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Anderson transition: numerical vs analytical results
(comment on the review article by P.Markos cond-mat/0609580)
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119337 Moscow, Russia

In the recent review article, P.Markos admits that practically all nu-
merical results on the critical behavior near the Anderson transition are in
conflict with analytical expectations, but no serious discussion of this fact is
given. The aim of the present comment is to give an analysis of the arising
situation.

The recent paper by P.Markos [1] provides the extensive review on numerical investiga-
tions of Anderson localization. Such detailed review is quite valuable and long expected.
Its value is slightly diminished by the fact that the author is too anxious to present his
own results, even in the cases when the results of other authors are more advanced. No
preference is given to the papers where record system sizes are achieved [2, 3, 4, 5]; no
attention is given to results, which contradict to a conventional paradigm [6, 7]; not all
characteristics of the wave functions studied in the literature [8] are discussed.

It is admitted in Sec.13.3 of [1] that practically all numerical results on the critical
behavior near the Anderson transition are in contradiction with the analytical predictions,
but no serious discussion of this circumstance is given. In fact, a situation with numerical
algorithms is rather serious, and the aim of the present comment is to analyse this situation.

Fig. 62 in [1] presents the dependence of the critical exponent v of the correlation length
on the space dimensionality d and its comparison with predictions of the self-consistent the-
ory by Vollhardt and Wélfle [9] (see also papers [10]). Such comparison is rather instructive
since the results of [9] summarize in the compact form all theoretical expectations. Nev-
ertheless, the original version of the theory [9] is rather crude! and contradiction with it
does not provide a serious argument against the numerical methods. However, there are
two fundamental contradictions that should be discussed.

! The evident drawbacks of the self-consistent theory [9] are the crude method of solving the Bethe—
Salpeter equation, violation of the Ward identity and neglection of the possible spatial dispersion of the
diffusion coefficient. These drawbacks were removed in the symmetry approach of the paper [11]: if only
evident symmetry of the system is taken into account and situation of the general position (compatible
with this symmetry) is considered, then the results of [9] are reproduced. The arguments on the absense
of the hidden symmetry can be also given [11], but these arguments cannot be considered as indisputable.


http://ru.arXiv.org/abs/cond-mat/0610744v1

(A) Numerical results are in conflict with the analytical prediction v = 1/¢ at € — 0,
obtained for a space dimensionality d = 2 + € [12]. The reference on the specific result
by Hikami given in [1] (see Eqs.193,194) is disputable: the theory for d = 2 + € surely
needs some modification due to instability of the renormalization group caused by the
high-gradient catastrophe [13]. However, the result v = 1/e for ¢ — 0 is valid for an
arbitrary (-function of the form

ﬁ(g):e+—+—2+—+... (1)

with A} < 0 (g is the Thouless conductance), i.e. in any variant of the theory compati-
ble with general philosophy of one-parameter scaling [14]2 Contradiction with the result
v = 1/e is possible, only if the one-parameter scaling hypothesis is rejected; but then the
treatment of the raw numerical data becomes self-contradictory, being entirely based on
this hypothesis.

(B) The dependence of v on d (Fig.62 in [1]) looks perfectly smooth in the interval
2 < d < 5: such behavior is in direct contradiction with the Bogolyubov theorem on
renormalizability of the ? field theory [16], which is mathematically equivalent to the
problem of an electron in the Gaussian random field [17, 18, 19, 20]. The ¢* theory is
renormalizable for d < 4 and nonrenormalizable for d > 4, so d = 4 is a singular point
on the d-axis. It is expected (though it is not a theorem) that d = 4 is an upper critical
dimension ®, where d-dependence of the critical exponents has a cusp, while for d > 4
they are independent on d and equil to their mean field values (v = 1/2 in the present
case). Nothing of the kind is observed numerically. Furthermore, nonrenormalizability
for d > 4 makes existence of scale invariance absolutely impossible (due to impossibility
to exclude microscopic length scales from any quantity). In spite of this, the numerical
algorithms seems to have no difficulties in interpretation of results in terms of one-parameter
scaling, and it demonstrates their quality. In fact, one can derive from the Vollhardt and
Woilfle theory [9] or from two-parameter scaling [22] that the Thouless conductance is not
stationary in the critical point for dimensions d > 4; so the conventional condition for a
critical point (see Fig.61 in [1]) becomes invalid (see discussion in [23][Sec. 4.2]).

New problems in numerical algorithms were discovered recently in studies of the second
moments for a solution of the Cauchy problem for the Schrodinger equation in quasi-1D
systems [23, 24, 25]. Roughly half of numerical papers use finite-size scaling for the minimal
Lyapunov exponent 7, [1][Sec.12.1], related with the growth of the typical value of the
Cauchy solution. Analytical calculation of 7,,;, is possible only under rather restrictive
assumptions [26, 27]. On the other hand, a complete analytical investigation is possible for

2 The negative sign of A; is a basis of the weak localization theory [15] and has numerous experimental
confirmations.

3 A situation with the upper critical dimension is perfectly clear for the problem of density of states.
Simplification of theory for d > 4 was demonstrated and (4 — ¢)-dimensional theory was developed in the
series of papers [21] (see also review [20]).



the minimal exponent [3,,;,, characterizing a growth of the second moments [25]. Inequality
Bmin = 2¥min can be rigorously established, while the order of magnitude relation (,,;, ~
Ymin 18 expected in the typical physical situation; the latter relation is valid for weak [26]
and strong [27] disorder and confirmed by extensive numerical studies [28]. From viewpoint
of general scaling philosophy the use of 3,,;, Or Ymin is practically equivalent. The following
becomes clear as a result of such studies.

(C) In 2D systems, a conventional finite-size scaling approach based on (3, leads to
unumbiguous conclusion on existence of the Kosterlitz-Thouless type transition between
exponential and power law localization, and absense of one parameter scaling for 3,,:, [25].
Inequality Gin = 279min makes it possible to establish validity of both conclusions also
for finite-size scaling based on 7,,;,. There exists the possibility to restore one-parameter
scaling, but it requires essential modification of the conventional algorithm: one should use
some effective exponent v.¢s instead 7y,:,. After such modification, the 2D phase transition
is predicted not for all systems.

These considerations are confirmed by Fig.37 in [1], where absense of scaling for (g)
is clearly visible: different dependences cannot be reduced to a single curve by a scale
transformation. The analogous behavior can be surely found for other quantities, but the
data for weak disorder (W < 4) are practically never presented in numerical papers.

(D) For d > 2, a finite-size scaling based on [3,,;, leads to the values of critical disorder,
essentially different from those obtained in numerical experiments [23].* Two different
interpretations of this fact are possible:

(a) Contemporary numerical experiments give incorrect results for the critical point. It
is related with the principal inapplicability of one-parameter scaling for d > 4, while for
d = 3 a large length scale L, exists, so that a true critical behavior can be found only for
systems with L 2 Ly (see [23][Sec. 4.2] for details).

(b) If we accept validity of the conventional numerical results, then we should assume
that the point of the Anderson transition is expanded into the band of the critical states [23].
Surprisingly, such possibility has direct numerical confirmations [6, 7].® Realization of such
possibility signifies that all existing analytical approaches are incorrect. In particulary, it
means invalidity of the one-parameter scaling theory [14], and interpretation of practically
all numerical experiments becomes internally inconsistent.

One can see, that (a) and (b) have approximately the same consequences for numerical
algorithms. The given alternative is probably resolved in favour of (a) in the recent paper
[29]. Indeed, all dependences in Fig. 2 of [29] are practically linear for L < 30 in accordance
with the old results by Schreiber [7]; so the crossover between Fig.5,a and Fig.5,b of [23]
occurs at L ~ 30, and a large length scale Ly ~ 30 appears in the 3D Anderson model.

One more problem is related with the critical distribution of conductance.

4The results for critical disorder, obtained in [23, 25] and [24] by the essentially different methods,
coincide for d = 2 and d > 4 (not for d = 3), but their interpretation is different.
5If they are not artifacts related with existence of the large scale Ly.



(E) Figs. 39,40,43,44,46,52 in [1] show the distribution of conductance p.(g) in the
critical point: it has a singularity at ¢ = 1 and the rapid decrease for large g. Such behavior
is quite understandable (see [1][Sec. 10]) for quasi-1D systems (with the size L¢~! x L, and
sufficiently large L.), but its validity for the real d-dimensional systems (L ~ L,) seems
doubtful. The singularity at ¢ = 1 looks incredible®, and the decrease more quicker than
exponent for large g contradicts both to the direct renormalization group analysis for high
moments of g [30] and to the attempts of reconstruction of the whole distribution p.(g)
[31]. The second defect may be attributed to not sufficiently large system size L, but it is
claimed in [1] that the distribution is stationary and independent on L (as a result, validity
of one-parameter scaling is declared for the whole distribution). Such thing is impossible, if
we have any belief in analytical theory. It looks more likely, that formulas for multi-channel
localization are used beyond the range of their applicability. It is not evident in the general
case that the Landauer conductance measured in numerical experiments coincides with the
Kubo conductance treated in analytical papers. Indeed, the method used for calculation
of conductance fails outside the unperturbed band (see the end of Appendix A in [1]); it
means that the role of evanescent channels is not reflected adequatly. Such channels always
exist for d > 2 and give essential contribution for sufficiently small L,.

Few minor remarks.

(F) Tt is repeatedly stated in [1] that one-parameter scaling is proved numerically for
many quantities. However, one should be quite careful with empirical proofs of scaling: it
is possible to suggest an algorithm, which makes it possible to "prove” scaling in practically
any situation [25][Sec.4]. The appearance of scaling curves presented in Figs. 53,57 in [1]
resembles very closely the expected result of applying such ”algorithm”.

(G) Existence of deviations from scaling is admitted by numerical researches (see Fig. 54
in [1]), but it is believed that they can be correctly analysed. As an example of such
analysis, the paper [133] is cited in [1], whose results are qualified as the most accurate and
reliable. In fact, the analysis of [133] arouse serious objections (see discussion in [32]). In
our opinion, the correct interpretation of deviations from scaling is still an open question.

Overlooking the arguments (A-G), one can see the general tendency: the numerical
algorithms have repeated problems with one-parameter scaling, on which they are founded.
Does it mean a complete failure of the one-parameter scaling hypothesis? Such possibility
can be discussed, but we prefer a less radical point of view: in principle, scaling exists but
the numerical algorithms do not control a correct choice of scaling variables.

It looks as a joke, but since 1981 practically nobody studied the Anderson transition
numerically as change in the character of wave functions. Contemporary numerical al-

6 There are no phase transitions in finite systems according to the Lee and Yang theorem. Analogously,
there is no ground for any other singularities in them. If p.(g) is independent of L, then it can be calculated
for finite L.



gorithms are based on the idea that any dimensionless quantity A related to a system,
spatially restricted on a scale L, is a function of a ratio L/£ (£ is the correlation length)

A=F(L/¢), (2)

which makes it possible to investigate the dependence of £ on parameters. Relation (2)
is a consequence of scale invariance and is valid under condition that a quantity A has
no essential dependence on microscopical length scales. The latter condition is difficult to
control, since the quantities A used in numerical algorithms have rather indirect relation
to the Anderson transition.

Let us discuss this point on the example of the ferromagnetic phase transition. It is
well known, that scale invariance is the property of the spatial picture of fluctuations of the
magnetic moment. As a result, the relation (2) is valid for the quantities that are directly
determined by these fluctuations, i.e. for more or less all magnetic quantities. If we consider
the properties, characterizing a ferromagnet as a normal metal and related with its electron
or phonon spectra etc., then there is no ground for validity of (2). Difference between
magnetic and nonmagnetic properties is intuitively evident, but the analogous subdivision
becomes nontrivial for phase transitions of the different nature. One can suggest, that the
numerical algorithms for the Anderson transition use "nonmagmetic” or not completely
"magnetic” quantities. Constructive analysis of a situation with the Lyapunov exponents
is given in [25][Sec. 5].

The author of [1] sees the origin of controversy in the fact that analytical theory deals
with averaged quantities and does not treat adequately their statistical fluctuations. Such
position is rather weak, as one can see looking at the arguments (A-G). Indeed, general
scaling philosophy (argument A) does not specify the exact sense of the Thouless conduc-
tance ¢: it is some characteristic value, which should not be primitively identified with
(g) [14]. Of course, most of analytical theories deal with average conductivity or density
of states, but self-averaging of these quantities is rigorously proven [33]. On the other
hand, one can consider the higher moments of these quantities and arrive once again to
some variant (more complicated) of the o? field theory with the same renormalizability
properties (argument B). The quantity (3, (arguments C and D) is indeed related with
averaged quantities (the second moments of the Cauchy solution) but its relation with the
self-averaging quantity 7., was discussed in details [25]. The argument E deals directly
with the distribution of g. The arguments F and G are related with the quantities used in
numerical algorithms.

Argumentation of [1], that there is no need to deal with large systems in order to obtain
reliable results, is also weak. The statement on the stability of the results with the time
(during which the system size L increases essentially) is based on the rather special choice
of publications. In fact, the value of v for d = 3 shows the essential systematic drift with
the time: v = 0.66 [34], » = 1.2 £ 0.3 [35], v = 1.35 £ 0.15 [36], v = 1.45 + 0.08 [2],
v = 1.54 £0.08 [37], v = 1.57 £ 0.02 [38]. On the other hand, Fig.37 in [1] shows the



results for 2D systems of rather large size (till L = 1000), demonstrating the behavior,
which "naively ... might be interpreted as a metal-insulator transition” at W, ~ 2. The
author of [1] does not accept such ”"naive” interpretation and believes that there is no
metallic phase in the 2D case (W, = 0). The question arises: why interpretation of the
results for d = 3 with L < 22 (Fig.53), d = 4 with L < 10 (Fig. 61, left), d = 5 with L <8
(Fig. 61, right) should not be considered as naive?

We should admit, however, that there is one serious argument in favour of numerical
algorithms: investigation of different quantities and different models leads to approximately
the same results for the critical behavior [1]. When problems with scaling are essential, such
universality looks incredible (though attempts of its explanation can be made [23][Sec. 4.2]).
Under the close inspection, this universality is not so pronounced: one can see from the
figure in [39] that overall scattering of results for the exponent v in the 3D case, related
with different methods and models, is rather large (1.20 < 1.75), while the essentially
higher accuracy is declared in the individual experiments (e.g. v = 1.57 +0.02 in [38]).
Recently, the essential counter-example to this universality was discovered: the use of
the quantities 1/8,,;, L and 1/7,,:,, L in the capacity of A gives essentially different results
23], though S, and Yy, are very close from the physical viewpoint. Probably, another
examples of such kind can be found, and it may occur that the discussed universality has
a pure psychological origin: the algorithms leading to the results, essentially different from
conventional, are refused at the early stage of investigation. Historically, such situation
took place with the minimal metallic conductivity, when a lot of experimentalists during
twenty years measured one and the same ”correct” value of it.

In conclusion, we have analysed controversy between the numerical and analytical re-
sults for the critical behavior near the Anderson transition. It looks, that the most probable
reasons for such controversy are the following: (a) not sufficiently good choice of scaling
variables; (b) principal inapplicability of one-parameter scaling for d > 4; (c) existence
of a large length scale Ly for d = 3; (d) the use of formulas for multi-channel localization
beyond the range of their applicability. It is desirable to analyse critically, what conclusions
can be made from the raw data without use of one-parameter scaling. The search of the
quantities, whose scaling can be rigorously proven, becomes an urgent problem.

This work is partially supported by RFBR (grant 03-02-17519).
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