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Itis shown that in one-dimensional systems it is possible to observe phase
transitions into states of continuous degeneracy, which are characterized by a
power-law behavior of the correlation functions.

It was pointed out by Landau (Ref. 1, § 163) that there can be no coexistence of
phases in one-dimensional systems. Therefore, neither first-order phase transitions nor
phases with discrete degeneracy can occur in these systems. In states with a contin-
uous degeneracy the fluctuations of the degeneracy parameter diverge, as a rule, even
at zero temperature. Here the situation is completely analogous to the behavior of
smectics in the three-dimensional case, and of crystals or superfluids in the two-dimen-
sional case. There, however, the correlation of the fluctuations is not exponential, and
this property distinguishes the state from a simple liquid; therefore, the opinion that
has persisted until now, that these states are possible only in systems with limited
dimensions, is not correct. In the one-dimensional case, for example, the pair correla-
tion of density fluctuations in a crystal falls off exponentially at large distances. This
communication discusses the characteristics of two states (crystalline and superfluid)
which distinguish them from a normal one-dimensional liquid, and which suggest that
a phase transition in principle can occur in a one-dimensional system.

A one-dimensional crystal is described by the density p,[x — u(x)] (compare
with a two-dimensional crystal, Ref. 1, § 138), where p, is a periodic function and u is
the displacement vector. The Lagrangian of the phonon mode reduces to the expres-
sion

5 {(0w)? = 2(0.u)7), ()

where c is the speed of sound and p is the average density. In accordance with expres-
sion (1), the mean square modulus of the Fourier component of the displacement
vector in the long-wavelength region is
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< |u? >= ln (2)
pc k ks
where n, is the Planck function of the distribution of thermal phonons. The mean
square fluctuations of the displacement diverges, but the mean square deformation of
the crystal is finite and decreases with decreasing temperature, as for ordinary crystals.
Let us explain the behavior of the four-point correlator (Ap,Ap,Ap;Ap,), where
Ap; = p(x;) — p, p(x;) is the density at a particular instant of time at the point x; and
where the distances x; —x, = b, and x; — x, = b, are of the order of the crystallo-
graphic lattice constant ¢, and the quantity L = (x, + x, — x; — x,)/2 is consider-
ably larger. We expand the function p, in a Fourier series p,(x) = p + Zp, exp(ifx),
where /= nm/a, n#0 is an integer, and p, = p* .. The relevant contributions to the
correlation function come from the following terms:

P1P—1PeP-q < expi{f[zy — 23 + Uy — ug| + g(z3 — 24 + us — uy]} > .

The difference in the displacements at distances of the order of the crystallographic
period is small. Introducing the deformations d, u, we have

|07 13| pq|® exps(fby + qbz2) < expi(b18zu; + bad,us) > . (3)

Then, averaging (cf. Ref. 1, § 138), summing over wave vectors, and subtracting the
part {p,0,) (py0,) that is unrelated to the correlations at large distances, we find

. . 1
Tlofpglexpli for +igha — S (b7 + b3) < (8:u)7 >|

X {exp[—b1bs < Bru18zus >] —1}.

The correlation of the fluctuations in the deformation (J,u,d u;) is

+oc
dc A kcoskL
2,ikL 28
k
/kqu l 2r  2mpe exp(hek/T) — ld
-0

21rpc{L- —(#T/hc)?sinh 2 (xTL/hc)}.

Ignoring small corrections, we have in the limit L>#ic/T the expression

< Ap1ApaApaApy > — < Ap1Dpz >< Ap3lpy >

S:p Elp,pqlcos fb1 cos gbs bLI; . )
Although the contribution to the asymptotic behavior of the correlator is due to ther-
mal fluctuations, it is temperature independent at distances that are large compared to
the wavelength of the thermal phonons. To take into account the zero-point oscilla-
tions, it is necessary to have information on the spectrum at atomic wavelengths. In a
model of a one-dimensional crystal with a single atom in a cell and only nearest-
neighbor interactions, the phonon spectrum is given by the expression e(k)
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= fica ~ '[sin ka|. Here the contribution of the zero-point oscillations to the correlator
(5) is proportional to the expression

L~ sin(xL/2a)F (b1, b2), (5)

where F(b,,b,), a function of b, and b,, oscillates over distances a. It is easy to show
that the correction of order L~ 2 due to zero-point motion exactly cancels contribution
(5) and remains the only part that has the form L ~ 2 cos(wL /2a). The expansion of
L~"! is obtained by integration by parts. The trick that is usually used (see, e.g., the
derivations of Eq. (87.6) and the problem of § 87 in Ref. 2) is not justified, and leads
to incorrect results.

It should be noted that in a one-dimensional crystal with a single atom in the unit
cell there are no such things as vacancies or interstitials. If there is a large number of
atoms in the unit cell, these defects are meaningful, and their behavior at finite tem-
peratures leads to exponential behavior for any correlators, since each defect degrades
the coherence of the structure.

The Lagrangian of a one-dimensional superfluid is
1 1
2 (p3:8 — $3:p) — €(p) — 50(3:4)” + por, (6)

where € is the energy per unit volume in the uniform state, ¢ is the velocity potential,
which is related to the phase of the order parameter of the superfluid,
¥ = p'? explig(x)], by the relation ¢ = (#/m)¢ , where m is the mass of the particle
in the Bose condensate, and p, is the Lagrangian multiplier that gnarantees conserva-
tion of the number of particles. The fluctuations are determined by the averages

he 1 hpk 1
< 2= - 2,22 =
2y pk{ﬂk + 2}, < |p&l® > . {ne + 2} (7
[cf. Ref. 2, Eq. (87b5)]. The correlator of the density fluctuations is
hp 17
< Ap(0)Ap(z) >~ —cﬁ./ k{nx + -;—}cos kxdk s ;—:’fsin qz, T < hegq. (3)
0

Here g~ p/m is the point of termination of the spectrum in the superfluid. The corre-
lation function (¥*(0)W(x)) falls off exponentially, but the correlator
{(W* (x, )W (x,)¥*(x,)¥(x,)) for the same arrangement of points, as in the example
cited above, exhibits a power-law behavior

< W (z1) ¥(22)¥* (23) ¥ (z4) > — < ¥*(21)¥(z2) >< ¥*(z3) ¥(z4) >
= p ?{< expi(p; — 2 + 3 — P4) > — < expi(p1 — p2) >< expi(ps — p4) >}
=p % exp ["'% < (w1 —w2)? > "% < (ps — v4)? >]
{exp[— < (p1—p2){ps—p4) >]-1}

- mc . in gL
& -p7% < (o1 — p2) (3 ~ 0a) >~ T2 sin qby sin gby “qz . 9
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Let us now consider a feature of one-dimensional superfluidity. The structure of
the order parameter, in addition to an anomalous one-frequency function ¥—or in the
case of superconductivity, a two-frequency function— is also determined by anoma-
lous functions of a large number of particles. In the three-dimensional case any of
these functions (and then a fortiori, all of the functions together) can have singulari-
ties at the vortex lines and in the two-dimensional case at a point. In the one-dimen-
sional case these topological properties are not present. Therefore, if in the course of
the fluctuations the function W goes to zero at some point, there will be no conse-
quences for the rest of the anomalous functions; i.e., the coherence near this point is
not destroyed.
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