Domain structure in oxygen on a Cu(110) surface
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A theory is derived for the domain structure in a system of adsorbed oxygen atoms
onaCu(110) surface.

A periodic stripe domain structure was recently observed! in a system of oxygen
atoms adsorbed on a copper (110) surface (Fig. 1). Each domain is a macroscopic 2D
uniform phase. One of these phases has a monatomic layer of oxygen in a (2X1)
structure, and another has a gas of oxygen atoms. The possibility in principle that such
domain structures would exist stems from the strictive instability which was estab-
lished more than a decade ago.” Below we calculate the period of this stripe domain
structure as a function of the concentration of the phases. The theory presented below
is in satisfactory quantitative agreement with the observations of Ref. 1.

When a crystal is deformed, the surface energy changes by an amount
/ ﬂuu Uuy dS (D

in the approximation linear in the deformation. Here 3, is the surface-tension tensor,
and 4 and v are the x and y components tangential with respect to the surface.® In each
of the states which coexist in this domain structure, there are, in accordance with their
symmetry, C,,, two independent components: ,,,, B, and .., B,,,- The jump
which occurs in these components as the 2D phase boundary is crossed signifies the
presence of a surface force which is acting on the interior of the crystal. The deforma-
tions which arise are favored from the energy standpoint, since the surface component
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of the energy is linear in the deformations. The magnitude of the advantage in terms of
the energy, on the other hand, has a logarithmic divergence. This divergence is respon-
sible for the appearance of this domain structure. The period of the structure, d, is
found by minimizing the energy density of the structure:
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where 7 is the usual energy of a line separating surface phases, a is a characteristic
atomic spacing, /= f (c) is an unknown function of the phase concentration ¢, and the
constant 4 is a definite function of the elastic moduli of the crystal. In the isotropic
case, for example, it is**
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where F is the Young’s modulus, and o the Poisson ratio.

The function f was in fact calculated in Ref. 4 for an isotropic crystal. We can
show that the result derived there also applies to the structure under consideration
here, on a (110) surface of a cubic crystal. The strain field «,, at the surface caused by
the linear distribution of the surface force F, = f3,,, — B, falls off in accordance
with

Upy = —AF, 27}, 3)

where the constant A is the same at x>0 and x <0 by virtue of the symmetry. By
virtue of the linearity of elastic theory, the strain reduces to the sum of the strains from
all the boundaries between domains:
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The sum of the energies in (1) and of the bulk elastic energy for an equlibrium
deformed state reduces to the surface integral [cf. Eqs. (1)-(2) in Ref. 4].
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Substituting expression (4) into this integral, integrating (here we introduce a cutoff
parameter @ to eliminate the logarithmic divergence at short distances), and summing
the resulting series of logarithms, we find the following expression for the function

fe):
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Minimizing the energy in (2) with respect to the period of the structure, we find
A
d= — ) (N
sin 7rc

where the quantity A is an exponetial function of the characteristics of the surface
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phases and of the elastic constants of the crystal. Consequently, the period of the
structure may be macroscopic.’

If we ignore the density of oxygen atoms in the 1 X 1 phase, and if we furthermore
ignore oxygen defects in the 2X 1 structure, then we find that the concentration c is
determined unambiguously by the parameter 6, This parameter is the fraction of
vacancies in the first adsorption layer which are filled by oxygen atoms:

c=290. ' (8)

The points in Fig. 2 show observational data of Ref. 1 on the period of the domain
structure as a function of the oxygen filling at a temperature of 640 K. The curve
shown here is theoretical, calculated from (7) with the help of (8). The parameter A
was taken to be 63 A.

It is not difficult to see that incorporating electrostatic effects, which would also
make a negative logarithmic contribution of the boundary energy of the 2D phases at
the surface (§3 in Ref. 4), would lead to only a renormalization of the parameter 4 in
expression (2).

We also note that a 2D stripe domain structure which arises because of the
logarithmic boundary energy is unstable in the isotropic case.” In the case discussed
above, on the other hand, in which the energy of the line separating the 2D phases, ¥,
is a function of the orientation of this line on the surface, and there is an anisotropy in
the elastic constants, the conditions for stability of the stripe structure could definitely
be satisfied.
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