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The vanishing of the longitudinal susceptibility in exchange spin-ordered
structures with axial symmetry is explained. The effect stems from a more
general property: spin rigidity. Two more types of axial structures—in
addition to the three which have been mentioned previously in the literature—
are possible.

As the temperature is lowered, the longitudinal magnetic susceptibility of insu-
lating ferromagnets and collinear antiferromagnets is observed to decrease signifi-
cantly. In the ferromagnets this behavior is quite natural: At absolute zero all spins
have their maximum projection onto the selected axis, and the application of a mag-
netic field along this axis does not alter the state. A nonzero longitudinal susceptibility
results from relativistic effects which tend to lower the degree of polarization in the
ground state (§71 in Ref. 1).

No exact microscopic calculation has been carried out for antiferromagnets (the
ground-state problem). An approximate (in terms of 1/S) account of the effect of
quantum fluctuations leads to a zero longitudinal susceptibility.” Since this assertion
exists in the microscopic theory only as a result of calculations, the question of
whether the susceptibility arises in some order in 1/S (or ¢~5) remains open.

Andreev and the present author® have suggested that the absence of a longitudinal
susceptibility from collinear antiferromagnets at absolute zero is a consequence of the
axial symmetry of the ground state. The derivation of spin-dynamics equations and the
assertion that the longitudinal susceptibility is zero, found in the process, are correct
to within quadratic effects in the field. The nonlinear susceptibility thus remains an
open question.

We show below that an even stronger assertion is correct: The ground-state
energy of axial antiferromagnets is totally independent (if relativistic effects are ig-
nored) of the longitudinal field, and the energy of spin excitations changes linearly in
the field, with a universal proportionality factor, for any quasimomenta. This rigid
behavior of the spin system is a purely quantum effect, stemming from the symmetry
of the ground state, the exact properties of the exchange Hamiltonian, and the known
exact value of the contribution of the magnetic field to the spin Hamiltonian.

For definiteness we will conduct the discussion in terms of a collinear antiferro-
magnet; the ideas can easily be extended to other axial spin structures.

To bring out the feature of interest here, we consider the behavior of an easy-axis
antiferromagnet in a longitudinal magnetic field at absolute zero. We ignore other
relativistic effects (in addition to the uniaxial anisotropy) which would disrupt the
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axial symmetry and/or lead to nonconservation of the longitudinal spin projection. All
states of the system are then characterized by certain integer values of the projection
of the spin moment onto the symmetry axis. For a nonzero projection of the spin of an
excitation, according to the symmetry of the antiferromagnet (there is necessarily a
symmetry element which sends the oppositely oriented sublattices into each other and
which simultaneously changes the sign of the spin projection of the excitation), the
magnetic branches are doubly degenerate in a zero field.

Each state of the system, both the ground state and each excited state, remain
eigenstates for the Hamiltonian which incorporates the effect of the magnetic field.
The contribution of this field to the exact microscopic Hamiltonian reduces to the
single term

—2uH-S (1)

if we ignore other, weaker (in terms of the fine-structure constant) relativistic effects.
Here p is the spin magnetic moment of the free electron, and the operator S represents
the total spin moment. The ground state of this system does not change at all (in
particular, its zero magnetization does not change) until, in a finite field, the minimum
energy of an excited state which has a different magnetization becomes smaller than
the energy of the ground state, by virtue of the term in (1) (this is the point of the
flipping of the sublattices).

A universal dependence, linear in the field, is characteristic of not only long-
wave, low-frequency magnons (as follows from the theory of low-frequency spin
dynamics?), but also magnons with an arbitrary quasimomentum and all other pos-
sible spin excitations (optical magnons and bound states of magnons) which can be
characterized by a nonunit value of the spin projection onto the selected axis.

Clearly, these assertions are closely related to the form of the energy in (1). For
example, if there were some contribution in addition to (1), say, one of the form

aZ,-(S,»'H)Z, (2)

where the operator S; represents the spin of the ith atom, and « is a constant, then the
assertion that the longitudinal susceptibility is zero would no longer be correct. There
would then be a finite longitudinal susceptibility even in a completely polarized fer-
romagnet, no matter how strange that may sound. Here we should recall that there is
a well-known precedent, of an equally perplexing behavior of quantum systems: Lan-
gevin diamagnetism. In this case the magnetization of an atom arises in a state with a
zero projection of the orbital angular momentum onto the magnetic field, because of
a specific contribution of the magnetic field to the Hamiltonian (§113, Ref. 4).

We would like to call attention to two new types of axial order of a spin system.
These are last ones permissible on the basis of symmetry considerations. Purely spin
elements of exchange symmetry® of the known axial spin structures form the following
groups:

(C,,UR) (C, is the axial-symmetry axis, U, is a twofold axis perpendicular to
C,., and R is the operation of time reversal), for collinear magnetic materials (ferro-,
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ferri-, and antiferromagnets), which are characterized by an average spin density of
the type’

(S(r))=1p(r). (3)

(C,,U,,R), for spin nematic liquid crystals with a symmetric spin-spin correla-
tion function of the type’

1
(S,-(rl)Sj(rz))=q)(r1,r2)(n,-nk — ‘3'5”(). (4)

(C,,R), for spin nematic liquid crystals with a spin-spin correlation function
which has an antisymmetric part of the type’

(Si(r)S;(ry)) =@(r;,ry)Preji. (5)

We know (§98 in Ref. 4; the operation R in our case replaces the spatial inversion
discussed there) that in addition to these three types of axial groups, there are two
more: C, and (C_,U,):

The group C corresponds to a state in which the ordinary spin vector 1in (3)
exists, and the two-point spin correlation function in (5) has a nonzero antisymmetric
part. The vectors 1 and P are collinear.

The order parameter corresponding to the symmetry (C,,U,) can be found
without difficulty by examining a spin order of the tensor type;® specifically this
symmetry corresponds to a tensor magnetic material described by a three-point spin
correlation function of the type

(Si(r1)S;(r)Sk(r3)) =@(ry,r,r3)nme i (6)

where the function ¢ is transformed by a single representation of the symmetry group
of the crystal.

Because of the flipping of the sublattices in antiferromagnets, spin nematic liquid
crystals, and tensor magnetic materials, the rigidity of a spin system which we are
discussing here (and which leads to the possibility of an exact quantitative description
of the behavior in a magnetic field of both the ground state and the spectrum of
excitations, without the introduction of any parameters) can be observed only in weak
fields. In a collinear ferrimagnet, on the other hand, in a spherically symmetric scalar
magnetic material,® and in the ground state of an exchange system without any sym-
metry breaking (which is possible in principle), the spin rigidity should also be ob-
served in fields on the order of the exchange fields, until the energy of an optical
magnon falls to zero, leading to an instability.

I wish to thank H. Capellmann for hospitality during my visit at the RWTH in
Aachen and for a useful discussion of the problem of the vanishing of the longitudinal
susceptibility—a discussion which led to the development of the idea of a spin rigidity.
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