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A macroscopic derivation of the equations of the spin dynamics of paramagnets
is offered. Some additional terms should be incorporated in the Bloch
equations. The boundary conditions at an interface between two paramagnets
are determined.

Although the Bloch equations of the spin dynamics of paramagnets’ give a fairly
good description of experimental data, they are somewhat unsatisfactory from the
theoretical standpoint: The literature reveals no common, systematic derivation of all
the terms in these equations on the basis of a macroscopic theory. It is thus not clear
whether all possible effects have been taken into account. Also lacking are boundary
conditions for these equations. Our purpose in the present paper is to bridge this gap.

We first consider a paramagnet in which the exchange forces are considerably
stronger than the relativistic forces—the spin—orbit and magnetic dipole—dipole forces.
If we completely ignore relativistic effects, and if there is no external field, the spin-
dynamics equations should express the conservation of each projection of the total spin
angular momentum:

S+, J3=0, (1)

where S is the density of the a projection of the spin, and J%, is the flux density of the
a component of the spin along direction k. In a paramagnet this flux occurs by spin
diffusion. At small deviations of the paramagnet from equilibrium, this flux can be
written as follows, in complete analogy with ordinary diffusion:

Te=—Ad", )

where 4 is a constant (we are not ignoring the crystallographic anisotropy), and the
quantity u” is a spin analog of the chemical potential of particles. We call the quantity
fi={u"} the “spin potential of the paramagnons” or simply the “spin potential.” The
behavior of the free energy of the paramagnet as a function of the spin density reduces
to the following term at small deviations from equilibrium:

rs 3
Y (3)
where y is the spin gyromagnetic ratio, and y is the magnetic (spin) susceptibility of
the paramagnet. By definition, the spin potential is equal to the derivative of energy
(3) with respect to S:
L 7
pu==S. (4)
X
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Using (2) and (4), we can thus rewrite Eq. (1) in the customary form
S— DAS=0, (5)

where D is a spin diffusion coefficient (D=4y"/y).

At the interface between two exchange-coupled paramagnets, e.g., at an interface
between crystalline and liquid *He or at an interface between two electron paramag-
nets, the conditions requiring the continuity of the normal component of the flux of
each spin projection hold:

Im=J- (6)

These conditions, however, are not sufficient for solving Egs. (5), which are second-
order equations involving spatial derivatives. It is clear from this analogy that we must
have the following equality of the spin potentials:

=i, : (7

In the case of ordinary diffusion, the elementary event is a transport of a particle across
an interface, while in our case it is a simultaneous change in the spin projection by +1
in one of the phases and by —1 in the other. If, on the other hand, the exchange
coupling between the paramagnets is weakened by some factor, it may be necessary to
replace (7) by the more general condition

T =K(uf—p3), (8)

where K is a spin kinetic coefficient, which should be particularly small in this case.

We now consider the terms which arise in Eq. (1) when relativistic effects and a

magnetic field are taken into account. We assume that the field is weak in comparison

. with the characteristic field at which a spin polarization of the paramagnet comparable

to the total polarization arises. Treating the corrections to Eq. (1) as the result of an

expansion in the small field H, in H, and in the small quantity i (measures of the

deviation of the system from equilibrium), and retaining the leading terms of this
expansion, we find

S4B = _“7+ Be™BTHPLY 4 CH®, 9)

where 7, B, and C are constants. For the spin potential, using the increment —MH,
where M =198 is the magnetization, in energy (4), we find the following result:

==

In the standard notation, Eq. (9) becomes
. M-yH _ .
M—DAM—yH)=————+7 [HM]+yH, (11)
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where Y= By/y, and y, =Cy. Equations (11) differ from the familiar spin-dynamics
equations by virtue of their last term, which is proportional to the rate of change of the
magnetic field. The quantity y  is evidently the high-frequency (wr>1) magnetic
susceptibility.

Without going into a microscopic theory, we cannot link the quantities y and 7
with each other or with the spin gyromagnetic ratio of the free particles. In this regard
the situation here is the same as in the dynamic theory of spin-ordered media.

In paramagnets in which relativistic effects are not small in comparison with
exchange effects, the spin-dynamics equations differ from Eqgs. (11) only in that there
is no point in retaining the diffusion term in them. The reason is that a natural estimate
of the diffusion coefficient yields D~a?/7, where a is on the order of the distance
between particles having spins. We can also do without boundary conditions in this
case.

A special situation arises at an interface between paramagnets in one of which
exchange effects are governing, while in the other they are not. For the first paramag-
net, we then need boundary conditions, but they cannot be simply the purely exchange
boundary conditions in (7) or (8). Conditions (6), on the other hand, are meaningless
here, since the spin is not conserved in the second paramagnet. We should evidently
replace condition (7) by a linear relationship between spin potentials (in such a
manner that the boundary conditions are automatically satisfied at equilibriom ):

fiy="nfp+ pu(ng,), (12)

where 77 and p are constants, and n is the unit vector normal to the interface. Con-
ditions (8), on the other hand, become

I =i v (i) + s pr® (i), (13)
where «, v, 7, and p are constants.
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