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One-dimensional disordered systems with a random potential of a small amplitude and short-range correlations
are considered near the initial band edge. The evolution equation is obtained for the mutual ditribution P (ρ, ψ)
of the Landauer resistance ρ and the phase variable ψ = θ − ϕ (θ and ϕ are phases entering the transfer matrix),
when the system length L is increased. In large L limit, the equation allows separation of variables, which provides
the existence of the stationary distribution P (ψ), determinative the coefficients in the evolution equation for P (ρ).
The limiting distribution P (ρ) for L → ∞ is log-normal and does not depend on boundary conditions. It is
determined by the ’internal’ phase distribution, whose form is established in the whole energy range including the
forbidden band of the initial crystal. The random phase approximation is valid in the deep of the allowed band,
but strongly violated for other energies. The phase ψ appears to be the ’bad’ variable, while the ’correct’ vaiable is
ω = −ctgψ/2. The form of the stationary distribution P (ω) is determined by the internal properties of the system
and is independent of boundary conditions. Variation of the boundary conditions leads to the scale transformation
ω → sω and translations ω → ω+ω0 and ψ → ψ+ψ0, which determinates the ’external’ phase distribution, entering
the evolution equations. Independence of the limiting distribution P (ρ) on the external distribution P (ψ) allows to
say on the hidden symmetry, whose character is revealed below.

1. Introduction

For description of 1D disordered systems it is convenient to use the transfer matrix T , relating the
amplitudes of plane waves on the left (Aeikx +Be−ikx) and on the right (Ceikx +De−ikx) of a scatterer,

(

A
B

)

= T

(

C
D

)

. (1)

In the presence time-reversal invariance, the matrix T can be parametrized in the form [1]

T =

(

1/t −r/t
−r∗/t∗ 1/t∗

)

=

(√
ρ+1 eiϕ

√
ρ eiθ√

ρ e−iθ
√
ρ+1 e−iϕ

)

, (2)

where t and r are the amplitudes of transmission and reflection, while ρ = |r/t|2 is the dimensionless
Landauer resistance [2]. For the successive arrangement of scatterers their transfer matrices are multiplied.
For a weak scatterer its transfer matrix T is close to the unit one, which allows to derive the differential
evolution equations for its parameters, and in particular for the Landauer resistance ρ.

In the random phase approximation (when distributions of ϕ and θ are considered as uniform) such
equation for the distribution P (ρ) has a form [3]–[8]

∂P (ρ)

∂L
= D

∂

∂ρ

[

ρ(1+ρ)
∂P (ρ)

∂ρ

]

(3)

(where D is of the order of the inverse mean free path) and describes evolution of the initial distribution
P0(ρ) = δ(ρ) at zero length L to the log-normal distribution in the large L limit.

As shown in the paper [9], the distributions of phases ϕ and θ ceased be uniform, if semi-transparent
boundaries are introduced between the disordered system and the ideal leads connected to it, even if they
were uniform in the initial system. In the latter case, the more general equation arises

∂P (ρ)

∂L
= D

∂

∂ρ

[

−γ(1+2ρ)P (ρ) + ρ(1+ρ)
∂P (ρ)

∂ρ

]

, (4)

1

http://arxiv.org/submit/4475492/pdf


Figure 1: Parameter γ in equation (4), as a function of the reduced energy Ẽ = E/W 4/3. Parameter γ is
close to zero in the deep of the allowed band, in correspondence with the random phase approximation.

which reduces to (3) in the random phase approximation. The latter approximation is working sufficiently
good in the deep of the allowed band for the ”natural” ideal leads (made from the same material as a
disordered system, but without impurities), as it is usually accepted in the theoretical papers (see references
in [10, 11, 12]); the fluctuation states in the forbidden band are considered infrequently [13, 14, 15] and only
on the level of the wave functions. To study the evolution of P (ρ) for the arbitrary Fermi level position
(including the forbidden band of the initial crystal), one should explicitly introduce the foreign ideal leads
made from the good metal1, which automatically brings to the nontrivial boundary conditions. As a result,
the still more general equation arises [16],

∂P (ρ)

∂L
= D

∂

∂ρ

[

−γ1(1+2ρ)P (ρ)−

−2γ2
√

ρ(1+ρ)P (ρ) + ρ(1+ρ)
∂P (ρ)

∂ρ

]

, (5)

whose coefficients are determined by the stationary phase distribution (see Eq. 34 below) in the large L limit.
Equation (5) reduces to (4) with γ = γ1+γ2 in the region of large L, when typical values of ρ are large. Fig.1
illustrates the dependence of the parameter γ on the quantity Ẽ = E/W 4/3, where E is the Fermi energy
counted from the lower edge of the initial band, and W is the amplitude of a random potetial; all energies
are measured in the units of the hopping integral for the 1D Anderson model (see below Eq.13). Parameter
γ is close to zero in the deep of the allowed band in correspondence with the random phase approximation,
while violation of the latter in the whole energy interval is surely not a small effect. This violation occurs
due to internal reasons and incorporation of semi-transparent boundaries is not necessary for it. Moreover,
the limiting log-normal distribution P (ρ) in the large L region,

P (ρ) =
1

ρ
√
4πDL

exp

{

− [ln ρ− vL]2

4DL

}

, (6)

where v = (2γ+1)D, is determined by the internal properties of the disordered system (Fig.2) and does not
depend on the boundary conditions [16].

The dependence of γ on Ẽ (Fig.1) clearly demonstrates violation of the random phase approximation, but
was obtained in [16] by analysis of the moments of the transfer matrix elements (see below), in which the
problem of phase distribution was completely avoided. Clarification of a situation with phase distribution
is necessary for the logical completeness of theory of 1D localization and is the main purpose of the present

1 It is easy to understand, that for energies in the forbidden band of the initial crystal the ’natural’ ideal leads will be
non-conducting, while the fluctuational states are present in the disordered system under consideration.
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Figure 2: Parameters ṽ = v/W 2/3 and D̃ = D/W 2/3 versus the reduced energy Ẽ = E/W 4/3. The equality
v = D, followed from the random phase approximation, is realized only in the deep of the allowed band.

paper. It is closely related with elucidation of the role of boundary conditions and needs resolution of visible
contradictions.

Inddeed, in the papers [9, 16] we have made two statements, which look hardly compatible. On one
hand, variation of the boundary conditions essentially affects the distribution of phases, which generally
changes the parameters of the evolution equations (3–5) and even its structure. On the other hand, these
changes have no influence on the form of the limiting distribution (6) in the large L region. Validity of these
two statements means that the system obeys a hidden symmetry, i.e. invariance of the physical quantities
respective to a certain class of transformations. From the theoretical viewpoint, revelation of the hidden
symmetry is of the evident interest, indicating the possibility of essential simplifications. From the practical
point, one cannot differ the real physical effects from the fictive ones, if the nature of hidden invariance is not
clarified. Revelation of this invariance appears to be very nontrivial and demands derivation of the evolution
equations in the most general form.

Let explain the origin of two indicated statements. Under a change of the boundary conditions, the
transfer matrix T transforms to T̃ = TlTTr, where Tl and Tr are the edge matrices, related amplitudes of
waves on the left and on the right of the corresponding interface. Thereby, the change of the boundary
conditions leads to the linear transformation of the transfer matrix elements. The linear transformation does
not affect the growth exponents for the second and forth moments of the matrix elements, which can be
found for a given matrix T and hence are determined by internal properties of the system. Knowledge of
these two exponents allows to establish the ’diffusion constant’ D and the ’drift velocity’ v in the limiting
distribution (6) (Fig.2), which consequently does not depend on the boundary conditions [16]; after that
there is no problem to obtain the behavior of the parameter γ (Fig.1).

Influence of boundary conditions on the distribution of phases can be easily demonstrated by introducing
the point scatterers on the system boundaries, when

T̃ = TlTTr , Tl = Tr =

(

1−iχ −iχ
iχ 1+iχ

)

. (7)

Accepting the parametrization (1) for T̃ , one has in the main order for large χ
√

1+ρ eiϕ = −χ2 T ′ ,
√
ρ eiθ = −χ2 T ′ ,

√
ρ e−iθ = χ2 T ′ ,

√

1+ρ e−iϕ = χ2 T ′ , (8)

where T ′ = T11−T12+T21−T22 and Tij are the elements of the T -matrix. For large χ we have ρ ∼ χ4 and
1+ρ ≈ ρ, so it is easy to see that

ϕ = ±π/2, θ = ±π/2 for χ→ ∞ . (9)
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Figure 3: External and internal phase distribution.

Thereby, for large χ the phase variables ϕ and θ are localized near values ±π/2 independently of their
distributions in the initial system.

From the physical viewpoint, the situation looks as follows (Fig.3). In the deep of the sufficiently long
disordered system, a certain ’internal’ phase distribution is realized, which does not depend on the boundary
conditions. If the system is considered from the side of the ideal leads, one observes the ’external’ phase
distribution, which is determined by the boundary conditions; namely these phases are entered in the transfer
matrix. Influence of interfaces extends till the length scale of the order of the localization length ξ, which
determined the transient region, where the internal phase distribution continuoualy transforms to the external
one. In the large L limit, the distribution P (ρ) is determined by the internal phase distribution, which
provides its independence on the boundary conditions. However, the evolution equations contain namely
the external phase distribution 2, and there is a problem to understand, why it does not affect the limiting
distribution P (ρ). The second question, related with the first one, is as follows: how can we find the internal
phase distribution, if it is not entering the evolution equations?

Let discuss the character of invariance mentioned above. The change of the matrix T with a system
length L is determined by relation

TL+∆L = TL T∆L , (10)

where the matrix T∆L is close to the unit one; it allows to derive the differential evolution equations. For
the change of boundary conditions, let multiply Eq. 10 by Tl and Tr, introducing the product TrT

−1
r = 1

between two multipliers:
Tl TL+∆LTr = TlTLTr · T−1

r T∆LTr . (11)

Then for the matrix T̃L = TlTLTr one has the relation, analogous to (10)

T̃L+∆L = T̃L T
′

∆L , (12)

where the matrix T ′

∆L = T−1
r T∆LTr is again close to the unit one. A passage from T∆L to T ′

∆L changes the
form of the evolution equations, determined by the parameters α, β, γ, ∆, ǫ2 (see Secs. 2, 3), while a passage

2 It is quite natural, since for small L the internal phase distribution is not manifested at all, and the boundary conditions
essentially affect the distribution P (ρ), as was extensively discussed in [16].
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from TL to T̃L changes the stationary phase distribution, which determines the coefficients in Eq. 5 for P (ρ).
These two factors should compensate each other, in order the limiting distribution P (ρ) remains invariant.

However, such invariance is not evident from the evolution equations, and its revelation needs essential
efforts. Resolution of these difficulties is closely related whith solution of the question on the internal phase
distribution.

2. Succession of point scatterers

As clear from experience of the paper [16], it is convenient to consider the energies incide the forbid-
den band of the initial crystal, while the description of the allowed band can be obtained by analytical
continuation. For definiteness, we have in mind the 1D Anderson model

Ψn+1 +Ψn−1 + VnΨn = EΨn (13)

near the band edge, where it corresponds to discretization of the usual continuous Schroedinger equation; E
is the energy counted from the band center.

A scatterer in the forbidden band is described by the pseudo-transfer matrix t, relating solutions on
the left (Aeκx + Be−κx) and on the right (Ceκx + De−κx) of the scatterer. Succession of scatterers with
amplitudes V0,V1,V2, . . .,Vn, arranged at the points 0, L1, L1+L2, . . . , L1+L2+ . . .+Ln, is described by
the matrix

t(n) = tǫ0 tδ1 tǫ1 tδ2 tǫ2 . . . tδn tǫn , (14)

where

tǫn =

(

1 + ǭn ǭn
−ǭn 1− ǭn

)

, ǭn =
Vn
2κa0

, (15)

tδn =

(

e−δn 0
0 eδn

)

, δn = κLn

and a0 is the lattice constant. The passage to the true transfer matrix T (n) = Tl t
(n) Tr is realized with the

help of the edge matrices, describing the attachment of the ideal leads made from the good metal with the
Fermi momentum k. Introducing the product TrTl = 1 between any two multipliers in Eq.14, we have 3

T (n) = Tǫ0 Tδ1 Tǫ1 Tδ2 Tǫ2 . . . Tδn Tǫn , (16)

where
Tǫn = Tl tǫn Tr , Tδn = Tl tδn Tr . (17)

In the Anderson model all δn are equil, δn = κa0, since the scatterers are present at each site of the lattice.
Examples of the edge matrices are given below, and in the most general case lead to the following structure
of the matrices Tǫn and Tδ

Tǫn =

(

1−iǫn ǫne
iγ

ǫne
−iγ 1+iǫn

)

, ǫn = Kǭn , (18)

Tδ =

(

A B
B∗ A∗

)

=

( √
1+∆2 eiα ∆eiβ

∆e−iβ
√
1+∆2 e−iα

)

.

The matrix Tδ is the transfer matrix of the general form, while for Tǫn the given form is sufficient. As usual,
we accept that all Vn are statistically independent, and 〈Vn〉 = 0, 〈V 2

n 〉 =W 2. Then the evolution equations
will be determined by parameters α, β, γ, ∆ and the quantity

ǫ2 = 〈ǫ2n〉 = constW 2 . (19)

In the allowed band for the ’natural’ ideal leads, the succession of point scatterers is described not by product
(14), but the product (16), where

Tǫn =

(

1− iǫn −iǫn
iǫn 1 + iǫn

)

, ǫn =
Vn

2k̄a0
,

3 The condition TrTl = 1 can be accepted without the loss of generality. If it is not so, then we can set Tl = T ′

l
T ′′

l
with

TrT ′′

l
= 1, and use the matrix T ′′

l
instead of Tl. The role of the matrix T ′

l
reduces to the change of the initial conditions to the

evolution equation, while the form of the latter is not changed.
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Tδn =

(

e−iδn 0
0 eiδn

)

, δn = k̄Ln , (20)

and k̄ is the Fermi momentum in our disordered system, which corresponds to the change κ → ik̄ in the
previous relations. Such change corresponds to the smooth transition from the energy E = −κ2 in the
forbidden band to the energy E = k̄2 in the allowed band. The change of the boundary conditions leads to
the matrices T̃ǫn = TlTǫnTr and T̃δn = TlTδnTr, having the structure (18).

3. Evolution equations

Let use the recurrence relation
T (n+1) = T (n)TδTǫ , (21)

where matrces T (n) and Tǫ are statistically independent, and Tδ is not random. Accepting parametrization
(2) for T (n), and designating parameters of the matrix T (n+1) as ρ̃, ϕ̃, θ̃, we have

√

1+ρ̃ eiϕ̃ =
√

1+ρ eiϕ(A+ ǫC) +√
ρ eiθ(B∗+ ǫD∗) , (22)

√

ρ̃ eiθ̃ =
√

1+ρ eiϕ(B+ǫD) +
√
ρ eiθ(A∗+ ǫC∗) ,

where we introduced notations
C =B e−iγ−iA D =A eiγ+iB . (23)

In what follows we consider the limit

δ → 0 , ǫ→ 0 , δ/ǫ2 = const (24)

and retain the terms of the first order in δ and the second order in ǫ. Squaring the modulus of one of
equations (22), we have

ρ̃ = ρ+K
√

ρ(1+ρ) + ǫ2(1+2ρ) , (25)

where
K = 2∆cos (ψ−β) + 2ǫ cos (ψ−γ)− 2ǫ2 sin (ψ−γ) (26)

and the combined phase variable is introduced

ψ = θ − ϕ . (27)

Now let take the product of the second equation (22) with the complex conjugated first equation

√

ρ̃(1+ρ̃) eiψ̃ = (1+2ρ)
[

∆eiβ+ǫeiγ +iǫ2eiγ
]

+

+
√

ρ(1+ρ)
[(

e−2iα+2iǫ−ǫ2
)

eiψ + ǫ2 e2iγ−iψ
]

. (28)

Excluding ρ̃ using equation (25), we obtain the relation between ψ̃ and ψ

ψ̃ = ψ + 2 (ǫ−α) + (R2/2−1) ǫ2 sin 2(ψ−γ)−

−R
[

∆sin (ψ−β) + ǫ sin (ψ−γ) + ǫ2 cos (ψ−γ)
]

, (29)

where

R =
1+2ρ

√

ρ(1+ρ)
. (30)

Using (22), (26) and following the scheme of the papers [9, 16, 17], we come to the evolution equation for
P (ρ, ψ)

∂P

∂L
=

{

ǫ2
[

1−2 cos2 (ψ−γ)
]

(1+2ρ)P−

−2
[

∆cos (ψ−β) + ǫ2 sin (ψ−γ)
]
√

ρ(1+ρ)P+

+2ǫ2cos2(ψ−γ)ρ(1+ρ)P ′

ρ+

6



+2ǫ2cos (ψ−γ)
[

2−R sin (ψ−γ)
]
√

ρ(1+ρ)P ′

ψ

}

′

ρ
+

+

{

ǫ2 cos (ψ−γ)
[

2 sin (ψ−γ)−R
]

P+

+
[

2α+R∆sin (ψ−β)
]

P+

+
1

2
ǫ2

[

2−R sin (ψ−γ)
]2
P ′

ψ

}

′

ψ

. (31)

The right-hand side is a sum of full derivatives, which provides the conservation of probability. Relation
between distributions of ρ and ψ is determined by the quantity R, which tends to 2 in the limit of large L,
when the typical values of ρ are large. Then the solution of Eq.31 is factorized, P (ρ, ψ) = P (ρ)P (ψ), though
the situation is somewhat unusual for separation of variables (see Appendix 1); the equation for P (ψ) is
splitted off,

∂P (ψ)

∂L
=

{

[

2α+2∆sin (ψ−β)− 2ǫ2 cos (ψ−γ)+

+ǫ2 sin 2(ψ−γ)
]

P (ψ)+

+ 2ǫ2
[

1−sin (ψ−γ)
]2
P ′

ψ(ψ)
}

′

ψ
(32)

giving the condition for the stationary distribution of the phase ψ

ǫ2
[

1−sin (ψ−γ)
]2
P ′

ψ−

− ǫ2
[

1−sin (ψ−γ)
]

cos (ψ−γ)P+

+
[

α+∆sin (ψ−β)
]

P = C0 , (33)

where the constant C0 is fixed by normalization. 4

Averaging over ψ leads to equation (5) with parameters

D = 2ǫ2
〈

cos2 (ψ−γ)
〉

,

γ1D = ǫ2
〈

1−2 cos2 (ψ−γ)
〉

, (34)

γ2D = ∆
〈

cos (ψ−β)
〉

− ǫ2
〈

sin (ψ−γ)
〉

,

while for the ’drift velocity’ in (6) one has

v = 2∆
〈

cos (ψ−β)
〉

+

+2ǫ2
〈

sin2 (ψ−γ)− sin (ψ−γ)
〉

. (35)

The averaging in Eqs.(34, 35) is produced over the stationary distribution P (ψ).

4. Dependence on the properties of the ideal leads

Let the Fermi momentum k in the ideal leads is different from the Fermi momentum k̄ in the disordered
system, while the boundary between them is abrupt. Then the edge matrices in the forbidden band can be
chosen in the form

Tl =

(

l l∗

l∗ l

)

, Tr =

(

r r∗

r∗ r

)

, (36)

l =
1

2

(

1 +
κ

ik

)

, r =
1

2

(

1 +
ik

κ

)

,

4 Equations (31, 32) are analogous to Eqs.(10.27), (10.28) in the book [10], derived in the framework of the different formalism,
so the quantities entering them are not related clearly with the transfer matrix parameters. The same is valid relative equations
(39, 40) in the paper [18].

7



leading to the results (18) for matrices Tǫn and Tδ with parameters

α = −1

2

(

k

κ
− κ

k

)

δ =
κ2 − k2

2k
a0 ,

β =
π

2
, γ = −π

2
, ǫ2 = ǭ2

(κ

k

)2

=
W 2

4k2a20
, (37)

∆ =
1

2

(

k

κ
+
κ

k

)

δ =
κ2 + k2

2k
a0 ,

which are the regular functions of the energy E = −κ2 and can be analytically continued to the allowed
band. Then for parameters D and v one has

D = 2ǫ2〈sin2 ψ〉 , (38)

v = 2∆〈sinψ〉+ 2ǫ2〈1−cosψ〉 − 2ǫ2〈sin2 ψ〉 ,
while the equation for the stationary distribution P (ψ) accepts the form

ǫ2 (1−cosψ)
2
P ′

ψ + ǫ2 sinψ(1−cosψ)P+

+(α−∆cosψ )P = C0 . (39)

The change of variables in Eq.39
ω = −ctgψ/2 (40)

and renormalization of probability P → P (1+ω2)/2, following from P (ψ)dψ = P (ω)dω, reduce it to the
simple form

P ′

ω + P (b+ aω2) = C0 , (41)

where

a =
α−∆

2ǫ2
, b =

α+∆

2ǫ2
(42)

or inversely
α = ǫ2(b + a) , ∆ = ǫ2(b− a) . (43)

Equation (41) can be integrated in quadratures, but this quadrature is practically useless. It is more effective
to investigate the transformation properties. If Pa,b(ω) is a solution of Eq.41, then the following relation is
valid

Pa,b(ω) = s−1Pas3,bs(ω/s) . (44)

It can be established, making the change ω = sω̃ and reducing the obtained equation to the initial form by
redefinition of parameters ã = as3, b̃ = bs; then Pa,b(ω) coincides with Pã,b̃(ω̃) to the constant factor, which
is established from normalization. Using the relation

ab =
α2 −∆2

4ǫ4
= − δ2

4ǫ4
, (45)

one can see that the scale transformation a→ as3, b→ bs leads to renormalization ǫ→ ǫ̃, where

ǫ̃ = ǫ s−1 = ǭ
κ

k
s−1 . (46)

Substitution of (37) to (43) gives the initial values of the parameters a and b

a = −k
κ

δ

2ǫ2
, b =

κ

k

δ

2ǫ2
, (47)

while the relations (33) allow to establish the change of parameters α → α̃, ∆ → ∆̃ in the result of the scale
transformation

α̃ =
1

2

(

κ

k
s−1 − k

κ
s

)

δ , ∆̃ =
1

2

(

κ

k
s−1 +

k

κ
s

)

δ . (48)
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Relations (46) and (48) show that transformation of all parameters α, ∆, ǫ2 entering the evolution equations
reduces to the change

k

κ
→ k

κ
s , (49)

which is equivalent to renormalization of the Fermi momentum in the ideal leads. Inversely, variation of the
properties of the ideal leads results in the scale transformati- on of the distribution P (ω).

5. Influence of the delta potential on interfaces

If there is the delta potential on interfaces between the disordered system and the ideal leads, then the
edge matrices (36) transform to the form

Tl =

(

l l∗1
l∗ l1

)

, l =
ik+κ−κ1

2ik
, l1 =

ik+κ+κ1
2ik

, (50)

Tr =

(

r r∗

r∗1 r1

)

, r =
ik+κ−κ2

2κ
, r1 =

ik+κ+κ2
2κ

,

where κ1 and κ2 corresponds to the jumps of the logarithmic derivative of the wave function on the left and
right interfaces. The condition TrTl = 1 is realized for κ2 = −κ1, and can be accepted without the loss of
generality (see Footnote 3). Then the matrix Tǫn remains unchangeable, while Tδ accept the form (18) with
parameters

α = −k
2 − κ2 + κ21

2κk
δ ,

∆cosβ = −κ1
κ
δ , (51)

∆ sinβ =
k2 + κ2 − κ21

2κk
δ ,

which, as previously, are the regular functions of the energy E = −κ2 (due to δ = κa0). Thereby, we again
have γ = −π/2, while the parameter β becomes different from the value π/2. The change of variables (40)
transforms equation (33) to the form

P ′

ω + P (b+ cω + aω2) = C0 , (52)

with parameters

a =
α−∆sinβ

2ǫ2
, b =

α+∆sinβ

2ǫ2
, c = −∆cosβ

ǫ2
, (53)

which accept the following form after substitution of the physical values (51):

a = −k
κ

δ

2ǫ2
, b =

κ2 − κ21
κk

δ

2ǫ2
, c =

κ1
κ

δ

2ǫ2
. (54)

A solution of Eq. 52 satifies to relation

Pa,b,c(ω) = s−1Pas3,bs,cs2(ω/s) , (55)

and the scale transformation of P (ω) as previously corresponds to a change of the Fermi momentum k in
the ideal leads.

It is easy to see, that the shift ω → ω−ω0 of the variable ω allows to reduce Eq. 52 to the form (41),
which is expressed by the relation

Pa,b,c(ω) = Pã,b̃,0(ω+ω0) , (56)

ω0 = −κ1
k
, ã = a = −k

κ

δ

2ǫ2
, b̃ =

κ

k

δ

2ǫ2
,

where the values of parameters ã and b̃ corresponds to the situation with κ1 = 0. As a result, the appear-
ance of the delta potential on interfaces leads to translation of the distribution P (ω) to the quantity ω0,
proportional to the amplitude of the delta potential.
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Figure 4: The model to describe the smearing of interfaces.

6. Smearing of interfaces

For energies in the forbidden band, the disordered system in the absence of impurities reduces to the
potential barrier. The smearing of interfaces can be simulated by incorporating the layers of a metal with the
Fermi momentum k1 and thickness d1 and d2 on the boundaries of the system (Fig.4). The edge matrices
Tl and Tr for such model are given in Appendix 2. The condition TrTl = 1 is satisfied, if the following
constraints are imposed on d1 and d2

k1(d1+d2) = 2πm , k(d1+d2) = 2πn , (57)

where m and n are integers. The matrix Tδ is the transfer matrix of the general form, and its calculation is
not very actual. For the matrix Tǫn one obtains the expression (18) with parameters

K =
κR
k1

, γ = arcsin

(

sinα

R

)

− k

k1
α− π

2
, (58)

where
R = P+Q cosα , α = k1(d2 − d1) ,

P =
k21+k

2

2kk1
, Q =

k21−k2
2kk1

. (59)

The value of γ, different from −π/2, is obtained for d1 6= d2. Since the parameter γ enters both in expressions
(34, 35) for D and v, and in Eq. 33 for the stationary distribution P (ψ), it can be excluded from equations
by the shift ψ → ψ + ψ0, which reduces it to the value −π/2; only the corresponding redefinition of β is
necessary. After it, the change of variables (40) leads to equation (52) of the previous section.

If the Fermi momentum k1 is chosen to be proportional to k, then the parametersP andQ are independent
of k, and the scale transformation of P (ω) as previously corresponds to renormalization (49) of the Fermi
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momentum k. In general, the proportionality k1 ∝ k is not realized, but the change of the properties of
the ideal leads corresponds to the scale transformation of P (ω) with the more complicated relation of the
momentum k with the scale factor s.

7. General approach to the edge matrices

Let discuss the general approach to analysis of the role of the boundary conditions, not related with the
model assumptions. We try to find out the degree of arbitrariness, permissible in the edge matrices.

As was indicated in Sec.2, the condition TrTl = 1 can be accepted without the loss of generality. According
to (16,17), we are interested in expressions containing the equal number of matrices Tr and Tl, and so the
common factors can be easily extracted from one matrix and include into another. Hence, without the loss
of generality the matrices Tr and Tl can be chosen in the form

Tl =

(

a b
c d

)

, Tr =

(

d −b
−c a

)

, ad− bc = 1, (60)

accepting the unit value for their determinants. The role of the edge matrices is the most essential in the
forbidden band: they allow to transform the pseudo-transfer matrix t to the true transfer matrix T = Tl t Tr.
The condition for a matrix T to be the true transfer matrix is expressed by the following relations between
its matrix elements Tij [19] 5

T11T
+
11 − T12T

+
12 = 1 ,

T22T
+
22 − T21T

+
21 = 1 , (61)

T11T
+
21 − T12T

+
22 = 0 ,

which follows from the flux conservation.
Let demand that matrices Tδ and Tǫ, entering (16,17) were true transfer matrices. Then (see Appendix

3) the admissible edge matrices form the free parameter family

Tl =

(

|r1|eiα1 |r2|eiα2

±i|r1|e−iα1 ±i|r2|e−iα2

)

, 1=2|r1r2| sin(α2−α1), (62)

where the upper sign is chosen for sin(α2−α1)> 0, and the lower sign in the opposite case. Then for the
matrices Tδ and Tǫ we have the expressions (18) with parameters

α = −2 δ|r1||r2| cos(α2−α1) ,

β = α1+α2 ,

γ = 2α1 − 2 arcsin
|r2| cos(α2−α1)

r
,

∆ = 2 δ|r1||r2| , (63)

K = r2 = |r1|2+|r2|2− 2|r1||r2| cos(α2−α1) .

Analogous research in the allowed band leads to the physically evident result: the edge matrices are the true
transfer matrices of the general form

Tl =

(

|r1|eiα1 |r2|eiα2

|r2|e−iα2 |r1|e−iα1

)

, |r1|2 − |r2|2 = 1. (64)

In this case, we have the following parameters in the expressions (18) for Tδ and Tǫ

α = −δ
(

|r1|2 + |r2|2
)

,

β = π/2 + α1+α2 ,

γ = −π
2
+ 2α1 − 2 arcsin

|r2| cos(α1−α2)

r
,

∆ = 2 δ|r1||r2| , (65)

11



Figure 5: Distributions P (ω) for different energies differ only slightly.

K = r2 = |r1|2+|r2|2− 2|r1||r2| cos(α2−α1) .

It should be clear from the preceding sections, that the whole free parameter arbitrariness of the edge
matrices can be realized physically, while the evolution equations derived in Sec.3 have the most general
form.

8. Distribution P (ω)

As clear from preceding, the most general results for the parameters of the evolution equation (5) and
the limiting distribution (6) are given by relations (34, 35), where averaging over ψ is carried out over the
stationary distribution P (ψ), determined by equation (33). The shift ψ → ψ + ψ0 allows to reduce the
parameter γ to the value −π/2, and after it the change of variables ω = −ctgψ/2 leads to equation (52).
Then translation ω → ω + ω0 allows to transfer (52) to equation (41), which by the scale transformation
ω → sω can be reduced to one of the canonical form, either with |a| = |b|, or with a = −1, depending on
the single parameter; this one-parameter freedom is associated with the dependence on the reduced energy
Ẽ . Thereby, the form of the distribution P (ω) with ω = −ctgψ/2 is determined by the internal properties
of the system, while the change of the boundary conditions transfers it to the distribution P (ω̃), where the
variable

ω̃ = ω0 − s ctg
ψ + ψ0

2
(66)

is related with ω by the homographic transformation

ω̃ =
Aω +B

Cω +D
. (67)

5 We give these relations in the form applicable to quasi-1D systems, when the elements Tij are in fact matrices.
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According to [16], the situation |a|= |b| is distinguished by the fact, that in the deep of the allowed and
forbidden bands parameters of the evolution equation (5) remain constant till very small length scales 6.
The case a=b, which is realized in the allowed band, corresponds to the ’natural’ ideal leads (Sec.1). Under
condition −a=−b≫ 1 (in the deep of the allowed band) one can omit the term P ′

ω in Eq. 41, and obtain

P (ω) =
1

π

1

1 + ω2
, (68)

which correspond to P (ψ) = const, i.e. the random phase approximation. For −a=b≫ 1 (in the deep of the
forbidden band) one can neglect the constant C0 in Eq. 41 near the maximum of distribution and, setting
ω = −1 + ω̃, obtain P ′

ω ≈ −2|a|ω̃P , which gives the Gaussian distribution

P (ω) =

√

|a|
π

exp
{

−|a|ω̃2
}

, (69)

localized near ω=−1; it corresponds to the Gaussian distribution P (ψ), localized near π/2 [16]. If the
condition |a| = |b| is violated in the allowed band, it leads to appearance of the oscillations of distribution
P (ρ, ψ), related with the fact that the matrix T in the absence of impurities reduces to the transfer matrix
of the potential barrier, which becomes transparent, if its width L corresponds to the semi-integer number
of the de Broglie waves (analogously to blooming in optics) [16]. If the condition |a| = |b| is violated in the
deep of the forbidden band, then the distribution P (ρ, ψ) is localized near the value of ψ, different from π/2,
which leads to its slow relaxation to the latter value.

Near the edge of the initial band, it is convenient to reduce equation (41) to the canonical form with
a = −1. Its solution with b = 0 corresponds to the ’critical’ region for the smoothed Anderson transition
[16] and can be presented in the form (see Appendix 4)

P (ω) = A0

∞
∫

0

dte−tt−1/3 ω

ω3 + 3t
, (70)

where A0 is determined from normalization. For large ω we have P (ω) ∼ ω−2, which is the general property
(see Appendix 4) and corresponds to the finite values of P (ψ) on the boundaries of the interval (0, 2π).

If by the scale transformation and translation we provide the maximum of the distribution P (ω) at ω = 0
with the unit value in it, then distributions (68–70) differ not very essentially (Fig.5), witnessing on the weak
dependence of P (ω) on the reduced energy Ẽ .

9. External phase distribution

If the distribution P (ω) is known, then its change under variation of the boundary condition reduces
to the scale transformation and translations. The corresponding change of the external phase distribution
P (ψ) is easily predictable on the qualitative level and illustrated in Fig.6. The distribution P (ψ) is uniform
(Fig.6,a), if P (ω) has a form (68) and corresponds to the random phase approximation. Widening of the
distribution P (ω) leads to localization of P (ψ) near the edges of the interval (0, 2π) (Fig.6,b), while narrowing
leads to localization of P (ψ) in the middle of the interval (0, 2π). (Fig.6,c). A shift of P (ω) to right or to
left leads to appearance of the maximum of P (ψ) in the right or left part of the interval (0, 2π) (Fig.6,d,e).
If the parameter γ is different from −π/2, it leads to translation ψ → ψ+ψ0 and the presented dependences
are valid not in the interval (0, 2π), but in the interval (ψ0, 2π + ψ0).

If the distribution P (ω) is accepted not in the form (68), but in the Gaussian form (69), then Fig.6 does
not change qualitatively, but P (ψ) will not be constant in Fig.6,a. The asymmetrical form of the function
P (ω) for E = 0, corresponding to the critical distribution (Fig.5), leads to a new qualitative effect: its
translations ω → ω + ω0 leads to appearance of the two-humped distribution P (ψ) in a certain interval of
the ω0 values (Fig.7).

10. Internal phase distribution

6 For sufficiently large L these parameters are always constant, since they are determined by the stationary distribution
P (ψ).
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Figure 6: The change of the distribution P (ψ) under the scale transformation and translation of the function
P (ω), if the form of the latter corresponds to the random phase approximation.
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Figure 7: The change of the distribution P (ψ) under translations of the critical distribution P (ω).

Let return to the case β = π/2, γ = −π/2, considered in Sec.4, and produce the change of variables
ω = −ctgψ/2 in the complete evolution equation (31). If the typical values of ρ are sufficiently large, then
the evolution equation for P (ρ, ω) accepts the form

∂P

2∂L
=

{

ǫ2
4ω2

(

1 + ω2
)2 ρ

2P ′

ρ −∆
2ω

1 + ω2
ρP+

+ǫ2
2

1 + ω2
ρP + . . .

}

′

ρ

+ ǫ2
{

P ′

ω +
(

b+ aω2
)

P

}

′

ω

. (71)

Making the change ω = sω̃ and redefinition of parameters ã = as3, b̃ = bs, ǫ̃2 = ǫ2s−2, we have

∂P

2∂L
=

{

ǫ̃2s2
4s2ω̃2

(

1 + s2ω̃2
)2 ρ

2P ′

ρ − ∆̃
2sω̃

1 + s2ω̃2
ρP+

+ǫ̃2s2
2

1 + s2ω̃2
ρP + . . .

}

′

ρ

+ ǫ̃2
{

P ′

ω̃ +
(

b̃+ ãω̃2
)

P

}

′

ω̃

. (72)

The latter term in Eq. 72 has the same form as in Eq. 71, but the other terms are not invariant. According
to Eq.5, the parameter D is determined by the coefficient before ρ2P ′

ρ, and equations (71, 72) lead to two
expressions

D = 2ǫ2

〈

4ω2

(

1 + ω2
)2

〉

a,b

, (73)

D = 2ǫ̃2s2

〈

4s2ω2

(

1 + s2ω2
)2

〉

ã,b̃

, (74)
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Figure 8: Behavior of the scale factors s and the translational shift ω0 as functions of the reduced energy
Ẽ .

Figure 9: Parameters a and b for the internal phase distribution as functions of the reduced energy Ẽ .

which are equivalent due to relation (44). If Eq.74 is accepted as a definition of the diffusion coefficient D,
then its invariance in respect to the change of the boundary conditions is fulfilled automatically. However,
the change of a, b, ǫ to ã, b̃, ǫ̃ in Eq. 71 leads to the analogous changes in Eq. 73, which together with Eq. 74
gives the relation

〈

4ω2

(

1 + ω2
)2

〉

ã,b̃

= s2

〈

4s2ω2

(

1 + s2ω2
)2

〉

ã,b̃

, (75)

which is not fulfilled for arbitrary s, and valid only for a certan ’correct’ choice of the scale factor. It
easy to understand that this ’correct’ choice corresponds to the ’internal’ phase distribution. Analogous
considerations can be given in respect to the parameter v in the distribution (6), which is determined by the
coefficient before ρP .

Let the initial values a0, b0 of the parameters a, b are chosen from the condition |a0| = |b0|, which
is ’natural’ beyon the vicinity of the initial band edge [16]. If P (ω) is the solution of equation (41) with
parameters a0, b0, then replacement ω → s(ω̃+ω0) allows to provide the correct values of D and v, following
from analysis of moments, by the proper choice of s and ω0. The obtained distribution P (ω̃) after return
to the variable ψ will determine the internal phase distribution. Behavior of s and ω0 as a function of the
reduced energy Ẽ is shown in Fig.8. The scale factor s is diverging at Ẽ → 0, and the renormalized parameters
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Figure 10: Dependence of the Fermi energy Ẽext in the ideal leads on the Fermi energy in the disordered
system Ẽ for the internal phase distribution. The dashed line corresponds to the dependence Ẽext = |Ẽ |.

Figure 11: The best fit of the parameter v for the real values of the translational shift ω0.

a = a0s
3 and b = b0s become not be bounded by the relation |a| = |b| (Fig.9), which is realized only for large

|Ẽ |, i.e. in the deep of the allowed and forbidden bands. The physical meaning of this fact is more explicit
from Fig.10, demonstrating the dependence of the Fermi energy Ẽext in the ideal leads against the Fermi
energy Ẽ in the disordered system. The minimum of Ẽext is reached at the value Ẽ = Ẽ0 = 0.28, which can be
interpreted as a renormalized band edge, shifted due to fluctuations of a random potential. This conclusion
is confirmed by the fact, that for Ẽ < Ẽ0 the translational shift ω0 moves to the complex plane, which has a
simple physical sense. For Ẽ = Ẽ0 we have Ẽext = Ẽ0 (Fig.10) and the shifted band edge is below the Fermi
level in the ideal leads for Ẽ > Ẽ0 and upper it for Ẽ < Ẽ0. In the latter case the internal properties of
the system are described not by true, but the pseudo-transfer matrix, and the distribution P (ψ) becomes
complex-valued. The detailed study of the latter is not very actual, and the ’internal’ distribution P (ψ),
presented below for Ẽ < Ẽ0, is in fact the external distribution, which is closest to internal; it practically
coincides with the modulus of the complex distribution P (ψ). The latter follows from the fact, that the
shift of the parameter ω0 to the complex plane is comparatively small and allows analytical investigation
(see Appendix 5): it is illustrated by Fig.11, which shows the best fit of the parameter v (with exact fitting
of D), possible for real values of ω0.

Evolution of the internal distribution P (ψ) (with a given reservation) under variation of the reduced
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energy Ẽ is shown in Fig.12. The first row of figures corresponds to variation of Ẽ from large positive values
till the value Ẽ = 0.63, corresponding to the right minimum of ω0 in Fig.8; here the distribution P (ω) is close
to the Lorentz form (68), while the change of P (ψ) is mainly related with translation of P (ω) to the left
direction (Fig.6,e). The third row of Fig.12 corresponds to variation of Ẽ from large negative values till the
value Ẽ = −0.10, corresponding to the left minimum of ω0 in Fig.8; here the distribution P (ψ) is localized
near π/2 and gradually spreads with growth of Ẽ , while P (ω) changes from the Gaussian form (69) to the
critical form (70). The second row of Fig.12 corresponds to variation of Ẽ between two minima of ω0 in Fig.8;
here the distribution P (ω) is close to the critical form (70), while the change of P (ψ) is mainly related with
translational shift of P (ω) and corresponds to Fig.7. The fourth and ninth dependences of Fig.12 are close
to each other, since the form of P (ω) is close to critical, while the translational shifts ω0 are approximately
equal.

Let discuss the mechanism of realization of the internal phase distribution. As was discussed in papers
[16, 20, 21], the distribution P (ρ) of the Landauer resistance undergoes aperiodic oscillations, related with
the fact that the form of P (ρ) depends essentially on the several first moments, while the moments 〈ρn〉 are
oscilating functions of L: the nth moment is determined by a superposition of n discrete harmonics. The
relative amplitude of oscillations decays exponentially on the scale L ∼ ξ, and they become inessential for
large L. The analogous situation takes place for the complete distribution P (ρ, ω); 7 correspondingly, both
the mean of ω and its dispersion are oscillating. The latter are directly related with the translational shift
ω0 and the scale factor s, which become oscillating on the scale L <∼ ξ, tending to ’correct’ constant values
at large L: these ’correct’ values correspond to the internal phase distribution.

11. Conclusion

In the present paper we have derived the evolution equation for the mutual distribution P (ρ, ψ) of
the Landauer resistance ρ and the phase variable ψ. For large L, this equation allows the separation of
variables, which provides the existence of the stationary distribution P (ψ), determinating the coefficients in
the evolution equation (5) for P (ρ).

In the result of the present analysis we come to a very simple picture. The phase ψ appears to be a
”bad” variable, while the ”correct” variable is ω = −ctgψ/2. The form of the stationary distribution P (ω)
is determined by the internal properties of the system and does not depend on the boundary conditions.
Variation of the boundary conditions leads to three effects: (a) the scale transformation ω → sω, which
is mainly related with the change of properties of the ideal leads, attached to the system; (b) translation
ω → ω + ω0, which is mainly determined by existence of the delta-potential on the boundaries of the
system; (c) translation ψ → ψ+ψ0, related with smearing of interfaces. The boundary conditions essentially
affect the ’external’ phase distribution, which enters the evolution equations, but do not affect the limiting
distribution P (ρ) in the region of large L, which allows to say on existence of the hidden symmetry in the
evolution equations. The limiting distribution P (ρ) has the log-normal form, which can be established under
the most general conditions 8. The limiting distribution P (ρ) is determined by the ’internal’ distribution
P (ψ), which is obtained from the stationary distribution P (ω) with the proper choice of the scale factor s
and translational shifts ω0 and ψ0.

The discussed problems are not restricted by 1D systems, and analogous difficulties arise in the studies
of the Lyapunov exponents in the framework of the generalized version [17] of the Dorokhov–Mello–Pereyra-
Kumar equation [28, 29]. The minimal Lyapunov exponent determinates the critical properties of the
Anderson transition (it is clear from the well-known numerical algorithm, see references in [17]), and the
analogous hidden symmetry can be essential in the studies of the latter.

Appendix 1. To separation of variables in the equation (31).

For separation of variables in the eigenvalue problem

L̂ P (ρ, ψ) = λP (ρ, ψ) (A.1)

7 The distribution P (ρ) is determined by the even moments of the transfer matrix elements Tij . The odd moments should
be taken into account in the analysis of P (ρ, ω).

8 More precisely, we consider a random potential of small amplitude with short-ranged correlations for energies near the edge
of the initial band. If the energy is comparable with the bandwidth, there arise the effects of commensurability of the Fermi
mimentum k̄ with the lattice constant a0 [22, 23], which can result in complication of the situation [24, 25].
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Figure 12: Evolution of the internal phase distribution under variation of the reduced energy Ẽ .
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the operator L̂ should be represented as a sum of two operators L̂ρ + M̂ψ, depending only on ρ and ψ
correspondingly.

Conditions for separation of variables in the equation (31) appear to be essentially weaker. In the limit of
large L, when the typical values of ρ are sufficiently large, one can set R = 2 to have the following structure
for equation (31)

∂P

∂L
=

{

L̂ρ,ψP
}

′

ρ
+
{

M̂ψP
}

′

ψ
. (A.2)

Setting P = P (ρ)P (ψ) and dividing by P (ρ), one has

−∂P (ψ)
∂L

+
{

M̂ψP (ψ)
}

′

ψ
= (A.3)

=
P (ψ)

P (ρ)

∂P (ρ)

∂L
− 1

P (ρ)

{

L̂ρ,ψP
}

′

ρ
.

The left-hand side is independent of ρ, and can be considered as a certain function F (ψ). Then

P (ψ)
∂P (ρ)

∂L
−
{

L̂ρ,ψP
}

′

ρ
= F (ψ)P (ρ) (A.4)

and integration over ρ gives F (ψ) ≡ 0, since the left-hand side turns to zero, while the integral over P (ρ) is
equal to unity due to normalization. As a result, the left-hand side and right-hand side of Eq. (A.3) turn to
zero independently, and the equation for P (ψ) is splitted off. Correspondinly, the averages of function of ψ,
entering (34, 35), are determined by the stationary distribution P (ψ), satisfying to equation (33).

Appendix 2. Edge matrices for the smeared interfaces

The edge matrices for the model represented in Fig.4 can be chosen in the form

Tl =

(

eikd1 0
0 e−ikd1

)

Ta

(

e−ik1d1 0
0 eik1d1

)

Tc (A.5)

Tr = Tc̃

(

e−ik1d2 0
0 eik1d2

)

Tã

(

eikd2 0
0 e−ikd2

)

,

where

Ta =

(

a1 a2
a2 a1

)

, a1 =
k + k1
2k

, a2 =
k − k1
2k

,

Tc =

(

c c∗

c∗ c

)

, c =
ik1 + κ

2ik1
, (A.6)

Tã =

(

ã1 ã2
ã2 ã1

)

, ã1 =
k1 + k

2k1
, ã2 =

k1 − k

2k1
,

Tc̃ =

(

c̃ c̃∗

c̃∗ c̃

)

, c̃ =
κ+ ik1

2κ
,

Comparison with [16] shows that Ta and Tã are the edge matrices for the boundary between two metals,
while Tc and Tc̃ are the edge matrices for the boundary between a metal and a dielectric.

Composing the product TlTr, we find that relations TcTc̃ = 1 and TaTã = 1 leads to essential simplifica-
tions, and under condition (57) this product reduces to the unit matrix.

For calculation of Tǫ we can write

Tǫ =

(

1 0
0 1

)

+ ǫ Tl

(

1 1
−1 −1

)

Tr (A.7)

and use the relations

Tc

(

1 1
−1 −1

)

Tc̃ =
κ

ik1

(

1 1
−1 −1

)

,
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(

e−ik1d1 0
0 eik1d1

) (

1 1
−1 −1

)(

e−ik1d2 0
0 eik1d2

)

=

(

1 eiα

−e−iα −1

)

(A.8)

Ta

(

1 eiα

−e−iα −1

)

Tã =

(

P +Q cosα Q+ P cosα+ i sinα
−Q− P cosα+ i sinα −P −Q cosα

)

,

which with the use of equality P2=Q2 + 1 allow to reduce Tǫ to the form (18).

Appendix 3. Degree of arbitrariness for the edge matrices

Let accept the form (60) for the edge matrices Tl and Tr, and demand that the matrix Tδ = Tl tδ Tr was
the true transfer matrix, satisfying conditions (61); it is sufficient to impose the latter for small δ and obtain
the relations

ad+ bc+ a∗d∗ + b∗c∗ = 0 , ab+ c∗d∗ = 0 . (A.9)

The first relation together with the unit condition for the determinant leads to more simple relations

2Read = 1 , 2Re bc = −1 . (A.10)

Setting
a = |a|eiα, b = |b|eiβ , c = |c|eiγ , d = |d|eiδ , (A.11)

we have the complete set of conditions

2|b||c| cos (β+γ) = −1 ,

2|a||d| cos (α+δ) = 1 ,

|a||b| = |c||d| , (A.12)

eiα+iβ+iγ+iδ = −1 ,

|a||d| sin (α+δ)− |b||c| sin (β+γ) = 0 .

It is easy to see that sin (α+δ) = sin (β+γ), cos (α+δ) = − cos (β+γ); then from the last relation (A.12) we
have |a||d| = |b||c|, which gives |a| = |c|, |b| = |d| together with the third relation (A.12). As a result, the
condition for Tδ to be the true transfer matrix determines 4-parameter family for the matrix Tl,

Tl =

(

|a|eiα |b|eiβ
|a|eiγ |b|eiδ

)

,

eiα+iβ+iγ+iδ = −1 , 1 = −2|a||b| cos(β+γ). (A.13)

Calculating the matrix Tǫ

Tǫ =

(

1− ǭ(a−b)(c−d) ǭ(a−b)2
−ǭ(c−d)2 1 + ǭ(a−b)(c−d)

)

, (A.14)

and demanding that it was the true transfer matrix, we obtain

(a−b)(c−d) + (a∗−b∗)(c∗−d∗) = 0 ,

(a−b)2 + (c∗−d∗)2 = 0 , (A.15)

Introducing the parametrization

(a−b) = reiθ/2 , (c−d) = r1e
iϕ/2 , (A.16)

we have r = r1, ϕ = π − θ + 2πn, so

Tǫ =

(

1− iǭr2(−1)n ǭr2eiθ

ǭr2e−iθ 1 + iǭr2(−1)n

)

, (A.17)
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where n is integer. Taking into account relations

r2 = |a−b|2 = |a|2+|b|2− 2|a||b| cos(α−β) ,

r2 = |c−d|2 = |a|2+|b|2− 2|a||b| cos(γ−δ) , (A.18)

we have (α−β) = ±(γ−δ) + 2πk. The upper sign leads to contradiction, since β+γ = π/2 + πk and the
left-hand side of (A.12) turns to zero. For the lower sign we have γ = π/2 − α + πk, δ = π/2 − β + πk′,
where k and k′ should be chosen even for sin(β−α) > 0 and odd in the opposite case. As a result, we come
to representation (62) for the matrix Tl with 3-parameter arbitrariness. For even k, k′ we have even n in the
expression (A.17) for Tǫ, and it reduces to (18) with parameters K and γ, given by Eq.63. For odd k, k′ we
have odd n in (A.17), and to reduce it to the form (18) we need to make the inessential change of sign for ǭ.

Appendix 4. Distribution P (ω) for E = 0

Differentiating (41) and suggesting the power-law asymptotics P (ω) ∼ ω−α for ω → ∞, we obtain α = 2.
Considering corrections to the asymptotics in the form of a series over inverse powers of ω,

P (ω) = ω−2
∞
∑

n=0

Anω
−n , (A.19)

we have the reccurence relations
A0 = 1 , A1 = 0 , A2 = −b/a ,

aAn+1 = −bAn−1 + nAn−2 , n ≥ 2 . (A.20)

For the critical distribution (E = 0) we have b = 0, and the coefficients of the series can be found explicitly

P (ω) =
1

ω2

∞
∑

k=0

Γ(k + 2/3)

Γ(2/3)

(

3

aω3

)k

. (A.21)

The divergent series can be summed in the Borel sense [26], if one write the gamma function Γ(k + 2/3)
in the form of the defining integral and summing the arising geometrical progression. Setting a=−1 and
including the normalization factor, we obtain (70).

Expressions (A.19), (A.20) are useful for numerical integration of equation (41) for arbitrary b. For
|ω| > 5 the function P (ω) is well approximated by the series (A.19), interpreted in the asymptotical sense
and summed till the minimal term. Such approximation can be used as an initial condition at large positive
ω for integration in the direction of diminishing of ω. 9 If the standard procedures with the accuracy control
[27] are used, the solution automatically comes to the correct asymptotics at ω → −∞.

Appendix 5. Behavior of s and ω0 in the forbidden band

In the deep of the forbidden band, the constant C0 in (41) is exponentially small, and the distribution
P (ω) can be accepted in the form

P (ω) = const exp
{

−bω − aω3/3
}

. (A.22)

In the case −a = b ≫ 1 the distribution has a maximum at ω = −1, in whose vicinity it reduces to the
Gaussian form (69). Calculation of averages in (38) gives the results

〈sinψ〉 =
〈

− 2ω

1 + ω2

〉

≈
〈

1− ω̃2

2

〉

= 1− 1

4|a| ,

〈

sin2 ψ
〉

=

〈

4ω2

(1 + ω2)2

〉

≈
〈

1− ω̃2
〉

≈ 1 ,

9 Attempts to integrate in the direction of increasing of ω meet instabilities, relating with existence of the growing exponent,
being a solution of equation (41) for C0 = 0.
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〈cosψ〉 =
〈

ω2 − 1

1 + ω2

〉

≈ 〈−ω̃〉 ≈ 0 , (A.23)

and for parameters D and v one has
D = 2ǭ2 , v = 2δ − ǭ2 , (A.24)

which agree with results from the analysis of moments [16] within accuracy; here ω̃ is deviation from the
maximum, and the fact is used that ǫ reduces to ǭ for |a| = |b|.

To reproduce D and v with higher accuracy, let make the scale transformation and translation of the
distribution (A.22) with −a = b; then for s = 1− s̃, ω0 = s̃+ ω̃0 and s̃, ω̃0 ≪ 1 one has

D = 2ǭ2
(

1 + 2s̃− ǭ2/δ
)

, (A.25)

v = 2δ − ǭ2 +
(

s̃2 − ω̃2
0

)

δ − ǭ2
(

2ω̃0 + 2s̃+ 9ǭ2/4δ
)

,

where the shift of the maximum and small deviations from the Gaussian form are taken into account.
Comparison with values from the analysis of moments [16]

D = 2ǭ2 − 15

2

ǭ2

δ
, v = 2δ − ǭ2 +

27

4

ǭ2

δ
(A.26)

leads to the following results, if the relation δ/ǭ2 = 4|Ẽ |3/2 is taken into account,

s = 1 +
11

32

1

|Ẽ |3/2
, ω0 =

−19± i
√
215

32|Ẽ |3/2
, (A.27)

which explains the behavior of curves in the left-hand part of Fig.8. The translational shift ω0 appears to be
complex-valued; one can easily verify for the Gaussian distribution, that neglection of the small imagionary
part of ω0 is equivalent to taking the modulus of the complex distribution P (ω).
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