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Summary

The natural way to find the limits of the accuracy in measurements is based on the probability theory 
and the mathematical statistics. In this general review distribution-free methods and non-parametric 
methods, point and interval estimations of the unknown parameters are discussed. The connection 
between maximum likelihood method and least squares method is shown. The special sections are
devoted to robust approach and to resolution of digital signals. Cramér-Rao lower-bound for accuracy
is demonstrated.

1. Introduction

The word ACCURACY (from Lat. accuratus – made with taking care of) has several definitions:
- the freedom from errors;
- property of a human statement to be close to truth;
- degree of conformity of a measurement to a true value, i.e. to a standard or to a model;
which are reflected by its synonyms: exactness, correctness, precision. Staying more in the EOLSS 
context we would rather consider the case of measurements distinguishing between direct and indirect
measurements. Direct measurements are accomplished either by counting the number of some events 
within a given time interval (as for instance, for Geiger counter), or by comparing a measured object 
with a standard, i.e. its accuracy can be evaluated quantitatively in units of a minimal scale factor. 
However in contemporary sciences and technologies direct measurements are inherent in the lowest 
level of a procedure of more sophisticated indirect measuring of an observable phenomenon. Such 
phenomena are described, as a rule, by theoretical models with given quantitative characteristics of 
parameters. Thus indirect measurements suppose to be a subject of calculations that leads to the 
problem of the accuracy estimation from the set of measured values. This problem is caused not only 
by the complexity of a functional dependence connecting a chosen model, its parameters and 
measurements, but mainly, due to errors of the latter. These errors are inherent in any measurements, 
direct or indirect, regardless of the thoroughness, with which the measurements have been done. The 
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accuracy of parameters in question is inversely proportional to those errors. Therefore they have to be 
classified according to their sources and analyzed in order to be decreased as much as possible.

There are several types of errors distinguished depending either on their sources – such as 
instrumental and model errors, or on their statistical behaviour – such as bias and random errors.

Instrumental errors appear due to inevitable distortions introduced into the measurements by various 
maladjustments of a measuring device while its construction or by misalignments of its parts. Such 
errors can be observed in the process of a special calibration procedure, when an especially designed 
standard object is measured. Results of these calibration measurements are then handled to be 
compared with well known features of the standard. Such calibration data handling has twofold goals: 
(1) to evaluate and approximate distortions of the measuring device in order to compensate them 
mathematically; (2) to determine a functional transformation from the scales of measuring device to the 
standard coordinate system. From a mathematical point of view calibration problems belong to the 
more general class of unfolding problems described below. 
Model errors are specific for hierarchical, indirect measurements and can often result in more serious 
errors in interpretation of experimental data. As soon as one tries to describe a certain phenomenon by 
a functional dependence on measured data and some parameters, then the choice of the type of function 
and values of its parameter can appear critical in verifying of such a description. We include here also 
errors of the method implementation, such as errors of approximation, round-off and discarding of 
expansion members which are of higher order of smallness. A typical example of such model errors 
appears when one tries to approximate observations of an unknown dependence by a polynomial. A 
wrong choice of this polynomial degree leads to an unavoidable approximation error. It is just the error 
of the wrong model and results usually in a significant accuracy loss.

However, all the errors listed above are developed in statistics of observations and, therefore, each of 
them can be classified statistically either as a bias (systematic error) or as a random error.

The systematic errors are caused by factors acting identically during the whole measuring process. The 
simplest example is weighing with wrong weights. It would always give you a wrong result unless you 
weigh a well-known standard weight, i.e. you make a calibration of your balance by calculating the 
difference between the previous biased measurement and a priori known weight of your standard. Then 
you can weigh any object and obtain its correct weight by adding that difference to the result of this 
biased weighing, which is, in fact, an example of the alignment transformation.

The random errors vary even for completely identical conditions of measurements depending on many 
occasional reasons which influences can not be taken into account in advance. We do not consider here 
gross errors of measurements that usually can be avoided by a careful experiment design or be 
eliminated later by a corresponding cut-off procedure.

Thus depending on the measurement process of any experiment some of errors listed above must be 
taken into account in order to improve the accuracy of measurements by a correct choice of statistical 
procedures embodying data handling algorithms.

2. Mathematical Formalism

In mathematical formulation we have a set of measurements (a sample)
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1 2, , , nx x x (1)

to be processed statistically to extract the maximum of useful information related to the explored 
phenomenon with an acceptable level of accuracy. If our sample consists of equally distributed, 
independent random variables, then the first problem is usually to estimate their mean value and 
variance. More sophisticated problem is to estimate either the cumulative distribution function of our 
sample or its probability density function (p.d.f.). Depending on the nature of data and our a priori
knowledge it can be done in several ways.

2.1. Distribution-free Methods

If the type of the sample distribution is unknown, one of distribution-free methods can be applied to 
estimate the sample mean value and even the distribution law of our sample. Theses methods are 
usually based on the order statistics ( )ix  obtained from (1) by reordering the sample in ascending 

order, so that (1) (2) ( ), nx x x    and the ordered measurements ( )ix  are called the order statistics. In 

particular, one of those statistics, namely ( 2)nx  named the median is a good estimation of the 

distribution mean value.

The empirical probability distribution function of the order statistics defined as 
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can serve as a good estimation of the sample distribution law, whose accuracy is increased 
asymptotically with increasing .n  That allows us to determine the type of the sample distribution by 
some of distribution-free goodness-of-fit tests in order to apply afterwards one of the parametric 
methods described in the next subsection.

2.2. Parameter Estimation

In a parametric case the type of the sample distribution is known and the problem is to estimate its 
parameters. Given the sample (1), estimation consists in determining either a value (so-called point 
estimation) or an interval most likely including the unknown parameter value in question (interval 
estimation).

2.2.1. Point Estimators

Both terms: estimation and estimator are often used. There is a minor difference between them: the first 
one often denotes the process or the procedure of the parameter estimation whereas the second one 
more often denotes the specific function of the sample data which is used for parameter estimation. We 
shall use both terms.
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Estimators are constructed as functions of our sample data and, therefore, are random values, whose 
accuracy related properties can be expressed in probability terms only: its mean value, variance and 
probability of a big deviation from the estimated parameter. Thus having chosen an estimator, one can 
consider its goodness in terms of following basic properties:

 consistency,
 unbiasedness,
 efficiency,
 robustness.

An estimator is called consistent if its estimates converge toward the true value   of the unknown 
parameter as the number n  of measurements increases. The convergence is understood in probability, 
i.e. given any   and any ˆ, n   is a consistent estimator of   if an N  exists such that 

 ˆ > <nP    

for all > .n N  One of the most widely known estimators of the center of the sampling distribution is the 
arithmetic mean of the sample data (we call it further the sample mean)

1

1
.

n

i
i

x x
n 

  (3)

Its consistency follows from the famous law of large numbers for the majority of distributions. 
Although as a function of random measurements the sample mean is a random variable, it is more 
precise than any of these measurements, since its variance is n  times smaller.

It should be borne in mind that there are distributions for which the law of large numbers is not valid 
and the arithmetic mean is an inconsistent estimator for these distributions. As an example, consider the 
probability density function of the Cauchy distribution

   2

1
, < < .

1
p x x

x
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
(4)

Both the mean value and the variance do not exist for the Cauchy distribution.

Denoting by E  the mathematical expectation of a random variable we define the bias b  of the 
estimator ˆ

n  as the deviation of its expectation from the true value 0,

   0
ˆ ˆ .n n nb E   

Thus, an estimator is unbiased if for all n  and 0

 ˆ
n nb   0
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or

  0
ˆ .nE  

Let us take as an example such an important characteristic of any distribution as its variance, i.e. the 
expectation of squared deviations of a random variable from its mean

  22 .x E x E x  

Calculating the sample variance one should replace the unknown value of the distribution mean by its 
statistical analog, i.e. the sample mean (3) that gives

 22
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  (5)

which is, in fact, an estimation of the variance of our sampling distribution. However the replacement 
we made introduces the bias in this estimator. As it is easy to calculate, its expectation is equal to

 2 2 2 21 1
,x x x x

n
E S

n n
  
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which means that we have the bias term 2 .x n  The estimator (5) is consistent and the presence of the 
small bias is not important when the sample size n  is very large, but for small n we have to correct our 
estimator to make it unbiased 
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The above two properties are important, but not enough to describe the goodness of an estimator. Since 
it is a random variable, its precision can be evaluated in terms of its variance. For instance, from the 
above mentioned consistent estimators of the distribution center, namely, the median and the arithmetic 
mean of the sample data, the second one has its variance smaller than for the median (in the majority 
cases, when the variance of the sampling distribution does exist). The arithmetic mean can be clearly 
considered as a more efficient estimator than the median.

Thus, in general, the efficiency of an estimator is determined by its variance: the smaller it is the more 
efficient is this estimator.

The estimator robustness means that it should be independent of the distribution, or insensitive to 
departure from the assumed distribution. In such a sense the median is more robust estimation for the 
sample distribution center than the sample mean (3), especially for distributions like Cauchy 
distribution (4), one having no mean value at all.

More detailed consideration of robust estimates is given in Section 3 below.
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In the choice of a good estimator one can note a conflict between efficiency and robustness 
requirements. It is a typical situation when one wants to choose an estimator which must meet all 
requirements stated above and even some more needed to satisfy such realistic demands as minimum 
computer time or a simplicity in understanding and, in general, minimum loss of scientists’ time. To 
find a compromise one must establish an order of importance between these requirements taking into 
account statistical and other merits, like cost or time (urgency of completing a research). In frames of 
our present considerations we focus ourselves further on statistical merits.

From this standpoint one of the most powerful statistical methods for estimating parameters is the 
maximum likelihood method (MLM) invented by R.Fisher (1912). Suppose for the sample (1) we know 
the probability density function ( , )f x   common for each ix  with unknown parameter vector 

1( , , ).m     Then so-called likelihood function

   .
n

i
i

L p x  (6)

is the density function for obtaining this sample if   is fixed. The MLM consists in finding an estimate 
of parameters ˆ ,  which maximizes ˆ( ).L  Since the maximum of L  is also the maximum of ln ,L  it is 
easier to maximize the latter function by solving the likelihood equations
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 (7)

in order to obtain the maximum likelihood estimation ˆ .  Its remarkable properties such as asymptotic 
consistency, efficiency and normality are proven.

Now one can easily find MLM-estimates for a known sample distribution.

Example 1. The Gaussian distribution is given by
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For the sample (1) taken from a normal population one obtains
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The solution of the likelihood equations gives two MLM-estimates
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which we already had before.

Example 2. The Poisson distribution. It is a discrete distribution of the random variable taking 
values equal to whole positive numbers k  with the probability

.
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  (11)

For the sample 1, , nk k  one has
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The solution of the likelihood equation gives the estimate of the parameter 
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2.2.2. Interval Estimators

Each of the point estimators discussed above gives us a value intended to estimate an unknown 
parameter. As it was pointed out, these estimators are random by their nature, but obtaining a value we 
do not feel that its randomness is concealed and it could deceive about its accuracy or probability of 
being close enough to an unknown parameter. Therefore an experimenter prefers to use the estimators 
that include explicitly the range 

,a b   

which contains the true value 0  with probability .  Given a measurement x  from a p.d.f.  f x 

with a known parameter ,  the probability content   can be calculated as 

    .
b

a

P a x b f x dx      (13)

However in our case we have an unknown parameter and too large arbitrariness in choosing the interval 
borders a  and .b  It would be better to choose an interval which has minimal length among all intervals 

,a b     with the same probability .  Such intervals are called confidence intervals for  with 
probability .  Since the parameter  is unknown, one has to take a different variable ( , ),z z x   a 
function of the measurement x  and the parameter ,  but such that its p.d.f. is independent of the 
unknown .  If it can be found, we can re-express Eq.(13) as a problem of interval estimation: given ,
find the optimal range ,a b     in  -space such that
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 0 .a bP       (14)

It is better to explain this scheme with a particular example of the confidence interval for the mean of 
normally distributed sample data with the cumulative distribution function 

 
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When both distribution parameters   and   are known one can calculate   from (13):

.
b a 
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   
However when   is unknown (but   is known), one can instead calculate the probability   that 
some of functions of our measurements, say the sample mean ,x  lie in an interval that includes its 
unknown mean. Let us take a symmetrical interval [ , ].c c    Then 
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where for the sample mean .n    We can now invert the probability statement in (16) in order to 
take the form of the statement (14):

 .P x c x c     

As it is known in the case of the normal distribution, one can obtain 0.95   if the constant c  is 
chosen as

1.96 1.96 .c n  

2.3. Evaluation of Dependencies

Now we consider the more complicated set of two-dimensional observations

   1 1, , , ,n nx y x y (17)

which we want to describe by a known function f  embodying our model assumption by means of 
parameters in question 1 2, , , .m    It gives us the following system of equations

 1 2; , , , , 1,2, , ,i i i my e f x i n      (18)
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where ie  are the errors of measurements, which are supposed to be random variables all with zero 
mean values and common distribution function ( );eF x  and n  is a number of measured points.

For the easiest 2D-case Eq. (18) can be considered as the set of residuals between the measured points 
and a curve to be fitted to them by varying the vector 1 2( , , , ) :m   

 ; , 1,2, , .i i ie y f x i n     (19)

where ix  is a given abscissa of the i-th measurement iy .

2.3.1. Least Squares and Maximum Likelihood

The least squares method (LSM) was independently invented by C.F.Gauss (1805) and A.Legendre 
(1809) and it consists in minimizing the sum of squares of those residuals (19)

  2
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( ( ; ))

n

i i
i

S y f x


    (20)

with respect to unknown parameters. Since ( )S   is a quadratic function of its arguments, its minimum 
is reached when 0; 1,2, ,kS k m     . This system of equations is especially simple in the 
frequently used case of the linear regression:

   
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; , 1, , ,
m

i j i j i
j

f x x e i n 


      (21)

where ( )j   is known set of m  linearly independent basic functions (e.g. 21, , , , mx x x ); ie - an 

accidental measurement errors; j  are as above unknown regression parameters ( 1, , )j m   which 

should be estimated by use of our data sample. Then the equation system for parameter estimations 
becomes linear. It is called the normal system of equations.

Optimal properties of LSM curve fitting follow from the fact that LSM is a particular case of the more 
general maximum likelihood method. As in Section 2.2.1 under the assumption that all residuals (19) 
are independent random variables with zero mean and a common p.d.f. ( )p e  one has the probability of 
occurrence of our particular sample 1 2, , , ,ne e e  is proportional to likelihood function

 ( ) .
n

i
i

L p e  (22)

Then we choose as the likeliest estimation of parameters the value of   in which (22) has its 
maximum. The solution of the likelihood equation
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gives the likelihood estimate ˆ .  Under the crucial assumption of normality of the p.d.f. in (22), i.e.
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one immediately has that MLM reduces to LSM. Since
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the logarithmic likelihood function becomes equal to
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which has its maximum exactly at the same point where (20) has its minimum. This implies that all 
above-mentioned good properties of a LSM-estimation are valid only if the normality assumption 
holds.

2.3.2. Measurements with Different Accuracy

Again we assume that the errors of measurements are distributed normally about zero, i.e.

     2 2; , 0, 1 .i i i i i iy f x e E e E e w     

The LSM requires

2

1
.

n

i i
i

S w e


  min (25)

The terms in the sum of squares are now weighted by the reciprocals of the variances. We explain 
details of S  minimization for the linear case (21) with 1( ) j

j i ix x   in the following notations
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Defining also the weight matrix
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we can rewrite (25) in its matrix form as

,TL  W 

where .     Then the solution of the normal system of equations becomes

  1ˆ T T
  W W   

It gives us estimations of all 1m  parameters of our fit. Their covariance matrix is

    1ˆcov .T 
   W  

It contains squared errors of parameters on its diagonal, but since those parameters are correlated, one 
can obtain also covariances of i-th and j-th parameters as the element ijc  of this matrix.

3. Robust Approach

Actually, the crucial normality assumption is very often violated due to contamination of the 
measurements by points of noise or background. Then due to quadratic view of the functional S  in 
(20) the contribution to it by any sample point-outlier could seriously disturb the estimation of 
parameters that causes a significant loss of accuracy. To calculate correct values of parameters one 
should use only the measurements from a close vicinity of the fitted function  ; .f x   All others 

should have much less impact or be completely negligible. This idea can be implemented by attributing 
special weights to each of measurements. Values of these weights must decrease with the growth of 
residuals ,ie  i.e. with the growth of the distance from the fitted curve. This approach named robust, i.e. 
resistive to contamination, has been proposed by P.Huber (1972). Let us take as an example a linear 
regression dependence (21) to expound how to find the best way to process the noisy data by such a 
robust approach.
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We describe the contaminated distribution of measurement errors ie  by J.Tukey’s gross-error model

       1 ,f e p e h e      (26)

where   is a parameter of contamination, 2(0, )mp N   is the Gauss distribution (24), and h  is some 
long-tailed noise distribution. Using the maximum likelihood method

 
1

N

i
i

L f e


  max

we obtain the following system of non-linear equations

   
1

0
pN

i i j i j j i
i j

w Y x x   


 
     
 
 

  (27)

with some optimal weights iw  depending on relations of p  and h  distributions

 
   

.
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p e
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p e h e




 



(28)

Taking ( )p e  from (24) and ( )h e  to be uniform and equals 0h h  for distinctness one obtains the 
optimal weight function as

  2

1
,

1 exp
2

opt
c

w e
e

c




 
    

 

(29)

with the constant

0 2
.

1
h

c
 






These weights are non-linear functions of the parameters in question. Therefore an iterative procedure 
was elaborated, in which the weights are recalculated at each iteration in accordance with the new 
values of parameters. This procedure is referred as re-weighted LSM (RWLSM). A polynomial 
expansion of these optimal weights up to the fourth order leads to the approximation.

    22
1 , if <

0, otherwise.

T Tt c t cw t


 


(30)
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We obtain, in fact, the famous Tukey’s bi-weights which are easier to calculate than the optimal ones. 
It is also recommended to choose the cutting parameter (3 4) .Tc    If there is no a priori

information one can initiate the iterations with (0) 1.iw 

The parameter   should be also recalculated at each iteration

 
    

 

21 1

1

k k
i i

k i
k

i
i

w e

w


 






(31)

Following P.Huber one can consider this procedure as descending M-estimate. Thus the robust 
approach allows us to handle data accurately even in presence of contamination, but if one is sure that 
data to be processed are free from background, noise or other contaminating factors, then there is no 
need to use any RWLSM-procedure, since the LSM is proven to be the most efficient method in this 
case. 

4. Resolution of Digitized Signals

It should be noted, however, at this point that the situation with real measurements in majority of 
contemporary physical, chemical or biological experiments is much far from the idealized models 
described above. Almost any modern measuring device is a quite sophisticated physical apparatus, 
which registers results of measurements in a discrete form after a digital procedure. In order to improve 
the resolution and accuracy of such detectors, they are designed as granular structures consisting of an 
array (raster) of cells (pads). Therefore if a signal to be detected looks like a single thin peak after being 
registered it would be smeared by the measuring device between several adjacent cells and then it is 
discretized in a view of a histogram, whose dimension depends on experimental data. An accidental 
measurement error is added to each histogram bin during registration. Additionally, background noise 
gives also its contribution to every cell of our device raster.

The basic problem is: to reconstruct the original signal position and its other parameters (its amplitude 
or the volume under its surface, its half width etc) from the registered histogram. Depending on its 
formulation this problem can be solved in either non-parametric or parametric ways.

4.1. Non-parametric Approach

The first non-parametric approach also named the unfolding problem is applied when the 
parameterization of the problem is unknown. Taking one-dimensional case for simplicity one can 
present a measurement result as one-dimensional histograms { }iF  for 1,2, ,i n  whose bin sizes and 
centers we denote respectively as i  and .ix  These measured values are distorted by the detector 
influence and spoiled by noise. We assume that the values of the random function ( )i iF F x  are 
independent at different ix and they do not contain systematical errors. Let us denote by ( , )K x y  the 



PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS - Measurements and Measurement Standards

©Copyright 2004 Eolss Publishers. All rights reserved.                              Encyclopedia of Life Support Systems  

instrumental or the point spread function of our detector. In most cases it is symmetrical and depends 
only on the difference of its arguments, i.e. ( , ) ( )K x y K x y   as, for instance, a Gaussian

 
2

2exp
2 s

s
K s



 
   

 

with s  usually supposed to be a known constant. Then one can, in principle, reconstruct the original 
signal in question ( )f x  as a solution of the system of following integral equations of the first kind

       
2

2

, 1,2, , .
i

i i

x

i
x

F K x y f y dy K x y f y dy i n


 

       (32)

The finite size   of the detector granularity can be expressed as the function ( )h x

1, 2
( )

0, 2.

x
h x

x

   
 >

(33)

It allows us to take into account the signal distortions due to the histogramming process of the 
experimental data storing. Its influence can be expressed mathematically by convolution of the point 
spread function ( )K s  with the granularity function ( )h x giving the modified instrumental function

     1 .K s h s r K r dr  (34)

Therefore the system (32) is transformed to

     1 .i i iF F x K x x f x dx   (35)

Due to discreteness of our model the integral equation system (35) is reduced to the system of algebraic 
equations suitable for implementing by computer

1
, 1,2, , ,

m

ij j i
j

P G F i n


   (36)

where ( )j jG f y  are unknown variables and 

   1 1 .ij i j j jP K x y y y    (37)

Unfortunately in most cases the system (36) is ill-posed, i.e. it has no solution at all since its right-hand 
side is a random vector and the system matrix ijP  is practically degenerated. However as it can be 
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proved, when one looks for a solution on a compact set, the problem can be solved for a sufficiently 
wide class of kernels including the convolution 1( ).K s

In the case of Gaussian distribution function of input data the logarithmic likelihood function may be 
written as 

 2
2

1

1
const,

2

n
i i

i i

F S
L




   (38)

where 2
i  are the noise variances at the i-th experimental point and the values of iS  are defined by the 

formula

1
, 1,2, , .

m

i ik k
k

S P G i n


  

The sought maximum of the likelihood function L  can be calculated by means of an iterative 
procedure. As it has been proved by E.L.Kosarev (1993), this procedure converges to the maximum of 
the likelihood function (38).

E.L.Kosarev has also shown that the resolution obtained reaches the possible theoretical limit. Such a 
limit for close signals follows from the well-known Shannon’s theorem for the maximum speed of the 
data transmission via the channel having a noise. The resolution of any linear device with the 
instrumental function ( )K x  can be defined as the effective width of this function, i.e.

 2 ,D K x dx




  (39)

providing the normalizing condition at the origin (0) 1.K 

The resolution of spectral devices can be improved in comparison to D  using the modern techniques 
for solving integral equations, thus superresolution is achieved. We define the superresolution factor
as the ratio of D  to the separation   between two narrow lines which can be recovered after the
deconvolution procedure

.SR D  (40)

We should remember that according to the well-known Rayleigh’s definition of resolution ,D   so in 
this case the superresolution factor is 1.SR   When the resolution is improved mathematically, SR> 1. 
The improvement is always limited by noise. At zero noise an exact solution of Eq.(35) can be found, 
which corresponds to an infinite superresolution.

The highest possible superresolution factor is closely related to the Shannon theorem on the highest 
possible transmission rate of information through a noisy channel. When a spectrum is not parametric, 
i.e. the function we sought for cannot be described by a simple formula with a few parameters, the 
limiting superresolution factor is 
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 2
1

log 1 .
3 s nSR E E  (41)

Here sE  and nE

 2 2, ,s nE F x dx E n




 

are the signal energy and the noise one. Here n  is the number of experimental data points, and 2  is 
the variance of input noise. If the signal-to-noise ratio is expressed in decibels  10 log ,s ndB E E

the approximate expression for the superresolution limit is 

10.SR dB (42)
Using the computer program package RECOVERY cited in bibliography one can reach the Shannon 
superresolution limit.

4.2. Parametric Approach

The second parametric approach is well-known as parameter fitting. It is obvious that parametric 
methods must be more accurate than non-parametric ones, since the parameterization itself brings an 
essential information related to processed signals. Even such a general knowledge as the signal
symmetry is enough to apply the easy-to-calculate center of gravity (COG) method for estimation of 
the signal centroid:

,,

, ,
,

i j ji j i
ji

cog cog
i j i j

i j

a ya x

x y
a a

 


 
(43)

where ,i ja  is 2D histogram presenting a detector response to the current signal, ,i jx y  are the middle 

points of the corresponding bins. The high speed and universality of this method made it the most 
popular for the majority of discrete detectors, unless the signal overlapping due to the high occupancy 
in many of modern experimental systems. It occurs when the probability of two and more signals to be 
overlapped is high enough.

Therefore more elaborated methods based on LSM robust modifications are developed by G.Ososkov 
(2000). Due to the problem of non-linearity they are iterative, so the COG solution can be used as an 
initial approximation. A multiparametric model of a signal obtained as a superposition of two Gaussian 
peaks with different positions and amplitudes is used. Corresponding problem of non-linear LSM 
functional minimization is solved there by a paraboloidal approximation method. As one more example 
of successful applications to the same problem of the close signal resolution, a method using wavelet 
transforms can be also pointed out. There are a great number of such examples of successful solutions 
of signal recovery parametric problems in different fields. All these methods have various degree of 
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accuracy depending on the noise or contamination level, but from statistical point of view all they 
intend, as the matter of facts, to provide various estimations of parameters.

Thus a question arises: is there a limiting accuracy and how to reach it?

4.3. Cramér-Rao Lower-bound for Accuracy

For the sake of simplicity let us consider a model of estimating of the single signal location parameter 

0x  from a sample of n  measurements:

 0 , 1,2, , .i i iy A x x i n     

Here ( )x  is the signal shape, A  is its amplitude, and a random noise i  has the Gaussian distribution 
(0, ),N   i.e.
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where different noise sample units are assumed to be (for a simplicity again) independent and non-
correlated: 2 .i j ij     Applying the standard maximum likelihood method for estimating the signal 

amplitude A  and location parameter 0x  one has to maximize the likelihood function of the sample
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It is reduced to maximization of the logarithmic likelihood function
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According to the Cramér-Rao inequality for unbiased estimates one has

 0 2

0

1
.D x

l
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       

Here, as usual, the symbol E  denotes the mathematical expectation obtained by various random 
realizations of i  for 1,2, , .i n   Taking the partial derivatives with respect to the parameter 0x  one 
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obtains the following formula for the Cramér-Rao lower-bound for the accuracy of the signal location 
parameter 0x  under condition of the negligible correlation between 0x  and A
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  


(44)

This final formula is valid for arbitrary shapes of the signal ( )x  and arbitrary ratio between the 
characteristic scale D  of the function ( )x  and the bin size   (the latter can be treated as the distance 
between measured points).

Let us consider two limiting cases. In the first one when ,D   the Eq.(44) can be approximated by 
substituting of the sum in the denominator by the corresponding integral
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  (45)

Here   denotes the histogram bin size. Computing the corresponding integral for the signal shape 

  2( ) expx x D    one obtains eventually the formula
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and its approximate estimation

 
 0 0 1 4 0.89 .
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x D x D

A A
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



     (46)

If 5%, 4, 1,A D      one has 0 0.1,x   i.e. 10 times better than bin size.

In the second limiting case both characteristics scales D  and   are approximately of the same size

.D 

In this case the approximation Eq.(45) is not valid and one should compute explicitly the sum in the 
denominator of the Eq.(44).
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Glossary

Bias ( )b   in statistical terminology is determined as the deviation of the mathematical expectation E  of some estimation 

T  of a parameter   from the true value of this parameter     .b E T   If ( ) 0b    then the estimation T  is 

unbiased.

Distribution function (often: cumulative distribution) ( )F t  of some random variable x is determined as the probability 

  of the event that < tx    ( ) < , < < .F t t t  x The function ( )F t  is non-decreasing and continuous from 

the left.

Error   of a measurement x  of some value 0x  is usually determined as deviation of the result of the measurement x
from the value of 0x ,  0.x x   There are two kinds of errors: random and bias and both are essential as a contribution 
to the final accuracy of measurements. There is a lower limit of any accuracy achievable by data handling based on the 
Cramér-Rao theorem.

Estimation is in a general case a function f  of measurements 1, , nx x  and it is therefore a random variable. The value 

of this function 1( , , )nf x x  is an estimation of unknown characteristic – the latter one can be a set of parameters or a 
distribution function.

Least squares is a parameter estimation method which consists of minimizing the sum of squared deviations of the data 
, 1, ,iy i n   of the measurements from some function 1( ; , , )my x a a  of x-coordinate to be fitted by a proper choice 

of unknown parameters 1, , ma a

  21
1

; , , .
n

i i m
i

S y y x a a


   min If measurements , 1, ,iy i n   have the Gauss distribution the Least 

Squares Method (LSM) is a particular case of the Maximum Likelihood Method (MLM).

Likelihood function     1 1, , ,n mL t L t t     is determined as the probability that measurements 1, , nx x  are 

taken fixed values 1, , .nt t  This definition is valid only for discrete variables .ix  In continual case one must replace 

‘probability’ to ‘probability density’. According to the MLM one can find the values of unknown parameters 1, , m   by 

maximization of the likelihood function in the m-dimensional parameter space { }, 1, , .k k m    The arguments of the 

likelihood function , 1,2, ,i it x i n   are considered as fixed while the maximization process.

Parametric method is in fact the MLM when one looks for some unknown parameters 1, , m   from measurements 

1, , nx x  under the condition that number of parameters .m n If the last inequality does not hold, the parametric 
method can sometimes result in inconsistent estimations.

Resolution (sometimes denoted as resolving power) is determined for any linear registering device (e.g. a spectrometer in 
optics) with the instrumental function ( )K x  as

 2 ,D K x dx




 
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providing the normalizing condition 0( ) 1K x   where 0x  is the abscissa point where 0( ) max.K x   The resolution of a 

registering device can be improved in comparison with D  by applying the modern techniques for data treatment, thus 
superresolution can be achieved.

Robust approach is a way of statistic estimation design to be less sensitive to disturbance of the basic hypotheses 
concerning the data and contaminating noise.

Sample of the size n  is a set of elements , 1, ,ix i n  randomly chosen from a general population, i.e. another set 

elements { } of infinite size with the distribution function ( ).F   According to this definition elements , 1, ,ix i n 
are equally distributed, independent random variables. It should be mentioned that experimentalists prefer usually to say: 
“data” instead of “sample”, “measure” instead of “draw a sample”, and “observable space” instead of “general population”.

Statistics in context of this chapter is the one of two connected parts of the mathematical science “Probability theory and 
mathematical statistics”. Mathematical statistics is more ‘experimental’ science with comparison of a probability theory, 
because we have to draw information from the experimental data. We can consider problems of both theories as direct and 
inverse.
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