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Mechanism of Universal Conductance Fluctuations
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Universal conductance fluctuations are usually observed in the form of aperiodic oscillations in the magnetoresistance
of thin wires as a function of the magnetic field B. If such oscillations are completely random at scales exceeding
ξB , their Fourier analysis should reveal a white noise spectrum at frequencies below ξ−1

B
. Comparison with the

results for 1D systems suggests another scenario: according to it, such oscillations are due to the superposition of
incommensurate harmonics and their spectrum should contain discrete frequencies. An accurate Fourier analysis of
the classical experiment by Washburn and Webb reveals a purely discrete spectrum in agreement with the latter
scenario. However, this spectrum is close in shape to the discrete white noise spectrum whose properties are similar
to a continuous one.

Universal conductance fluctuations [1–4] are usu-
ally observed in the form of aperiodic oscillations
in the magnetoresistance of thin wires as a function
of the magnetic field B [5] (Fig. 1) (see [6, 7] for
review). According to the theory [1–4], the conduc-
tance G(B) at a given magnetic field B undergoes
fluctuations of the order of e2/h under the variation
of the impurity configuration; fluctuations in G(B)
and G(B +∆B) are statistically independent if ∆B
exceeds a certain characteristic scale ξB . It is rea-
sonable to expect that oscillations in G(B) are com-
pletely random at scales exceeding ξB . Then, their
Fourier analysis should reveal a white noise spectrum
(i.e., frequency-independent plateau) at frequencies
below ξ−1

B .

Comparison with the results for 1D systems [8]
suggests another scenario. A magnetic field perpen-
dicular to a thin wire creates a quadratic potential
along this wire [9], which effectively restricts the
length of the system L; hence, the variation of the
magnetic field is similar to the variation of L. The
resistance ρ of a one-dimensional system is a strongly
fluctuating quantity and the form of its distribution
function P (ρ) strongly depends on first several mo-
ments. Indeed, the Fourier transform of P (ρ) speci-
fies the characteristic function

F (t) =
〈

eiρt
〉

=

∞
∑

n=0

(it)n

n!
〈ρn〉 , (1)

which is the generating function of the moments
〈ρn〉. If all moments of the distribution are known,
the function F (t) can be constructed using them,
and the function P (ρ) is then determined by the in-

verse Fourier transform. If an increase in the mo-
ments 〈ρn〉 with n is not too fast, the contributions
of higher moments are suppressed by a factor of 1/n!,
whereas first several moments are significant. These
moments are oscillating functions of L,

〈ρ〉 = a1(L) + b1(L) cos(ω1L+ ϕ1), (2)
〈

ρ2
〉

= a2(L) + b2(L) cos(ω2L+ ϕ2)+

+b3(L) cos(ω3L+ ϕ3) , etc.,

where ak(L) and bk(L) are monotonic functions.
The reason is that the growth exponent for 〈ρn〉 is
determined by the (2n+1)th order algebraic equa-
tion (see Appendix), one of whose root is always real,
whereas the other roots are complex for energies in
the allowed band. Consequently, there are n pairs of
complex conjugate roots, which ensure the presence
of n frequencies in oscillations of 〈ρn〉. The frequen-
cies ωk are usually incommensurate, but their in-
commensurability vanishes in the deep of the allowed
band at weak disorder. According to this picture, os-
cillations in G(B) shown in Fig. 1 are determined by
the superposition of incommensurate harmonics and
their Fourier spectrum should contain discrete fre-
quencies. This picture is indirectly confirmed by the
experimental data obtained in [10] and cited in [8],
according to which the distribution function P (ρ) is
not stationary, but demonstrates systematic aperi-
odic variations. 1

It is clear from the above that the Fourier analysis
of the function G(B) makes it possible to establish

1 It can be established by contradiction: if P (ρ) were sta-
tionary, then all moments of conductance would be constant;
in fact, its two first moments reveal aperiodic oscillations.
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Figure 1: Magnetic field dependence of the conduc-
tance of the thin Au wire [5].

which of two scenarios is true. However, the depen-
dence G(B) shown in Fig. 1 cannot be used directly
because a sharp cutoff of experimental data results
in the appearance of slowly decaying oscillations in
its Fourier transform and chaotization of the spec-
trum 2. To obtain explicit results, it is necessary to
use an appropriate smoothing function.
Let the function f(x) be the superposition of dis-

crete harmonics and be real. Then,

f(x) =
∑

k

Ake
iωkx =

1

2

∑

k

[

Ake
iωkx +A∗

ke
−iωkx

]

,

(3)
where the frequencies ωk can be considered as pos-
itive without loss of generality. Then, the Fourier
transform of f(x) has the form

F (ω) = π
∑

k

[Akδ(ω + ωk) +A∗

kδ(ω − ωk)] , (4)

and its modulus

|F (ω)| = π
∑

k

|Ak| [δ(ω + ωk) + δ(ω − ωk)] (5)

depends only on the intensities of spectral lines and
does not contain information on phase shifts in the
corresponding harmonics. Since |F (ω)| is an even

2 Figure 14 in [5] shows the Fourier spectrum of a thin
wire in comparison with the spectrum of a small ring; the lat-
ter contains additional oscillations caused by the Aharonov–
Bohm effect. However, aperiodic oscillations were not dis-
cussed in this place and their spectrum, which is chaotic be-
cause of the sharp cutoff, was roughly approximated by the
authors in the form of the envelope of oscillations. This is
obvious from comparison with Figs. 12 and 13 in [5], where
chaotic oscillations are clearly seen.

Figure 2: (a) Function G(x) given by Eq. (9) and (b)
its Fourier transform g(ω) at (1) µ = 3.5, T = 0.125;
(2) µ = 3, T = 0.25; ( 3) µ = 2, T = 0.5; and ( 4)
µ = T ln 2, T = 0.8.

function, it is possible to consider only positive ω
values and to omit the first delta function in Eq.
(5).
Since the function f(x) can be experimentally

measured only in a certain finite x range, we in prac-
tice have

f(x) =
1

2

∑

k

[

Ake
iωkx +A∗

ke
−iωkx

]

G(x) , (6)

where the function G(x) is unity within the work-
ing range and zero beyond it; further, it will be
smoothed. Then, instead of Eq. (4), we obtain

F (ω) =
1

2

∑

k

[Akg(ω + ωk) +A∗

kg(ω − ωk)] , (7)

where g(ω) is the Fourier transform of G(x), which is
real for even function G(x). Thus, the restriction of
the working range leads to the replacement of delta
functions by spectral lines with finite widths. If dis-
crete frequencies are well separated and the function
g(ω) is strongly localized near zero, one can neglect
the overlapping of functions g(ω ± ωk) and write at
positive frequencies

|F (ω)|2 ≈
1

4

∑

k

|Ak|
2g2(ω − ωk) . (8)

It is preferable to use the function |F (ω)|2 (so-called
power spectral density [11]) because the integral of
this function over all frequencies is equal to the inte-
gral of f2(x) over all x values. Consequently, change
in the spectrum of f(x) at fixed rms fluctuations re-
sults in the redistribution of intensities between dif-
ferent frequencies at the conservation of the total
spectral power.
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It is easy to see that, to obtain a clear picture
in the case of a discrete spectrum, it is necessary
to have a possibly narrower shape of spectral lines
determined by g(ω), which can be achieved by the
appropriate choice of the function G(x). The gen-
eral strategy is determined by the properties of in-
tegrals of rapidly oscillating functions [12]. If the
function f(x) has discontinuity, its Fourier trans-
form decreases at high frequencies as 1/ω; if the
nth derivative is discontinuous, then F (ω) ∼ ω−n−1.
The Fourier transform of a smooth function f(x) is
calculated by shifting the contour of integration to
a complex plane and is determined by the nearest
singularity or saddle point, which leads to the de-
pendence F (ω) ∼ exp(−αω). If the regular function
is obtained by means of a weak smoothing of a sin-
gularity, the α value is small and the exponential
is manifested only at very high frequencies, whereas
the behavior corresponding to the singularity holds
in the remaining region. In our case, it is necessary
to smooth the discontinuity of G(x). It should be
clear that weak smoothing is inefficient, while strong
smoothing leads to small values of G(x) near the
boundaries of the working range and to loss of ex-
perimental information; so, a reasonable compromise
is required.
Let G(x) be the x-symmetrized Fermi function

G(x) =
1

1 + e(x−µ)/T + e(−x−µ)/T
=

=
1

1 + 2e−µ/T cosh(x/T )
, (9)

whose Fourier transform is given by the integral

g(ω) =

∞
∫

−∞

eiωx dx

b coshβx+ c
=

2π

bβsinhx0

sin(ωx0/β)

sinh(ωπ/β)
,

x0 = arccosh(c/b) . (10)

If x = B − µ0 is chosen in our case, experimental
data correspond to the interval |x| ≤ µ0 with µ0 = 4
(in units of tesla). We accepted µ = µ0 − 4T , which
ensures the small value G(µ0) ≈ 0.02 at boundaries
of the interval. As clear from Fig. 2, the behavior
g(ω) = 2 sinµω/ω characteristic of the sharp cut-
off prevails at small T values (lines 1 and 2). It
seems reasonable to choose µ = 2 and T = 0.5 (line
3); in this case, 50% of experimental data are effec-
tively used, while the lineshape is approximately the
same as in the case of µ = T ln 2, where x0 = 0,

g(ω) = 2πT 2ω/sinhπTω and oscillations disappear
completely (line 4).
The spectral analysis of experimental data (Fig. 1)

was produced by calculation of the Fourier integral
in the region |x| < µ0 with the indicated smooth-
ing function. The corresponding results are shown
in Fig. 3. The spectrum obviously consists of dis-
crete lines, which confirms the second scenario given
in beginning 3. However, the spectrum in the range
ω <∼ 2π/ξB (where ξB was estimated as the average
distance between neighboring maxima or minima in
Fig. 1) 4 is similar to discrete white noise: in a rough
approximation, the lines are equidistant and their in-
tensities are more or less the same. Since the sum
over frequencies is often approximated by an inte-
gral, discrete white noise does not differ in many
properties from continuous white noise. Let, for ex-
ample,

F (ω) = π
∑

k

[Akδ(ω + ωk) +A∗

kδ(ω − ωk)]H(ω) ,

(11)
where the frequencies ωk are equidistant (ωk = k∆),
the amplitudes Ak are the same in modulus (|Ak| =
A) and have completely random phases, while H(ω)
is an even function restricting the spectrum to the
range |ω|<∼ Ω. Then, determining f(x) by means of
the inverse Fourier transform, we obtain the corre-
lation function

〈f(x)f(x′)〉 =
1

2

∑

k

A2H2(ωk)e
iωk(x−x′) ≈

≈
1

2
A2∆−1h(x− x′) , (12)

where h(x) is the Fourier transform of H2(ω). If
the function H(ω) is smooth, h(x) decreases expo-
nentially at a scale of Ω−1 in agreement with the
diagrammatic results obtained in [1–4].
In fact, a thin wire is a quasi-1D system, where

the transverse motion is quantized, so a set of dis-
crete levels ǫ0s arise. If the longitudional move-
ment along the x axis is taken into account, the
levels transform to 1D subbands with the spectra

3 The number and intensity of lines suggest that four first
moments of ρ are really important, the fifth moment is less
significant, while the higher moments are practically irrele-
vant.

4 Under processing, Fig. 1 was strongly magnified and dig-
itized by hand. It was revealed that sharp spikes in Fig. 1
are due to vertical dashes indicating uncertainty of the data,
whereas the experimental dependence is in fact smooth.
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Figure 3: Fourier analysis of the experimental data
shown in Fig. 1 with the smoothing function (9) at
µ = 2, T = 0.5.

ǫs(kx) = ǫ0s + k2x/2m, whose states are filled be-
low the Fermi level. The magnetic field B affects
most strongly the upper filled subband with the
minimal Fermi energy ǫF , restricting the movement
in it by the length L determined by the condition
mω2

BL
2 ∼ ǫF , where ωB = eB/mc. The system con-

ductance is determined by the sum of the subband
conductances, whose oscillations are exponentially
decreasing for large L. The main contribution to os-
cillations is given by the upper subband where the
length L is minimal. The amplitude of oscillations
has the order of e2/h, in agreement with experiment
and diagrammatic estimates [1–4].
In conclusion, the results obtained in this work

reconcile two alternative scenarios described at the
beginning. On the one hand, the spectrum is dis-
crete, confirming the second scenario, where aperi-
odic conductance oscillations are due to the superpo-
sition of incommensurate harmonics. On the other
hand, the spectrum as a whole resembles discrete
white noise, which is close in properties to continu-
ous white noise. Universal conductance fluctuations
are discussed in a lot of works (see [13–33] and refer-
ences therein), and it would be interesting to process
another experimental data in the spirit of the present
paper.

Appendix. Derivation of Eq. (2)

Let us consider the one-dimensional Anderson
model specified by the discrete Schrödinger equation

Ψn+1 +Ψn−1 + VnΨn = EΨn , (A.1)

where E is the energy measured from the center of
the band, Vn are independent random variables with
zero mean and variance W 2, while the hopping in-
tegral is taken to be unity. Rewriting Eq. (A.1) in
the form
(

Ψn+1

Ψn

)

=

(

E − Vn −1
1 0

) (

Ψn

Ψn−1

)

, (A.2)

and performing n iterations, one can easily obtain

(

Ψn+1

Ψn

)

=

(

τ11 τ12
τ21 τ22

) (

Ψ1

Ψ0

)

. (A.3)

Here, the matrix τ = ||τij || is the product of n ma-
trices of the form (A.2) and satisfies an obvious re-
currence relation, which can be represented in terms
of matrix elements,

yn+1 = (E − Vn)yn + zn , zn+1 = −yn , (A.4)

where yn = τ
(n−1)
12 , zn = τ

(n−1)
11 or yn = τ

(n−1)
22 ,

zn = τ
(n−1)
21 . It is substantial that y(n−1) and z(n−1)

do not contain the quantity Vn and can be averaged

independently of it. Setting w
(1)
n = 〈y2n〉, w

(2)
n =

〈ynzn〉, w
(3)
n = 〈z2n〉 for the second moments, one

can easily come to the equation







w
(1)
n+1

w
(2)
n+1

w
(3)
n+1






=





E2 +W 2 2E 1
−E −1 0
1 0 0











w
(1)
n

w
(2)
n

w
(3)
n






,

(A.5)

Its solution is exponential, w
(i)
n ∼ λn, where λ is an

eigenvalue of the matrix. Setting λ = 1+x, it is easy
to obtain an equation for x, which has the following
form in the limit of the continuous Schrödinger equa-
tion:

x
(

x2 + 4E
)

= 2W 2 (A.6)

where E is the energy measured from the band edge.
The equation for the growth exponent of the fourth
moments can be obtained similarly:

x
(

x2 + 4E
) (

x2 + 16E
)

= 42W 2x2+96W 2E . (A.7)

The structure of equations for arbitrary 2nth mo-
ments can be established using argumentation pre-
sented in Section 4 in [8], where a slightly different
formalism was used. Deep in the allowed and forbid-
den bands, only diagonal elements can be retained
in matrices (43) and (47) in [8] and their analogs
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for higher moments. As a result, we arrive at the
equation

2n
∏

k=0

[

x+ 2(n−k)δ −Bk
nǫ

2
]

= O(ǫ4) , (A.8)

where ǫ2 = W 2/4E , δ2 = −E , Bk
n = n(2n−1)+3k(k−

2n). A similar equation near the band edge

x2n+1 =

kmax
∑

k=0

CkW
2kx2n+1−3k , kmax =

[

2n+ 1

3

]

(A.9)
follows from observation that all terms of the equa-
tion have the same order of magnitude at x ∼ δ ∼ ǫ2

and only combinations δ2nǫ2m with n ≥ m are al-
lowed, among which only δ2nǫ2n ∼ W 2n remain fi-
nite at δ → 0.
Landauer resistance ρ is determined by a

quadratic form of the matrix elements τij [8]. Con-
sequently, growth exponents for 〈ρn〉 coincide with
those for the 2nth moments of τij . An expression
for 〈ρn〉 contains a linear combination of the corre-
sponding exponents, which leads to Eq. (2) if the
complex-valued exponents are taken into account.
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