F2. Suslov I.M.
Gell-Mann - Low Function in the Phi^4 Theory.
Pis'ma Zh.Eksp.Teor.Fiz. 71, 315-321 (2000) [JETP Lett. 71, 217-221 (2000)].
F3. Suslov I.M.
Structure of High-Order Corrections to the Lipatov Asymptotics.
Zh.Eksp.Teor.Fiz. 117, 659-667 (2000) [JETP 90, 571-578 (2000)].
F4. Suslov I.M.
Summing Divergent Perturbative Series in the Strong Coupling Limit.
Gell-Mann - Low Function of the Phi^4 Theory.
Zh.Eksp.Teor.Fiz. 120, 5-30 (2001) [JETP 93, 1-23 (2001)].
F5. Suslov I.M.
Gell-Mann - Low Function in QED.
Pis'ma Zh.Eksp.Teor.Fiz. 74, 211-215 (2001) [JETP Lett. 74, 191-195 (2001)].
F6. Suslov I.M.
Gell-Mann - Low Function in QCD.
Pis'ma Zh.Eksp.Teor.Fiz. 76, 387-391 (2002) [JETP Lett. 76, 327-331 (2002)].
F7. Suslov I.M.
Comment on the Article by D.I.Kazakov and V.S.Popov.
Zh.Eksp.Teor.Fiz. 122, 696-699 (2002) [JETP 95, 601-604 (2002)].
F8. Suslov I.M.
Renormalons and Analytic Properties of the \Beta-Function.
Zh.Eksp.Teor.Fiz. 126, 542-548 (2004) [JETP 99, 474-479 (2004)].
F9. Lobaskin D.A., Suslov I.M.
High-Order Corrections to the Lipatov Asymptotics in the \Phi^4 Theory.
Zh.Eksp.Teor.Fiz. 126, 268-287 (2004) [JETP 99, 234-253 (2004)].
F10. Suslov I.M.
Divergent Perturbation Series (review).
Zh.Eksp.Teor.Fiz. 127, 1350-1402 (2005) [JETP 100, 1188-1233 (2005)].
F11. Pogorelov A.A., Suslov I.M.
Renormalization Group Functions for 2D Phase Transitions: To the Problem of Singular Contributions.
Zh.Eksp.Teor.Fiz. 132, 406-416 (2007) [JETP 105, 360-370 (2007)].
F12. Pogorelov A.A., Suslov I.M.
Critical Exponents for the \Lambda-Transition in Liquid Helium.
Pis'ma Zh.Eksp.Teor.Fiz. 86, 41-47 (2007) [JETP Lett. 86, 39-45 (2007)].
F13. Pogorelov A.A., Suslov I.M.
Critical Exponents from Field Theory: New Evaluation.
arXiv: 0801.4682.
F14. Pogorelov A.A., Suslov I.M.
Estimate of the Critical Exponents from the Field Theoretical Renormalization Group: Mathematical Sense of "Standard Values".
Zh.Eksp.Teor.Fiz. 133, 1277-1289 (2008) [ JETP 106, 1118-1129 (2008)].
F15. Suslov I.M.
Renormalization Group Functions of the \Phi^4 Theory in the Strong Coupling Limit: Analytical Results.
Zh.Eksp.Teor.Fiz. 134, 490-508 (2008) [ JETP 107, 413-429 (2008)].
F16. Suslov I.M.
Analytical Asymptotics of \Beta-Function in \Phi^4 Theory
(End of the “Zero Charge” Story).
arXiv: 0804.0368.
F17. Suslov I.M.
Exact Asymptotic Form for the \Beta-Function in Quantum Electrodynamics.
Zh.Eksp.Teor.Fiz. 135, 1129-1133 (2009) [ JETP 108, 980-984 (2009)].
F18. Suslov I.M.
Is \Phi^4 Theory Trivial?
arXiv: 0806.0789.
F19. Suslov I.M.
Asymptotic Behavior of the \Beta-Function in the \Phi^4 Theory:
A Scheme Without Complex Parameters.
Zh.Eksp.Teor.Fiz. 138, 508-523 (2010) [ JETP 111, 450-465 (2010)].
F20. Suslov I.M.
Strong-coupling asymptotics of the \beta-function in \phi^4 theory and QED
(Invited talk at the International conference LUMINY 09, 2009, Luminy, France).
Appl. Num. Math. 60, 1418-1428 (2010).
F21. Suslov I.M.
Renormalization Group Functions of the \Phi^4 Theory
from High-Temperature Expansions.
Zh.Eksp.Teor.Fiz. 139, 319-333 (2011) [ JETP 112, 274-287 (2011)].
F22. Suslov I.M.
On Wilson's Theory of Confinement
Zh.Eksp.Teor.Fiz. 140, 712-721 (2011) [ JETP 113, 619-627 (2011)].
F23. Suslov I.M.
A Thorny Path of Field Theory: from Triviality to Interaction and
Confinement.
arXiv:1506.06128.
D2. Suslov I.M.
Electron Conductivity of Incommensurate Systems near the Localization Threshold.
Zh.Eksp.Teor.Fiz. 84, 1792-1805 (1983) [Sov.Phys.JETP 57, 1044 (1983)].
D3. Suslov I.M.
Theory of Localization in Large-Dimensionality Spaces.
Pis'ma Zh.Eksp.Teor.Fiz. 43, 544-546 (1986) [JETP Lett. 43, 704-707 (1986)].
D4. Suslov I.M.
New Expansion for Critical Exponents of the Anderson Localization Theory.
Zh.Eksp.Teor.Fiz. 92, 1433-1460 (1987) [Sov.Phys.JETP 65, 806 (1987)].
D5. Suslov I.M.
Density of States of Disordered Systems in d>4 Dimensions.
Zh.Eksp.Teor.Fiz. 102, 1951-1967 (1992) [Sov.Phys.JETP 75, 1049-1057 (1992)].
D6. Suslov I.M.
Density of States near the Anderson Transition in a Four-Dimensional Space. Lattice Model.
Zh.Eksp.Teor.Fiz. 106, 560-584 (1994) [JETP 79, 307-320 (1994)].
D7. Suslov I.M.
Symmetry Theory of the Anderson Transition.
Zh.Eksp.Teor.Fiz. 108, 1686-1722 (1995) [JETP 81, 925-944 (1995)].
D8. Suslov I.M.
\Epsilon-Expansion for a Density of States of Disordered System near the Anderson Transition.
Pis'ma Zh.Eksp.Teor.Fiz. 63, 855-859 (1996) [JETP Lett. 63, 895-899 (1996)].
D9. Suslov I.M.
Density of States near the Anderson Transition in a Four-Dimensional Space. Renormalizable Models.
Zh.Eksp.Teor.Fiz. 111, 220-249 (1997) [JETP 84, 120-136 (1997)].
D10. Suslov I.M.
Density of States near the Anderson Transition in (4-\epsilon) Dimensions.
Zh.Eksp.Teor.Fiz. 111, 1896 (1997) [JETP 84, 1036 (1997)].
D11. Suslov I.M.
Development of (4-epsilon)-Dimensional Theory for Density of States of Disordered System near the Anderson Transition (review).
Usp.Fiz.Nauk 168, 503-530 (1998) [Physics - Uspekhi 41, 441-467 (1998)].
D12. Suslov I.M.
Scaling in the Localization Theory near the Upper Critical Dimensionality.
Zh.Eksp.Teor.Fiz. 113, 1460-1473 (1998) [JETP 86, 798-804 (1998)].
D13. Suslov I.M.
Density of States near the Anderson Transition in (4-epsilon)-Dimensional Space
(Invited Talk at MEZO-2000).
Physics - Uspekhi 44, 12-16 (2001).
D14. Suslov I.M.
Analytical Realization of Finite-Size Scaling for Anderson Localization: Is There a Transition in the 2D Case?
Zh.Eksp.Teor.Fiz. 128, 768-784 (2005) [JETP 101, 661-675 (2005)].
D15. Suslov I.M.
Analytical Realization of Finite-Size Scaling for Anderson Localization:
Does the Band of Critical States Exist for d>2 ?
Zh.Eksp.Teor.Fiz. 129, 1064-1076 (2006) [JETP 102, 938-948 (2006)].
D16. Suslov I.M.
Localization Theory in Zero Dimension and the Structure of Diffusion Poles.
Zh.Eksp.Teor.Fiz. 132, 1368 (2007) [JETP 105, 1198 (2007)].
D17. Suslov I.M.
Possibility of 2D Anderson Transition and Generalized
Lyapunov Exponents.
arXiv: 0801.4686.
D18. Suslov I.M.
Finite-Size Scaling from Self-Consistent Theory of Localization.
Zh.Eksp.Teor.Fiz. 141, 122-134 (2012)
[ JETP 114, 107-117 (2012)].
D19. Suslov I.M.
Conductance of Finite Systems and Scaling in Localization Theory.
Zh.Eksp.Teor.Fiz. 142, 1020-1043 (2012)
[ JETP 115, 897-917 (2012)].
D20. Suslov I.M.
Reply to the Comment by P.Markos.
Zh.Eksp.Teor.Fiz. 142, 1230-1233 (2012)
[ JETP 115, 1079-1082 (2012)].
D21. Suslov I.M.
Scaling for Level Statistics from Self-Consistent
Theory of Localization.
Zh.Eksp.Teor.Fiz. 145, 1031-1047 (2014) [JETP 118, 909-923 (2014)].
D22. Suslov I.M.
Interpretation of High-Dimensional Numerical Results for
Anderson Transition.
Zh.Eksp.Teor.Fiz. 146, 1272-1282 (2014) [JETP 119, 1115-1122 (2014)].
D23. Suslov I.M.
A Possibility for Observation of the Berezinskii Law.
arXiv:1410.5928.
D24. Suslov I.M.
Multifractality and Quantum Diffusion from Self-Consistent
Theory of Localization.
Zh.Eksp.Teor.Fiz. 148, 1012-1030 (2015)
[JETP 121, 885-901 (2015)].
D25. Suslov I.M.
Strict Parabolicity of the Multifractal Spectrum at the
Anderson Transition.
Zh.Eksp.Teor.Fiz. 150, 970-975 (2016) [JETP 123, 845-850 (2016)].
D26. Suslov I.M.
Conductance Distribution near the Anderson Transition.
Zh.Eksp.Teor.Fiz. 151, 897-915 (2017) [JETP 124, 763-778 (2017)].
D27. Suslov I.M.
General Form of DMPK Equation.
Zh.Eksp.Teor.Fiz. 154, 152-165 (2018) [JETP 127, 131-142 (2018)].
D28. Suslov I.M.
Conductance Distribution in the Magnetic Field.
Phil.Mag. 99, 247-266 (2019).
D29. Suslov I.M.
Conductance Distribution in 1D Systems: Dependence on the Fermi
Level and the Ideal Leads.
Zh.Eksp.Teor.Fiz. 156, 950-971 (2019) [JETP 129, 877-895 (2019)].
D30. Brazhkin V.V., Suslov I.M.
Mechanism of Universal Conductance Fluctuations.
J.Phys.-Cond.Matt. 32(35), 35LT02 (2020).
D31. Suslov I.M.
Spectral Analysis of Universal Conductance Fluctuations.
Zh.Eksp.Teor.Fiz. 158, 911-928 (2020) [JETP 131, 793-808 (2020)].
D32. Suslov I.M.
Hidden Symmetry in 1D Localization.
Phil.Mag.Lett. 102, 255-269 (2022).
D33. Suslov I.M.
Boundary Conditions, Phase Distribution and Hidden Symmetry
in 1D Localization.
Zh.Eksp.Teor.Fiz. 162, 750-766 (2022) [JETP 135, 726-741 (2022)].
D34. Suslov I.M.
To Separation of Variables in the Fokker Plank Equations.
Usp.Fiz.Nauk ... (2023).