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Abstract
The four-dimensional ϕ4 theory is usually considered to be trivial in the
continuum limit. In fact, two definitions of triviality were mixed in the
literature. The first one, introduced by Wilson, is equivalent to positiveness
of the Gell-Mann – Low function β(g) for g 6= 0; it is confirmed by all
available information and can be considered as firmly established. The
second definition, introduced by mathematical community, corresponds to
the true triviality, i.e. principal impossibility to construct continuous theory
with finite interaction at large distances: it needs not only positiveness of
β(g) but also its sufficiently quick growth at infinity. Indications of true
triviality are not numerous and allow different interpretation. According to
the recent results, such triviality is surely absent.

1. Introduction

The problem of the ”zero charge” or ”triviality” of quantum field theories was raised
firstly by Landau and co-workers [1, 2]. According to Landau, Abrikosov, Khalatnikov [1],
relation of the bare charge g0 with observable charge g for renormalizable field theories is
given by expression

g =
g0

1 + β2g0 ln Λ2/m2
, (1)

where m is the mass of the particle, and Λ is the momentum cut-off. For finite g0 and
Λ → ∞, the observable charge g → 0 and the ”zero charge” situation takes place. The
proper interpretation of Eq.1 consists in its inverting,

g0 =
g

1− β2g ln Λ2/m2
, (2)

so that the bare charge g0 is related to the length scale Λ−1 and chosen to give a correct
value of g. The growth of g0 with Λ invalidates Eqs.1,2 in the region g0 ∼ 1 and existence
of the ”Landau pole” in Eq.2 has no physical sense.
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The actual behavior of the charge g(L) as a function of the length scale L is determined
by the Gell-Mann – Low equation

− dg

d ln L2
= β(g) = β2g

2 + β3g
3 + . . . (3)

and depends on appearance of the function β(g). According to classification by Bogolyubov
and Shirkov [3], the growth of g(L) is saturated, if β(g) has a zero for finite g, and continues
to infinity, if β(g) is non-alternating and behaves as β(g) ∼ gα with α ≤ 1 for large g; if,
however, β(g) ∼ gα with α > 1, then g(L) is divergent at finite L = L0 (the real Landau pole
arises) and the theory is internally inconsistent due to indeterminacy of g(L) for L < L0.
Landau and Pomeranchuk [2] tried to justify the latter possibility, arguing that Eq.1 is
valid without restrictions; however, it is possible only for the strict equality β(g) = β2g

2,
which is surely invalid due to finiteness of β3.

One can see that solution of the ”zero charge” problem needs calculation of the Gell-
Mann – Low function β(g) at arbitrary g, and in particular its asymptotic behavior for
g → ∞. This problem is very difficult and corresponding information has appeared only
recently (Sec.4). Nevertheless, scientific community looks rather convinced in triviality of
ϕ4 theory [4]–[30]. Such situation is rather strange, since attempts to study strong coupling
behavior of quantum field theories are not numerous and their results cannot be considered
as commonly accepted.

In fact, two definitions of triviality were mixed in the literature. The first one, intro-
duced by Wilson [4] (Sec.2), is equivalent to positiveness of β(g) for g 6= 0; it is confirmed by
all available information and can be considered as firmly established. The second definition,
introduced by mathematical community [5, 6, 7] (Sec.3), corresponds to the true triviality
and is equivalent to internal inconsistency in the Bogolyubov and Shirkov sense: it requires
not only positiveness of β(g) but also corresponding asymptotical behavior. Evidence of
true triviality is not extensive and allows different interpretation (Sec.5,6): according to
recent results (Sec.4) such triviality is absent. These recent results [31] give new insight to
the problem: to obtain nontrivial theory one needs to use the complex values of the bare
charge g0, which were never exploited in mathematical proofs and numerical simulations.

In what follows, we have in mind the O(n)–symmetric ϕ4 theory with an action

S{ϕ} =
∫

ddx
{

1
2
(∇ϕ)2 + 1

2
m2ϕ 2 + 1

8
uϕ 4

}
, (4)

u = g0Λ
ε , ε = 4− d

in d–dimensional space.

2. Triviality in Wilson’s sense

In the theory of critical phenomena, Eq.1 has entirely different interpretation. In this
case, the cut-off Λ and the bare charge g0 have a direct physical sense and are related
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Figure 1: Flow of g with increase in L according to the Gell-Mann – Low equation : (a)
in the case of non-alternating β(g), evolution ends in the Gaussian fixed point g = 0; (b)
in the case of alternating β(g), the domain of attraction of the Gaussian fixed point is
restricted by the boundary gf . For d < 4, β-function has a negative portion (dashed line
in Fig.1,a).

with a lattice spacing and the coefficient in the effective Landau Hamiltonian. The ”zero
charge” situation occurs in this case for m → 0, i.e. at approaching the phase transition
point, and corresponds to the absence of interaction between large-scale fluctuations of
the order parameter. According to Wilson’s renormalization group analysis [32], the ϕ4

theory reduces at large distances to the trivial Gaussian model for space dimensionality
d ≥ 4. Success of Wilson’s ε–expansion [32, 33, 34] is directly related with this triviality:
for d = 4 − ε, interaction between large-scale fluctuations becomes finite but small for
ε ¿ 1.

In subsequent papers, Wilson set problem more deeply: does triviality for d = 4 exist
only for small g0, or has the global character? The answer depends on the properties of the
β-function: if β(g) has no non-trivial roots (Fig. 1,a), then effective interaction tends to zero
at large distances for any initial value g0. If, however, β(g) is alternating (Fig. 1,b), then
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non-trivial limit g∗ may occur at large length scales. The latter possibility is of essential
interest for the condensed matter physics [35]: it means existence of phase transitions of
the new type, which are not described by Wilson’s ε–expansion.

Using logic of proof by contradiction, Wilson assumed existence of the boundary gf for
the domain of attraction of the Gaussian fixed point g = 0 (which is equivalent to alternat-
ing behavior for β(g)) and derived the consequences convenient for numerical verification.
According to his results [4], there are no indications of existence gf . Historically, it was
the first real attempt to investigate the strong coupling region for ϕ4 theory and the first
evidence of non-alternating character of β(g).

3. Triviality in mathematical sense.

Another definition of triviality was given in the mathematical papers [5]–[7]. If a field
theory is understood as a limit of lattice theories, then one can introduce the bare charge
g0 as a function of interatomic spacing a0. A theory is nontrivial, if for some choice of
dependence g0(a0) one can take the limit a0 → 0 and provide finite interaction at large
distances; if it is impossible for any choice of g0(a0), then a theory is trivial. Such definition
corresponds to the true triviality, i.e. principal impossibility to construct continuous theory
with finite interaction at large L. It is equivalent to internal inconsistency in the Bogolyubov
and Shirkov sense (Sec.1). Indeed, in the latter case a theory does not exist for scales
L < L0, if a charge g∞ is finite for L >∼m−1; realization of the limit a0 → 0 demands to
diminish L0 till zero, which is possible only for g∞ → 0.

It was rigorously proved in [5]–[7] that ϕ4 theory is trivial for d > 4 and nontrivial for
d < 4; using experience of these proofs, some plausible arguments were given in favor of
triviality for d = 4. From the physical viewpoint, these results are rather evident. Indeed,
ϕ4 theory is nonrenormalizable for d > 4 and the limit a0 → 0 cannot be taken without
destroying its structure; in the given definition of triviality, the structure of ϕ4 theory is
maintained artificially for arbitrary small a0, and hence the only possibility for it is to
”throw off” interaction and transfer to the Gaussian theory. Non-triviality of ϕ4 theory for
d < 4 is related with the negative portion of the β-function (Fig. 1,a, dashed line), for which
g(L) → g∗ at large distances and g(L) → 0 for L → 0; existence of this negative portion
can be demonstrated analytically for d = 4− ε with ε ¿ 1 and numerically for d = 2 and
d = 3 [36]. One can see, that the results proved in [5]–[7] do not require any study of the
strong coupling region, and hence no propositions can be made for the case d = 4, where
such investigation is obligatory. In fact, to obtain nontrivial theory for d = 4, one needs to
use the complex values of g0 (Sec.4), which were never considered in mathematical proofs.

——————————–

Above discussion makes clear the difference between two definitions of triviality. Triv-
iality in Wilson’s sense needs only positiveness of the β–function for g 6= 0, while the
true triviality demands in addition its sufficiently quick growth at large g, β(g) ∼ gα with
α > 1. This difference is practically not understood in the literature. Some authors (see
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e.g. [10, 17]) clearly state that the limits Λ → ∞ and m → 0 are equivalent. Indeed, the
formal solution of Eq.3

gΛ∫

gm

dg

β(g)
= ln

Λ2

m2
(5)

is determined only by the ratio Λ/m; however, its physical consequences depend on setting
the problem. If Λ and gΛ are fixed, then for positive β(g) we always have gm → 0 for
m → 0. If m and gm are fixed, then the possibility gΛ → ∞, Λ → ∞ is realized only for
α ≤ 1, while in the opposite case the limit Λ →∞ is impossible at all.

4. Available information on the β-function for d = 4.

Information on the β-function in ϕ4 theory can be obtained using the fact that the first
four coefficients βN in Eq.3 are known from diagrammatic calculations [37, 38], while their
large order behavior

βas
N = caNΓ(N + b) (6)

can be established by the Lipatov method [39, 40]. Smooth interpolation of the coefficient
function and the proper summation of the perturbation series allows in principle to obtain
β(g) for all g. The general appearance of the β-function in the four-dimensional ϕ4 theory,
obtained in [41], is shown in Fig.2, as well as the results of some other authors [42]-[44].
There is no doubt that β(g) is positive and hence triviality in Wilson’s sense does exist.
There are also grounds to expect manifestations of true triviality. Indeed, Fig.2 corresponds
to the ”natural” normalization of charge, when parameter a in the Lipatov asymptotics (6)
is equal to unity, while the interaction term in the action (4) is written as (16π2/4!)gϕ4.
In this case, the nearest singularity in the Borel plane lies at the unit distance from the
origin, and β(g) is expected to change on the scale of the order of unity. It is more or less
so (Fig.2), but the one-loop behavior appears to be somewhat dragged-out: approximately
quadratic dependence continues till g ∼ 10. For the conventional normalization of charge,
when the interaction term is written as gϕ4/8 or gϕ4/4!, the boundary between ”weak
coupling” and ”strong coupling” regions lies at g ∼ 103 instead of g ∼ 1. More than that,
convexity downwards takes place for the β-function till g ∼ 100 [41] (in the ”natural”
normalization) and behavior of any quantities is indistinguishable from ”trivial” in the
wide range of parameters. Nevertheless, according to [41] the asymptotics of β(g) in four-
dimensional ϕ4 theory has a form β∞gα with α ≈ 1 and the true triviality may be absent.
This point was ultimately clarified in the paper [31].

Recent results for 2D and 3D ϕ4 theory [45, 46] also correspond to α ≈ 1. The natural
hypothesis arises, that β(g) has the linear asymptotics for an arbitrary space dimension d.
Analysis of zero-dimensional theory confirms asymptotical behavior β(g) ∼ g and reveals
its origin. It is related with unexpected circumstance that the strong coupling limit for the
renormalized charge g is determined not by large values of the bare charge g0, but by its
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Figure 2: General appearance of the Gell-Mann – Low function in four-dimensional ϕ4

theory according to [41] (solid line) and the results of other authors (dashed lines from top
to bottom correspond to papers [42], [43], [44]).
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complex values 1. More than that, it is sufficient to consider the region |g0| ¿ 1, where the
functional integrals can be evaluated in the saddle-point approximation. If a proper direc-
tion in the complex g0 plane is chosen, the saddle-point contribution of the trivial vacuum
is comparable with the saddle-point contribution of the main instanton, and a functional
integral can turn to zero. The limit g → ∞ is related with a zero of a certain functional
integral and appears to be completely controllable. As a result, it is possible to obtain as-
ymptotic behavior of the β-function and anomalous dimensions: the former indeed appears
to be linear [31]. Asymptotics β(g) ∼ g in combination with non-alternating behavior of
β(g) corresponds to the second possibility in the Bogolyubov-Shirkov classification: g(L)
is finite for large L but unboundedly grows at L → 0. Henceforth, the true triviality of ϕ4

theory is absent [31].

5. Numerical results.

Existing numerical results can be divided into several groups.

(a) Decreasing of g(L) with the growth of L. Decreasing of effective interaction g(L)
was obtained in many papers (see e.g. [8]–[10]) and indicates only that β(g) is positive.
The detailed analysis of this decreasing can give essential information on the β-function,
but in fact such analysis was never performed.

(b) RG in the real space. This kind of research is an approximate realization of the
Kadanoff scaling transformation [33] in the spirit of early papers by Wilson. The system is
divided into finite blocks, which are combined thereafter into larger blocks. The blocks are
characterized by a finite number of parameters, whose evolution is analyzed. The papers of
this direction are characterized by high quality [11, 12], but they only demonstrate evolution
of the system to the Gaussian fixed point and confirm the initial analysis by Wilson.

(c) Logarithmic corrections to scaling. Phase transitions for d > 4 are described by
the mean field theory, while for d = 4 the corresponding power-law dependence acquire
logarithmic corrections [47, 34]:

M ∝ (−τ)1/2 [ln(−τ)]3/(n+8) ,

χ−1 ∝ |τ | [ln |τ |]−(n+2)/(n+8) , (7)

H ∝ M3/| ln M | , τ = 0 ,

etc, where M , H, χ, τ are magnetization, magnetic field, susceptibility and the distance
to the critical point in temperature, respectively. Existence of logarithmic corrections is

1 One can be anxious that the complex values of the bare charge spoils unitarity of theory, but this
problem is easily solvable. One can begin with the real bare charge and prove unitarity of renormalized
theory in the usual manner; it defines theory only for 0 ≤ g ≤ gmax, where gmax is finite. For values
gmax < g < ∞, the theory is defined by analytic continuation, which conserves unitarity. In the latter case
the bare charge becomes complex but it does not affect any observable quantities.
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beyond any doubt and their numerical verification [13]–[20] is either (for g0 ¿ 1) confir-
mation of the leading logarithmic approximation [47], or (for g0 >∼ 1) confirmation of the
Wilson picture of critical phenomena. Nevertheless, the majority of authors directly relate
their results to triviality of ϕ4 theory.

(d) Extension of Eq.1 to the region of large g0. Dependence of the renormalized charge
against the bare one for fixed Λ/m, studied in the papers [21]–[24], looks as the only
evidence of true triviality of ϕ4 theory. The typical results of such kind [21] are presented
at Fig. 3 and indicate that dependence g0 on L contains the Landau pole (N is proportional
to Λ/m).

More close inspection reveals the typical misunderstanding related with normalization
of charge. The authors of [21] were evidently sure that values g0 ≈ 400 lie in the deep
of the strong coupling region. In fact, all results for finite g0 correspond to the parabolic
portion of the β-function (Sec.4) and do not reveal essential deviations from Eq.1 (see a
direct comparison in [22]). Only the points for g0 = ∞, obtained by reduction to the Ising
model, look nontrivial. However, in the course of such reduction, the empirical dependence
m2

0 = −const g0 (in fact, corresponding to the one-loop law) was extrapolated to the region
of large g0. Such extrapolation is absolutely ungrounded and the results for g0 = ∞ are not
reliable, whereas without them no serious conclusions can be made from Fig. 3. Dependence
g on g0, analogous to that in Fig. 3, can be obtained also from high temperature series [24]
and the lattice strong coupling expansions [23]; however, these approaches also use doubtful
extrapolations based on the specific reduction to the Ising model.

In our opinion, the serious researches of such kind should first of all reveal reliable
deviations from Eq.1, related with non-quadratic form of the β-function. Analysis of such
deviations is the only possibility to obtain information on behavior of β(g) in the strong
coupling region.

The recent developments [31] give new insight on the results under discussion. Un-
bounded growth of g(L) for L → 0 requires the use of the complex values of the bare
charge, in order to formulate the nontrivial continuum theory. Such possibility was not
exploited in the papers [21]–[24], and their results (like Fig. 3) do not prove anything, even
if they are taken for granted.

(e) Papers of the recent period. In recent years, the aspects related with triviality are
intensively discussed in the series of papers by Agody, Consoli et al [25]–[27]. These authors
suggested the nontrivial character of the continuum limit of ϕ4 theory, which constructively
corresponds to rejection of the standard perturbation expansions.

The idea is illustrated by example of non-ideal Bose gas with the Bogolyubov spectrum
(ε(k) ∼ k for small k and ε(k) ∼ k2 for k → ∞). The ”continuum limit” of this model
can be reached by diminishing two characteristic scales of the problem, i.e. the scattering
length and the inter-particle distance. Supporting different relationship between two scales,
one can either restore the quadratic spectrum of the ideal gas (”entirely trivial theory”),
or obtain the strictly linear spectrum of noninteracting phonons (”trivial theory with non-
trivial vacuum”). The latter scenario is suggested for the continuum limit of the ϕ4 theory,
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Figure 3: The renormalized charge gR(0) (estimated for zero momenta) against the bare
charge g0 (corresponding to interatomic spacing a0) in four-dimensional ϕ4 theory for fixed
values of Na0 and m but different number N4 of lattice sites (according to [21]).
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in order to reconcile spontaneous symmetry breaking with triviality.
Even if possibility of the latter scenario is accepted, the question remains, why such

scenario should be realized physically. For example, in the case of the Bose gas of neutral
atoms, there is no real possibility to change simultaneously both the gas density and the
scattering length. The situation suitable for the authors of [25]–[27] occurs in the case
of a special long-range interaction, whereby a change in the density affects the ”Debye
screening radius”. However, this scenario is not arbitrary and can be predicted from the
initial Hamiltonian.

According to [25]–[27], the assumption on the nontrivial character of the continuum limit
is confirmed by numerical modelling on the lattice. However, this conclusion is based not
on a direct ”experimental evidence”, but only on its particular interpretation. Numerical
experiments were performed deep in the region of the one-loop law and could not contain
any information on triviality. The results, whatever unusual they might seem, must by
explained within the framework of a weak coupling theory.

6. Theoretical results

(a) Arguments by Landau and Pomeranchuk. Landau and Pomeranchuk [2] have no-
ticed that the growth of g0 in Eq.1 drives the observable charge g to the constant limit
1/(β2 ln Λ/m), which does not depend on g0. The same behavior can be obtained making

the change of variables ϕ → ϕ̃g
−1/4
0 in the functional integrals

I(M)
α1...αM

(x1, . . . , xM) =
∫

Dϕ ϕα1(x1)ϕα2(x2) . . . ϕαM
(xM) exp (−S{ϕ}) , (8)

determining the M–point Green functions G(M) = I(M)/I(0), and omitting the quadratic

in ϕ terms in the action (4); then G(M) transfers to G(M)g
−M/4
0 . Introducing amputated

vertex Γ(0,4) by equation

G
(4)
αβγδ = G

(2)
αβG

(2)
γδ + G(2)

αγG
(2)
βδ + G

(2)
αδ G

(2)
βγ −G

(2)
αα′G

(2)
ββ′G

(2)
γγ′G

(2)
δδ′Γ

(0,4)
α′β′γ′δ′ , (9)

one can see that such a change gives G(4)/[G(2)]2 = const(g0), Γ(0,4)[G(2)]2 ∝ Γ(0,4)Z2 ∝
Γ

(0,4)
R = g = const(g0), where Z1/2 is the renormalization factor of field ϕ and notations of

[34, 31] are used. If neglecting of quadratic in ϕ terms is valid already for g0 ¿ 1, it is all
the more valid for g0 >∼ 1: it gives a reason to consider Eq.1 to be valid for arbitrary g0.

These considerations may appear to be qualitatively correct 2 for the real values of
g0, which were suggested in them. According to [31], variation of g0 along the real axis
corresponds to the change of g from zero till finite value gmax. The qualitative validity of

2 Their validity on the quantitative level is excluded by non-quadratic form of the β-function. In fact,
the result g = const(g0) can be obtained by the change of variables in the functional integral only for
g0 À 1, while its validity for g0 ¿ 1, based on Eq.1, may be related with other reasons; for g0 ∼ 1 this
result is probably violated but coincidence of two constant values in the order of magnitude can be expected
from the matching condition.
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Eq.1 for arbitrary g0 requires that gmax → 0 for Λ →∞; the Monte Carlo results discussed
above (Fig. 3) indicate exactly such possibility. To construct nontrivial theory, one needs
complex g0 with |g0|<∼ 1 (Sec.4): in this case one cannot use nor discussed transformation
of functional integral (justified for |g0| À 1), nor the formula (1). The latter is related with
the fact that perturbation theory cannot be used even for |g0| ¿ 1, if the region is studied
where instanton contribution is essential.

(b) Summation of perturbation series. The first attempts to reconstruct the Gell-Mann
– Low function by summing the perturbation series [42]–[44] led to the asymptotics β∞gα

with α > 1, showing internal inconsistency (or true triviality) of ϕ4 theory (Fig. 2): it was
one of the strongest arguments for the corresponding time period. The different summation
result of the paper [41] at least shows that triviality cannot be reliably established from
such researches 3. On the other hand, all results show positiveness of β(g) and confirm
triviality in Wilson’s sense.

(c) Papers of the synthetic character. The series of papers [28] is extensively cited as
a systematic justification of triviality of ϕ4 theory. These papers attempt to make some
kind of a synthesis of all available information, but contain nothing new from viewpoint of
advancement to the strong coupling region. Conclusions made in [28] are rather natural,
since all easily accessible information inevitably indicates triviality due to specific features
of β-function discussed in Sec.4.

(d) Theories with interaction ϕp. Certain understanding of properties of ϕ4 theory can
be obtained by studing theories with more general interaction ϕp. Consideration of the
case p = 2+ δ with expansion in parameter δ gives, in the authors’ opinion [29], the serious
arguments in favor of triviality. On the other hand, exact calculation of the β-function in
the limit p →∞ [48] gives asymptotic behavior β(g) ∼ g(ln g)−γ, proving non-triviality of
theory. The latter result looks more reliable since it is not restricted by the real values of
the bare charge, which were implicitly implied in [29].

(e) Limit n → ∞. The ϕ4 theory is considered to be exactly solvable in the limit
n → ∞ [33, 30]. Its β-function appears to be effectively of the one-loop form and leads
to results like Eq.1, corresponding to asymptotics β(g) ∼ g2. This fact is considered as
evidence of triviality, even in the respectful papers [30].

In fact, coefficients of the β-function are polynomials in n and have the following struc-
ture for d = 4− ε:

β(g) = −εg + β2(n + a)g2 + β3(n + b)g3 + β4(n
2 + cn + d)g4 + . . . (10)

where β2, β3, a, . . . ∼ 1. The change of variables

g =
g̃

n
, β(g) =

β̃(g̃)

n
(11)

3 The results of [42, 43] have the objective character and originate from protracted one-loop behavior
of β(g) (Sec.4). They are reproduced in [41] as an intermediate asymptotics and can be explained by the
characteristic dip in the coefficient function. Variational perturbation theory [44] gives results close to [41]
in the region g < 10, but does not allow to obtain the correct asymptotic behavior even theoretically.
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gives

β̃(g̃) = −εg̃ + β2g̃
2 +

1

n
f1(g̃) +

1

n2
f2(g̃) + . . . (12)

and only two first terms remain in the n → ∞ limit. This conclusion is valid for g̃ ∼ 1
or g ∼ 1/n, which is sufficient for investigation of the vicinity of the fixed point and
determination of the critical exponents [33]. However, such procedure does not give any
information on the region g ∼ 1, not to mention g À 1. Henceforth, no statements on
triviality of ϕ4 theory can be made.

———————-

In conclusion, we have discussed the questions related with expected triviality of four-
dimensional ϕ4 theory in the continuum limit. Triviality in Wilson’s sense is confirmed
by all available information and can be considered as firmly established. Indications of
true triviality are not numerous and allow different interpretation. According to the recent
results, such triviality is surely absent.

This work is partially supported by RFBR (grant 06-02-17541).
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