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Abstract

Answer to cond-mat/0106005, cond-mat/0106006 and additional notes are
given concerning my previous comment (cond-mat/0105325).

Recently I have discussed the numerical results for the Anderson transition [1]. Objec-
tions [2] and [3] have appeared after that. We answer here to the arguments of [2, 3] and
give the additional comments.

1. I did not state in [1] that ν = 1 (in fact, my most probable value was 1.25). I tried
to show that a problem exists: numerical results contradict to all other information on the
critical exponents. It is not my personal problem, and it is not my personal affair to solve
it. Indeed, a value ν ≈ 1 is desirable from viewpoint of this other information and I tried
to understand, is not it possible to agree it with the raw numerical data by the change of
interpretation and by more realistic estimation of errors. I found it possible for the data
that I considered as the best. May be I was a little wrong in the latter estimation.

Authors of [2] argue that I used the systems of too small size (283), ”while currently
sizes ∼ 503 (for ELS) and 182×108 (for TM) are standard” 1. A size 182×108 should kick a
man out his feet, while authors of [2] know perfectly well that only the minimal length scale
(L = 18) is relevant. In fact, such systems are small. 2 I do not know about ”currently”
and ”standard” but only one result is cited in [2] for systems ∼ 503 [6]. With my procedure
used, authors of [2] obtained this result with uncertanty ν = 1.25 ÷ 1.75, which is not
drastically different from uncertainty 0.8 ÷ 1.7 that I have derived from Zharekeshev and
Kramer data [7]. So, it is admitted that the largest scale data give uncertainty 1.25÷ 1.75
and not 1% [5]. At the present stage, I am quite satisfied with such progress.

1 Abbreviations of [2]: TM and ELS — transfer matrix and energy level statistics methods, FSS —
finite size scaling.

2 I can understand such trick in the text, where authors of [2] are in the course of discussion, but the
same thing is present in the figure capture: ”the system sizes of TM data are larger than for ELS data”.

1

http://ru.arXiv.org/abs/cond-mat/0106357v3
http://ru.arXiv.org/abs/cond-mat/0106005
http://ru.arXiv.org/abs/cond-mat/0106006
http://ru.arXiv.org/abs/cond-mat/0105325


2. Authors of [2] claim, that my procedure is not interesting because it does not give
increase of accuracy. They are mistaken here: I had not purpose to increase accuracy. I
wanted to dig out the real uncertainty of results. According to [2], estimation of error
given by my procedure approximately corresponds to a scattering of results due to different
authors. So this estimation is reliable and reasonably conservative. I can hardly dream of
this. By the way, only ”people with experience in FSS” can believe in accuracy of several
percents, looking at Fig. 1 of [2].

In fact, authors of [2] have overlooked the essense of my suggestions. I have introduced
some function f(L), in order to have a convinient languige for discussion of scaling correc-
tions. My suggestions are simple. Show your function f(L), so that we can have a look at
it. Then it will be evident, has this function so good power-law behavior as you say, or not.
It will be clear, is there change of the effective ν with the length scale, or not. Then we can
compare such functions for different quantities and different models, in order to estimate a
systematic error. Then we can see, how this error change with L and so on.

I do not insist, that my procedure for determination of the function f(L) is the best. In
fact, it is useful in the case of rather poor raw data. If these data are sufficiently detailed
and accurate, it is more preferable to extract the function f(L) by direct linearization (in
fact, it was admitted in [1]). Such procedure was used in a number of papers and I have no
priority in it. But it was only recently, that explicit plots of such functions have appeared
[8, 9].

3. I agree with [3], that in the general case a fixed point depends on L and irrelevant
parameters are uncritical. The fixed point µ∗ has a regular dependence in a/L and the
main correction is the ordinary surface effect. With this dependence taken into account,
my Eq.(5) takes a form

Q(µ) = F {µ∗(L/a), A1(τ)sy1 , A2(τ)sy2 , A3(τ)sy3 , . . .} , (5′)

Putting A1(τ) = b1τ , Ai(τ) = ci + biτ (i ≥ 2), we have instead (6)

Q(τ, L) = F {a/L, b1τ(L/a)y1 , (c2 + b2τ)(L/a)y2 , (c3 + b3τ)(L/a)y3 , . . .} , (6′)

For L ≫ a we have instead (7) and (8) correspondingly

Q(τ, L) = [F {0, 0, 0, 0, . . .} + B0(a/L) + B2(L/a)y2 + B3(L/a)y3 , . . .] +

+τ [C1(L/a)y1 + C2(L/a)y2 + C3(L/a)y3 , . . .] ≡ F0(L/a) + τf (L/a) , τ(L/a)y1 ≪ 1
(7′)

and

Q(τ, L) ≈ F {0, b1τ(L/a)y1 , 0, 0, . . .} ≡ G {τ(L/a)y1} , τ(L/a)y1 >∼ 1 . (8′)

Correction to the critical point

τ̃ = τ + ∆(a/L) , ∆(a/L) = [F0(L/a) − F0(0)] /f(L/a)
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is essential for small τ in Eq.(7′) but is irrelevant in Eq.(8′). So unification (7′) and (8′)
has a form:

Q(τ, L) = G {τ̃ f(L/a)} . (9′)

One should shift the curves for different L, so as they have a common intersection point,
and use the same procedure as in [1]. Such shift is routinely used in the most of papers.
There was no need in it for the data of [7].

For d = 4 − ǫ the first irrelevant exponent y2 is of the order of ǫ [10] and linearization
in the parameter c2(L/a)y2 is invalid for L <∼ L0 ∼ a exp{const/ǫ}. The corresponding
dependence on L is inessential in the restricted intervals of L but there is a slow drift of
results on the large scale L0. May be, it is a clue to the whole problem.

4. There are a lot of vague speculations in [3] concerning a number of nonlinear pa-
rameters. Authors were able to calculate that in my procedure this number is even greater
than in their one. In spite of these speculations, it it evident to anyone that

(a) all steps of my procedure are well defined and unambiguous.
(b) authors of [3] did not give a clear answer to a clear question: how do they avoid

ambiguity of their procedure?
With modifications of [3], my procedure becomes ambiguious too. There is no sense to

discuss the results of the unclear procedure.

5. One can carry out a very simple experiment. Take some function, f.e. f(x) =
x2/(1 + x), add some noise to it, and try to find its asymptotic behavior Axα at x → ∞,
using only values of f(x) for x = 1, 2, . . . , 20. You will find it rather difficult to formulate
a procedure that gives the reliable and reasonably conservative estimation of errors. The
more or less successful procedure is as follows. Take an interval (xmin, 20) and increase
xmin until a simplest fit log f(x) = C + α log x give for χ2 its normal value ≈ n, where
n is a number of points 3. It is a necessary condition for a systematic error to be of the
order of a statistical one. Now increase xmin a little more: then the formal statistical
error will give more or less reasonable estimation of the real error. A little more is rather
subjective and depends on the degree of conservatism. This procedure is successful, if a
noise is uncorrelated and you have reliable estimation of its amplitude. In the general case
such procedure is minimal and gives only the lower bound of the error. In my experience,
related with a paper [11] and its development [12], the noise was strongly correlated and
a formal statistical error was typically two orders less than a real one (even for the good
values of χ2). I can only wonder that some people are so confident in their accuracy.

The given example is simple, because corrections to asymptotics are regular. You can
increase accuracy of α by many orders, fitting log f(x) as C0 +α log x+C1/x+C2/x

2 + . . .
(this fit is linear and, consequently, unique). It is not the case that is interesting for us.

If a structure of corrections is power-like but unknown, you should use a nonlinear fit
f(x) = Axα + A1x

α1 + A2x
α2 + . . . and you immediately meet with a problem of many

minima. Their origin is rather simple. Take an arbitrary succession α, α1, α2 . . . (such

3 We suppose that this number is much greater than a number of parameters.
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that α > α1 > α2 > . . .) and use for f(x) a linear fit Axα + A1x
α1 + A2x

α2 + . . . (only
A, A1, A2, . . . are changed). It will be successful with sufficient number of terms and χ2

takes its normal value. Take this result as ”a zero approximation” and use the general
nonlinear fit (not only A, A1, A2, . . . but also α, α1, α2, . . . are changed). The quantity χ2

cannot be essentially lower than its normal value, and can change only slightly. So, there
is a local minimum for it, close to ”a zero approximation”. Taking different successions
α, α1, α2 . . ., you can generate a great number of such minima. A value of α is different in
different successions. So you can obtain an arbitrary result for it 4 by such procedure.

I think, it is clear now, why one should not believe in any results obtained with such
fits. If a structure of corrections is unknown, one hardly can invent something better than
the simplest procedure given in beginning of this section.

6. After [1] I had a constructive discussion with P. Markoš 5 and now I have better
understanding of a general situation. Here are my impressions of it.

(i) There is a good paper [9], where the transfer-matrix method and the system sizes
up to L = 24 were used. The raw data are rather detailed and accurate, so a function f(L)
can be obtained with good accuracy 6 by direct linearization of W -dependence. More than
that, Fig. 2 of this paper shows a number of such functions (in the log–log coordinates)
for the different Lyapunov exponents. Some observations can be made in this figure. For
L <∼ 10 the slopes of the curves differ very strongly and correspond to values of ν in the
interval 0.8÷ 1.5. For L>∼ 10 practically all curves change their slopes and the more or less
unique slope (with ν ≈ 1.5) arises. Nevertheless, the curve for the least exponent z1 (which,
according to [9], should reach its asymptotics most quickly) has a tendency to change its
slope in the opposite direction. For L > 12, this slope is compatible with a value ν = 1.25,
if a point for L = 24 (evident outliar) is excluded. One can see, that a possible change of
the effective ν with L is not a fantasy.

(ii) There is a lot of high precision results for L <∼ 15 and they indeed give a value
ν ≈ 1.5. Let us assume, that this value is not true, but effective. Then it should change
with increase of L. In practice, one can double [7, 9] or triple [6] this size, though there are
not many such attempts. With such increase of L, a situation cannot improve drastically.
One can be able only to see some change of ν with L. There is a number of reasons, why
this change could not be observed reliably:

(a) Accuracy of the raw date is worse by an order of magnitude for L >∼ 15.
(b) A need for a careful treatment was underestimated. The researches were satisfied

that the large scale data roughly correspond to well-established results for small L, though
the most of fits are not satisfactory.

(c) When linearization of W -dependence was used, the interval of linearization was kept
fixed. It gives the wrong tendency due to increase of nonlinear effects for the large L (see

4 It is restricted only by the assumptions made.
5 He has no responsibility for my conclusions.
6 I think, this accuracy is a little exaggerated. One can see in Fig. 2 of [9] that a number of points

deviates from the general smooth dependence in a quantity that is not controlled by the given error.
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footnote 5 in [1]). This tendency is not large in magnitude, but the whole situation is
rather unstable. One can see in Fig. 2 of [9] that a shift of the large L data in one standard
deviation produces essential change of results.

As a consequence, the large L data appeared to be practically useless. In fact, this
conclusion is supported by authors of [2], who refer primarily to results for small and not
for large L.

(iii) If the raw data have a quality comparable with [9], the adequate procedure should
contain, in our opinion, the following stages:

(a) In order to have the efficient use of the χ2 procedure, the statisical uncertainties of
the raw data are not simply estimated, but are calculated independently for each point in
the course of some formal procedure. Probably, it can be done with the use of different
realizations of a random potential.

(b) The function f(L) is obtained by linearization of W -dependence. The interval of
linearization is adjusted in accordance with χ2 and the error is properly estimated. It
should be done independently for each L, but with the use of the same routine. More
conservatism is desirable at this stage.

(c) The function f(L) is plotted. It is fitted by the power law dependence in the interval
(Lmin, Lmax) where Lmin is adjusted with the use of χ2 and Lmax is the largest L that is
possible to reach. Minimization of χ2 is a clever procedure and it provides a necessary com-
promise between the high accuracy data for small L and the poor accuracy data for large L:
the latter are properly weighted, but all useful information is extracted of them. Adjust-
ment of Lmin allows to exclude the main body of a systematic error, which is contained in
the small L data. Excess of conservatism at the stage (b) is partially compensated, because
smaller Lmin becomes admittable.

(d) The rest of a systematic error can be controlled by comparison of results for different
quantities and different models.

I have impression, that nobody had used this procedure in a full extent 7.

(iv) Some comments concerning the 4D case. The most advanced results are those of
Zharekeshev and Kramer [8]. With ν = 1, they have a parameter τ(L/a)1/ν (in designations
of [1]) of the order unity, and a condition for linearization of W -dependence is marginally
fulfilled. With ν = 1/2 (as it should be), the above parameter is ∼ 10 and they are deeply
in the nonlinear regime. So, a possibility ν = 1/2, in fact, was not tested numerically.

Some confirmation of these arguments can be found in [14]. Fig. 1,a of this paper shows
W -dependences for another quantity (Lyapunov exponent, but not level statisics) which
are essentially more detailed in comparison with [8]. Indeed, they are strikingly nonlinear.
More attention should be given to investigation of these nonlinearities.

This work was financially supported by INTAS (Grant 99-1070) and RFBR (00-02-
17129).

7 Sensitibility of results to restriction of the intervals in W and L was observed by MacKinnon[13].
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