(E2 − 4) + x2(−12E4 + 60E2 − 6)+

+x3(−3E4 + 30E2 − 9) + x4(6E2 − 3)
]
= 0 (A.5)

where terms of the higher order in W 2 are omitted. Setting E2 − 4 = 4δ2, W 2 = 4ϵ2δ2 and retaining the
main terms at the indicated limiting transition, we come to Eq.48.

7 In this case the parameter γ ∼ 1 and does not have the essential evolution.
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Appendix 2. The asymptotic forms of the
integral (70).

Using the evenness of the integrand of (70) in vari-
ables φ̃ = φ−π/2, θ̃ = θ−π/2 and setting x = sinφ,
y = sin θ, we have

P (ρ) =
1

π2 t

1∫
−1

dx√
1− x2

1∫
−1

dy√
1− y2

exp

{
−S(x, y)

t

}
,

(A.6)

S(x, y) =
(
∆1

√
1+ρ x+∆2

√
ρ y
)2

+ ρ(1−y2) .

Configuration of saddle points is essentially different
for ρ < ρc and ρ > ρc, where ρc = ∆2

1. In the
first case the maximum of the exponent is reached
at x = xc, y = −1 or x = −xc, y = 1, where xc =
∆2

√
ρ/∆1

√
1+ρ, while in the second case at x = 1,

y = −1 or x = −1, y = 1. Let δx and δy are
deviations of x and y from the extremum point. For
ρ < ρc we retain in S(x, y) the quadratic term in δx
and the linear term in δy, setting x = xc, 1 − y2 =
2δy in the pre-exponential; then

P (ρ) =
1

π

√
1

ρ(ρc−ρ)
, (A.7)

which is the limiting form of the distribution for t→
0.
For ρ > ρc we have

S(x, y) = Sc+Aδx+Bδy+C (δx− xcδy)
2−ρ(δy)2 ,

(A.8)
where Sc, A, B are defined in Eq.73 and C = ∆2

1(1+
ρ). For large ρ the linear terms in δx, δy are sufficient
in S(x, y) and in radicals; then

P (ρ) =
1

π

√
1

AB
exp

(
−Sc

t

)
, (A.9)

which is the last asymptotics in (72), (74)–(77).
The results (A.7), (A.9) are not applicable for ρ

close to ρc, since the coefficient A turns to zero at
ρ = ρc. Setting δx̃ = δx − xcδy and omitting the
last term in (A.8), we have

S(x, y) = Sc +Aδx̃+ C (δx̃)
2
+ 2ρδy . (A.10)

For A2 ≪ Ct fluctuations of δx̃ are determined by
the quadratic term, and Aδx̃ can be omitted; then
in the small vicinity of ρc

P (ρ) =
1

2π

√
1

2πρ

Γ(1/4)

(Ct)1/4
, |ρ−ρc|<∼ (Ct)

1/2
,

(A.11)

so divergency at ρ → ρc is eliminated and the third
asymptotics in (72) and (75) is recovered. Under
the indicated condition, this result remains valid for
ρ < ρc, when A is negative, but small in modulus. In
fact, Eq.(A.11) takes place in the cases t≪ ∆2

1 ≪ 1
and t ≪ 1 ≪ ∆2

1, when the fluctuation δy ∼ t/ρ is
small in comparison with δx̃ ∼

√
t/C, so δx̃ ≈ δx

and one can set 1 − x2 = 2δx̃, 1 − y2 = 2δy in
the pre-exponential. The inverse situation is realized
in the case ∆2

1 ≫ 1, t ≫ 1, when δy ≫ δx̃ and
1 − x2 ≈ 2δx = 2δx̃ + 2xcδy ≈ 2δy in the pre-
exponential; then we come to the result

P (ρ) =
1

2π2

√
π

ρ∆2
1t

ln
∆2

1t

ρ
exp

(
−Sc

t

)
,

ρc/t <∼ ρ <∼ ρct , (A.12)

determining the penultimate asymptotics in (76),
(77). The condition A2 ≪ Ct corresponds to
(ρ − ρc)

2 ≪ ∆2
1ρt, which for t ≫ 1 is reduced to

the given in (A.12). If (A.11) is valid in the small
vicinity of ρc, the wide range of validity arises for
(A.12).
For small ρ the saddle point approximation is not

applicable, and the initial form of (70) is convenient.
If t ≪ ∆2

1, then saddle point integration over φ is
still possible and leads to expression

P (ρ) =
1

π2 t

π/2∫
−π/2

dθ

√
πt

∆2
1 − ρ+∆2

2ρ sin2 θ
·

· exp
{
−ρ
t
sin2 θ

}
. (A.13)

For ∆2
1 ≪ 1 one has ∆2 ≈ 1; if ρ ≪ t, then only

∆2
1 can be retained in the denominator, while inte-

gration over θ can be produced by expansion of the
exponent

P (ρ) =
1

π

√
π

∆2
1t

exp
(
− ρ

2t

)
, ρ≪ t , (A.14)

which is the first result in (72), (75), (76). For ρ >∼ t
one returns to the saddle point results (A.7), (A.9),
(A.10).
In the case ∆2

1 ≪ 1 and t≫ ∆2
1 the region of small

ρ is determined by the condition ρ(1 + ρ) ≪ t2/∆2
1

and the integral (70) is calculated by expansion over
S(ρ, φ, θ)/t till the second order, which gives the first
result in (74), (77); for the opposite inequality we
have A ≈ B ≈ 2∆1∆2

√
ρ(1 + ρ) ≫ t and A2 ≫ Ct,

which is sufficient for validity of (A.9).
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In the case ∆2
1 ≫ 1 and t ≪ ∆2

1 Eq.(A.13) re-
mains valid, but its analysis is more complicated.
For t ≪ 1 we have the familiar situation: in the in-
terval ρ <∼ t one can retain ∆2

1 in the denominator
and obtain (A.14), while in the interval ρ >∼ t the
saddle point results (A.7), (A.9), (A.10) are valid.
For 1 ≪ t ≪ ∆2

1 the result (A.14) is valid only for
ρ<∼ 1. In the interval 1<∼ ρ<∼ t the term ∆2

2ρ sin
2 θ is

dominated in the denominator of (A.13), while the
quantity ∆2

1 − ρ is necessary only for cutoff of the
logarithmic divergency:

P (ρ) =
1

π2

√
π

ρ∆2
1t

ln
∆2

1ρ

ρc − ρ
, 1<∼ ρ<∼ t . (A.15)

In the interval t <∼ ρ <∼ ρc the exponent restrict in-
tegration in (A.13) by values θ2 <∼ t/ρ, so ∆2

1ρ in
(A.15) is changed by ∆2

1t. In fact, both results are
actual only for ρ≪ ρc, since in the interval ρ>∼ ρc/t
divergency at ρ→ ρc is eliminated due to nonlinear
terms in (A.8) and the result (A.12) is valid; so we
have ln ρ for 1<∼ ρ <∼ t and ln t for t <∼ ρ <∼ ρc/t, as is
reflected in (76).
In the case ∆2

1 ≫ 1 and t ≫ ∆2
1, expansion over

S(ρ, φ, θ)/t is possible in the interval ρ <∼ t/∆2
1 and

leads to the first result (77). In the interval ρ>∼ t/∆2
1

expression (A.13) is valid, where |∆2
1 − ρ| ≪ t,

∆2
2ρ ≫ t and the latter term is dominant in the

denominator; the logarithmic divergency is removed
due to restriction (∆2

2ρ/t) sin
2 θ >∼ 1, which is neces-

sary for the saddle point integration over φ and va-
lidity of (A.13). If ρ<∼ t, then the exponent in (A.13)
is not essential and the second result (77) holds. If
ρ >∼ t, then we have the saddle point situation and
validity of (A.12) and (A.9).
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